跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林紹凱
研究生(外文):Shao-kai Lin
論文名稱:電化學沉積參數對氧化亞銅薄膜特性影響之研究
論文名稱(外文):A Study of The Effects of Electrochemical Deposition Parameters on Cuprous Oxide Thin Film
指導教授:高宗達
指導教授(外文):Tzung-ta Kao
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:電機工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:138
中文關鍵詞:灰關聯分析田口法電化學沉積氧化亞銅
外文關鍵詞:Grey relationalCuprous Oxide(Cu2O)Taguchi Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:749
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電化學沉積方式,可分為定電位與定電流兩種,本論文將分成定電位、定電流兩個大方向。定電流可提供基材穩定電流值,電化學沉積反應速率較穩定;定電位可以控制施加電位,以利改變材料的結晶方向。
第一部分做定電流氧化亞銅薄膜特性最佳化之研究,其中控制因子A為定電流、B為pH值、C為沉積時間及D為溫度,A控制因子設定在-2mA~-8mA,B控制因子設定在pH7~12、C控制因子設定在180s~900s及D控制因子設定在55~70℃。
第二部分做定電位氧化亞銅薄膜特性最佳化之研究,其中控制因子A為定電位、B為pH值、C為沉積時間及D為溫度,A控制因子設定在-0.35V~-0.5V,B控制因子設定在pH7~12、C控制因子設定在180s~900s及D控制因子設定在55~70℃。
而每一控制因子皆有三個水準數,先以實驗將水準數設定成三個,藉由直交表L9(34)控制上述之參數,量測其晶粒大小、(111)與(200)XRD繞射峰值比、穿透率,再用灰關聯分析,求出最佳化參數。
利用銅鉑(99.9%)當作基板,電化學沉積氧化亞銅薄膜實驗,電位改變影響材料結晶方向,經由穩定的控制形成氧化亞銅結晶方向;定電流會影響沉積之電壓值,因此結晶相比定電位較難控制;pH值變大,造成相位轉換且顆粒變大;沉積時間影響其厚度增加,晶粒大小的變化不明顯;溫度升高會造成結晶顆粒變大,能得到較強之繞射峰值。
Both constant current and voltage electrodeposition are adopted to deposit the cuprous oxide thin films on both copper foil and ITO glass substrates. Using Taguchi method, either constant current or voltage, pH value, deposition time, and electrolyte temperature are chosen as the control factor A, B, C and D, respectively. The ranges of control factors A, B, C, and D are -0.35V ~-0.5V, pH7 ~ 12, 180s ~ 900s, and 55 ~ 70 ℃, respectively.
A orthogonal array L9 (34) is designed to conduct the electrodeposition experiments. The grain size, diffraction peak ratio of phase (111) and (200), and visible transmittance spectrum are the characteristics measured by XRD and transmission spectrometer, and then followed by the gray relational analysis for the optimal parameter.
Using copper foil (99.9%) as the substrate, electrochemical deposition of cuprous oxide film can result a more uniform crystal preferred phase by constant voltage deposition and a larger grain size by increasing electrolyte temperature. In contrast, the constant current electrodeposition of cuprous oxide film usually lead to a mixed phase of (111) and (200) due to the changing electrode potential.
中文摘要 I
ABSTRACT II
誌謝 III
目錄 I V
表目錄 IX
圖目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究架構 3
第二章 理論說明與文獻回顧 4
2.1 銅 4
2.2 氧化亞銅 6
2.3 電化學原理 7
2.3.1 成核、成長的方式 8
2.3.2 結晶結構理論 10
2.4電化學沉積氧化亞銅 11
2.5田口法理論探討 13
2.5.1 品質設計 13
2.5.2參數設計 13
2.5.3信號雜音比 15
2.5.4變異數分析 17
2.6灰關聯分析法 19
第三章 研究方法與步驟 21
3.1實驗用藥品與器材 21
3.2實驗規劃 23
3.2.1控制因子分析 25
3.2.2定義控制因子與水準 26
3.2.3選定直交表 26
3.2.4資料分析 27
3.3實驗方法 28
3.3.1氧化亞銅溶液之配置 28
3.3.2電化學沉積之基材拋光 28
3.3.3氧化亞銅薄膜之沉積 29
3.3.4蝕刻銅箔基板 30
3.4電化學沉積分析儀器 31
3.4.1掃瞄式電子顯微鏡 31
3.4.2 X光繞射分析儀 33
3.4.3可見光穿透率量測儀 34
3.4.4循環伏安 35
第四章 結果與討論 36
4.1氧化亞銅薄膜結構之探討 37
4.1.1定電位對電化學沉積氧化亞銅薄膜的影響 37
4.1.2定電流對電化學沉積氧化亞銅薄膜的影響 40
4.1.3 PH對電化學沉積氧化亞銅薄膜的影響 42
4.1.4沉積時間對電化學沉積氧化亞銅薄膜的影響 45
4.1.5溫度對電化學沉積氧化亞銅薄膜之影響 51
4.2參數設定與分析 54
4.2.1設定控制因子之水準數 54
4.2.1直交表實驗分析 55
4.3定電流沉積氧化亞銅於銅箔基板成長與特性 56
4.3.1定電流沉積氧化亞銅薄膜於銅箔基板表面形態 56
4.3.2定電流沉積氧化亞銅薄膜於銅箔基板結構分析 58
4.3.3定電流沉積氧化亞銅薄膜於銅箔基板不同結晶方向成長 61
4.3.4定電流沉積氧化亞銅薄膜於銅箔基板光學特性分析 62
4.3.5灰關聯分析 66
4.3.6驗證實驗 70
4.4定電位沉積氧化亞銅於銅箔基板成長與特性 74
4.4.1定電位沉積氧化亞銅薄膜於銅箔基板表面形態 74
4.4.2定電位沉積氧化亞銅薄膜於銅箔基板結構分析 76
4.4.3定電位沉積氧化亞銅薄膜於銅箔基板不同結晶方向成長 79
4.4.4定電位沉積氧化亞銅薄膜於銅箔基板光學特性分析 80
4.4.5灰關聯分析 84
4.4.6驗證實驗 88
4.5氧化亞銅於銦錫氧化物基板成長與特性 93
4.5.1定電位沉積氧化亞銅薄膜於ITO基板薄膜表面形態 93
4.5.2定電位沉積氧化亞銅薄膜於ITO基板結構分析 95
4.5.3定電位沉積氧化亞銅薄膜於ITO基板不同結晶方向成長 98
4.5.4定電位沉積氧化亞銅薄膜於ITO基板光學特性分析 99
4.5.5灰關聯分析 103
4.5.6驗證實驗 106
4.6氧化亞銅與氧化鋅薄膜I-V量測 111
第五章 結論 115
參考文獻 117
[1]S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, "Electrodeposited ZnO/Cu2O heterojunction solar cells," Electrochimica Acta, vol. 53, pp. 2226-2231, 1/1/ 2008.
[2]S. K. Das and G. C. Morris, "Preparation and properties of CdS/CdTe thin film solar cell produced by periodic pulse electrodeposition technique," Solar Energy Materials and Solar Cells, vol. 30, pp. 107-118, 7// 1993.
[3]L. O. Grondahl, "THEORIES OF A NEW SOLID JUNCTION RECTIFIER," Science, vol. 64, pp. 306-308, September 24, 1926 1926.
[4]L. Kleinman and K. Mednick, "Self-consistent energy bands of Cu2O," Physical Review B, vol. 21, pp. 1549-1553, 02/15/ 1980.
[5]T. Minami, T. Miyata, and Y. Nishi, "Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure," Solar Energy, vol. 105, pp. 206-217, 7// 2014.
[6]V. Georgieva and M. Ristov, "Electrodeposited cuprous oxide on indium tin oxide for solar applications," Solar Energy Materials and Solar Cells, vol. 73, pp. 67-73, 5// 2002.
[7]Y. Sui, Y. Zeng, W. Zheng, B. Liu, B. Zou, and H. Yang, "Synthesis of polyhedron hollow structure Cu2O and their gas-sensing properties," Sensors and Actuators B: Chemical, vol. 171–172, pp. 135-140, 8// 2012.
[8]H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao, and B. Yu, "One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties," Advanced Functional Materials, vol. 17, pp. 2766-2771, 2007.
[9]N. Ozer and F. Tepehan, "Structure and optical properties of electrochromic copper oxide films prepared by reactive and conventional evaporation techniques," Solar Energy Materials and Solar Cells, vol. 30, pp. 13-26, 6// 1993.
[10]G. Wu, W. Zhai, F. Sun, W. Chen, Z. Pan, and W. Li, "Morphology-controlled electrodeposition of Cu2O microcrystalline particle films for application in photocatalysis under sunlight," Materials Research Bulletin, vol. 47, pp. 4026-4030, 12// 2012.
[11]M. Lili, P. Meng, L. Jialin, Y. Ying, and C. Zhenghua, "Cu2O nanorods with large surface area for photodegradation of organic pollutant under visible light," in Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, pp. 975-978, 2007
[12]K. M. Abu-Salah, S. A. Alrokyan, M. N. Khan, and A. A. Ansari, "Nanomaterials as analytical tools for genosensors," Sensors (Basel), vol. 10, pp. 963-93, 2010.
[13]M. Srivastava, J. Singh, R. K. Mishra, and A. K. Ojha, "Electro-optical and magnetic properties of monodispersed colloidal Cu2O nanoparticles," Journal of Alloys and Compounds, vol. 555, pp. 123-130, 4/5/ 2013.
[14]J. A. Switzer, H. M. Kothari, and E. W. Bohannan, "Thermodynamic to Kinetic Transition in Epitaxial Electrodeposition," The Journal of Physical Chemistry B, vol. 106, pp. 4027-4031, 2002/04/01 2002.
[15]T. D. Golden, M. G. Shumsky, Y. Zhou, R. A. VanderWerf, R. A. Van Leeuwen, and J. A. Switzer, "Electrochemical Deposition of Copper(I) Oxide Films," Chemistry of Materials, vol. 8, pp. 2499-2504, 1996/01/01 1996.
[16]K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen, and K. N. Tu, "Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper," Science, vol. 321, pp. 1066-1069, August 22, 2008.
[17]陳乃維, 「銅氧核殼奈米顆粒間交互作用對自旋極化之影響,」 國立中央大學碩士論文, 2008.
[18]T. Minami, T. Miyata, and Y. Nishi, "Efficiency improvement of Cu2O-based heterojunction solar cells fabricated using thermally oxidized copper sheets," Thin Solid Films, vol. 559, pp. 105-111, 5/30/ 2014.
[19]A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications: Wiley, 2000.
[20]B. J. Hwang, R. Santhanam, and Y. L. Lin, "Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite," Electrochimica Acta, vol. 46, pp. 2843-2853, 5/31/ 2001.
[21]M. J. Siegfried and K. S. Choi, "Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution," Advanced Materials, vol. 16, pp. 1743-1746, 2004.
[22]M. H. P. Reddy, P. N. Reddy, and S. Uthanna, "Structural, electrical and optical behaviour of rf magnetron sputtered cuprous oxide films," Indian Journal of Pure & Applied Physics vol. 48, pp. 420-424, 2010.
[23]H. T. Hsueh, S. J. Chang, F. Y. Hung, W. Y. Weng, C. L. Hsu, T. J. Hsueh, et al., "Fabrication of coaxial p-Cu2O/n-ZnO nanowire photodiodes," Superlattices and Microstructures, vol. 49, pp. 572-580, 5// 2011.
[24]A. R. Rastkar, A. R. Niknam, and B. Shokri, "Characterization of copper oxide nanolayers deposited by direct current magnetron sputtering," Thin Solid Films, vol. 517, pp. 5464-5467, 7/31/ 2009.
[25]M. Ristov, G. J. Sinadinovski, and M. Mitreski, "Chemically deposited Cu2O thin film as an oxygen pressure sensor," Thin Solid Films, vol. 167, pp. 309-316, 12/15/ 1988.
[26]J. Medina-Valtierra, J. Ramı́rez-Ortiz, V. M. Arroyo-Rojas, and F. Ruiz, "Cyclohexane oxidation over Cu2O–CuO and CuO thin films deposited by CVD process on fiberglass," Applied Catalysis A: General, vol. 238, pp. 1-9, 1/8/ 2003.
[27]A. H. Jayatissa, K. Guo, and A. C. Jayasuriya, "Fabrication of cuprous and cupric oxide thin films by heat treatment," Applied Surface Science, vol. 255, pp. 9474-9479, 9/15/ 2009.
[28]A. Labidi, H. Ouali, A. Bejaoui, T. Wood, C. Lambert-Mauriat, M. Maaref, et al., "Synthesis of pure Cu2O thin layers controlled by in-situ conductivity measurements," Ceramics International, vol. 40, pp. 7851-7856, 7// 2014.
[29]J. Eskhult, M. Herranen, and L. Nyholm, "On the origin of the spontaneous potential oscillations observed during galvanostatic deposition of layers of Cu and Cu2O in alkaline citrate solutions," Journal of Electroanalytical Chemistry, vol. 594, pp. 35-49, 8/15/ 2006.
[30]Y. S. Jeong, H. Kim, and H. S. Lee, "Growth and characterization of p-Cu2O/n-ZnO nanorod heterojunctions prepared by a two-step potentiostatic method," Journal of Alloys and Compounds, vol. 573, pp. 163-169, 10/5/ 2013.
[31]Y.-e. Gu, X. Su, Y. Du, and C. Wang, "Preparation of flower-like Cu2O nanoparticles by pulse electrodeposition and their electrocatalytic application," Applied Surface Science, vol. 256, pp. 5862-5866, 8/1/ 2010.
[32]J. A. Switzer, C.-J. Hung, L.-Y. Huang, F. S. Miller, Y. Zhou, E. R. Raub, et al., "Potential oscillations during the electrochemical self-assembly of copper/cuprous oxide layered nanostructures," Journal of Materials Research, vol. 13, pp. 909-916, 1998.
[33]Milan Paunovic and M. Schlesinger, "Fundamentals of Electrochemical Deposition, 2nd Edition," A JOHN WILEY & SONS, INC, 2006.
[34] 張明毅, 「田口方法簡介,」 宜蘭大學, 2003.
[35]張躍鐘, 「利用田口法進行陽極氧化鋁轉換效率最佳化參數之研究,」 國立高雄第一科技大學光電工程研究所碩士論文, 2013.
[36]陳裕川 等, 「現代焊接生產實用手冊,」 機械工業出版社, pp. 306-327, 2005.
[37] 溫坤禮 等, 「灰關聯模型方法與應用,」 高立圖書股份有限公司, 2004.
[38]J. Medina-Valtierra, J. Ramı́rez-Ortiz, V. M. Arroyo-Rojas, and F. Ruiz, "Cyclohexane oxidation over Cu2O–CuO and CuO thin films deposited by CVD process on fiberglass," Applied Catalysis A: General, vol. 238, pp. 1-9, 1/8/ 2003.
[39] 羅聖全, 「研發奈米科技的基本工具之一電子顯微鏡介紹–SEM,」 工業技術研究院 材料與化工研究所,(2004).
[40] B.D. Cullity Deceased, S.R. Stock, "Elements of X-Ray Diffraction, " Prentice Hall,Upper Saddle River, 2001.
[41] 吳宏哲, 「氧化亞銅薄膜之製備與特性分析,」 國立高雄第一科技大學電機工程研究所碩士論文, 2014.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊