(3.238.186.43) 您好!臺灣時間:2021/03/01 15:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴錦輝
研究生(外文):Jin-Huei Dai
論文名稱:光流演算法及其應用的探討
論文名稱(外文):A Survey of Optical Flow Algorithms and Their Applications
指導教授:魏清煌
指導教授(外文):Ching-Huang Wei
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:電腦與通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:41
中文關鍵詞:總變分光流總變分微分法
外文關鍵詞:TV(total variation)TVL1 Optical FlowDifferential method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:388
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去三十年已刊登超過3000篇關於光流算法的文章。我們試圖對最近光流算法的技術成果提供可理解的探討。近期的主要出版物包括光流不同方面的研究,包括差分型和區塊匹配為基礎的方法都在這次探討裏面。我們確定了一些光流的應用,如流量分析和車輛追蹤、接觸時間。我們查證幾個公開的光流程式:Farneback、Lukas-Kanad、Horn-Schunck、TVL1,並顯示其結果。執行Classic+NL-Fast時,孫得清博士等人使用5點微分濾波器 [-1, 8, 0, -8, 1] 計算第二張影像的導數,平均角度誤差是2.401度,端點誤差是0.076。我們使用5點微分濾波器 [2, -10, 0, 10, -2],獲得更好的結果:平均角度誤差是2.272度,端點誤差是0.073。
More than 3000 articles on optical flow algorithms have been published in the past thirty years. We attempt to provide a comprehensible survey of the recent technical achievements in optical flow algorithms. Major recent publications are included in this survey covering different aspects of the research in this area, including differential-based and block matching-based methods. We identify several applications of optical flow, such as Traffic Analysis and Vehicle Tracking, time-to-contact. We investigate several public optical flow codes: Farneback, Lukas-Kanad, Horn-Schunck, TVL1, Classic+NL-Fast; and show their results of experiments. When running Classic+NL-Fast (proposed by Deqing Sun et al.), they compute the derivatives of the second image using the 5-point derivative filter [-1, 8, 0, -8, 1]. The estimated flow field on "RubberWhale" has an average angular error (AAE) of 2.401 degrees and an average end point error (EPE) of 0.076. We compute the derivatives using the 5-point derivative filter [2, -10, 0, 10, -2], and obtain better result with AAE of 2.272 degrees and average EPE of 0.073.
CONTENTS
ABSTRACT IN CHINESE…………………………………………………………… I
ABSTRACT IN ENGLISH……………………………………………………………Ⅱ
ACKNOWLEDGEMENTS……………………………………………………………Ⅲ
CONTENTS ………………………………………………………………………… Ⅳ
LIST OF FIGURES……………………………………………………………………Ⅵ
Chapter 1 Introduction………………………………………………………………… 1
1.1 Overview……………………………………………………………………… 1
1.2 Aperture Problem……………………………………………………………… 2
1.3 Ground Truth Generation……………………………………………………… 2
1.4 Performance metrics…………………………………………………………… 3
1.5 Stereo correspondence visualization…………………………………………… 5
Chapter 2 Methods of Optical Flow Computation…………………………………… 7
2.1 Differential method…………………………………………………………… 7
2.1.1 Lucas–Kanade method…………………………………………………… 7
2.1.2 Horn–Schunck method……………………………………………………… 8
2.1.3 Variational methods…………………………………………………………10
2.2 Block Matching……………………………………………………………… 10
2.3 Discrete optimization………………………………………………………… 11
Chapter 3 The Applications of Optical Flow Algorithms………………………………12
3.1 Time to Contact and Focus of Expansion………………………………………12
3.2 Motion Parameters and Depth………………………………………………… 12
3.3 Segmentation………………………………………………………………… 12
3.4 Traffic Analysis and Vehicle Tracking……………………………………… 12
3.5 Face Tracking…………………………………………………………………13
3.6 Detection and Tracking of Moving Blobs………………………………………13
3.7 Optical Flow by Dynamic Region Matching……………………………………14
3.8 Occlusion Analysis by Pixel Contention……………………………………… 14
3.9 The Integration of Optical Flow and Deformable Models………………………14
3.10 The Use Of Optical Flow For Road Navigation………………………………15
3.11 Fluid experimental flow estimation based on an optical-flow scheme…………15
3.12 Optical Flow Based Navigation………………………………………………15
Chapter 4 Software and Our Experimental Results…………………………………… 16
4.1 Farneback Optical Flow………………………………………………………16
4.2 Lukas-Kanade Optical Flow………………………………………………… 17
4.3 Horn-Schunck optical flow……………………………………………………18
4.4 TVL1 Optical Flow ………………………………………………………… 19
4.5 IVANN…………………………………………………………………… … 20
4.6 Simpleflow……………………………………………………………………21
4.7 Constrained Optical Flow Estimation (COFM)…………………………………21
4.8 Classic+NL-Fast ………………………………………………………………23
4.8.1 Filter used in Wedel etal "improved TV L1"………………………………… 23
4.8.2 Modified Filter …………………………………………………………… 24
Chapter 5 Conclusions……………………………………………………………… 25
Appendix …………………………………………………………………………… 26
A.1 Lucas-Kanade algorithm………………………………………………………26
A.2 Partial result of Pyramidal Horn-Schunck algorithm ………………………… 28
A.3 Partial result of Simpleflow……………………………………………………28
REFERENCES ……………………………………………………………………… 31

























LIST OF FIGURES
Fig. 1.1 Barber''s pole……………………………………………………………………2
Fig. 1.2 Average end point error on Middlebury flow benchmark-left part (Jul. 1st 2014) 4
Fig. 1.3 Average EPE on Middlebury flow benchmark-right part (Jul. 1st 2014)…………4
Fig. 1.4 Average EPE on Middlebury flow benchmark (rank 85th)………………………5
Fig. 1.5 (a) a specific disparity………………………………………………………… 5
Fig. 1.5 (b) a specific optical flow vector……………………………………………… 5
Fig. 1.6 Overlay of correspondence visualizations and reference images…………………6
Fig 2.1 Graphical display of the optical flow contraint equation………………………… 9
Fig. 3.1 Output image for optical flow…………………………………………………13
Fig. 4.1 Optical flow vector……………………………………………………………16
Fig. 4.2 (a) A taxi in Hamburg…………………………………………………………16
Fig. 4.2 (b) Optic flow of (a) ………………………………………………………… 16
Fig. 4.3 (a) Durlacher-Tor …………………………………………………………… 17
Fig. 4.3 (b) Optic flow of (a) ………………………………………………………… 17
Fig. 4.4 (a) Ettlinger-Tor………………………………………………………………17
Fig. 4.4 (b) Optic flow of (a) ………………………………………………………… 17
Fig. 4.5 (a) Lucas-Kanade algorithm ………………………………………………… 18
Fig. 4.5 (b) Optic flow vectors for Hybrid Median filtered images …………………… 18
Fig. 4.6 Optical flow example (the code is listed in A.1)……………………………… 18
Fig. 4.7 (a) Input1 …………………………………………………………………… 19
Fig. 4.7 (b) Input2 …………………………………………………………………… 19
Fig. 4.7 (c) Optic flow…………………………………………………………………19
Fig. 4.8 Result for the Middlebury test sequences (Hydrangea)…………………………20
Fig. 4.9 Result for the Middlebury test sequences (Venus) …………………………… 20
Fig. 4.10 (a) Grove-IVANN flow………………………………………………………21
Fig. 4.10 (b) Grove-IVANN flow error ……………………………………………… 21
Fig. 4.11 (a) Down sampling image for Venus…………………………………………21
Fig. 4.11 (b) Original image "Venus"………………………………… ……………… 21
Fig. 4.12 Resultant OF…………………………………………………………………22
Fig. 4.13 Estimated flow fields on sequence "RubberWhale" using Classic+NL ……… 24
REFERENCES
[1] D. Kondermann et al., "On performance analysis of optical flow algorithms." Outdoor and Large-Scale Real-World Scene Analysis, Springer Berlin Heidelberg, 2012, pp. 329-355.
[2] http://users.fmrib.ox.ac.uk/~steve/review/review/node1.html
[3] H. Sakaino, "A semitransparency-based optical-flow method with a point trajectory model for particle-like video," IEEE Transactions Image Processing, vol. 21, no. 2, pp. 441-450, Feb. 2012.
[4] P. Cheung and H. Y. Yeung, "Application of optical-flow technique to significant convection nowcast for terminal areas in Hong Kong," The 3rd WMO International Symposium on Nowcasting and Very Short-Range Forecasting (WSN12), 2012.
[5] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski, "A database and evaluation methodology for optical flow," In Proceedings of the IEEE international conference on computer vision, 2007.
[6] J. S. Perez, E. Meinhardt-Llopis, and G. Facciolo, "TV-L1 Optical Flow Estimation," Image Processing On Line 2013 (2013): 137-150.
[7] http://vision.middlebury.edu/flow/eval/results/results-a1.php
[8] http://hci.iwr.uni-heidelberg.de/Static/correspondenceVisualization/Visualization.pdf
[9] http://ai.stanford.edu/~dstavens/cs223b/optical_flow_output.avi
[10] D. Sun, S. Roth, and M. J. Black, "Secrets of optical flow estimation and their principles," in Proc. IEEE Conference Computer Vision and Pattern Recognition, 2010
[11] http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/documents/tutorials/
Lucas-Kanade2.pdf
[12] http://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_method
[13] N. Sharmin, and R. Brad. "Optimal Filter Estimation for Lucas-Kanade Optical Flow," Sensors, pp 12694-12709, 2012
[14] B. K. Horn and B. G. Schunck, "Determining optical flow," Artificial Intelligence, vol. 17, pp. 185–203, 1981.
[15] http://en.wikipedia.org/wiki/Horn%E2%80%93Schunck_method
[16] E. Meinhardt-Llopis, J. S. Pérez, and D. Kondermann, "Horn-schunck optical flow with a multi-scale strategy," Image Processing On Line, pp. 151-172, 2013
[17] J. S. Pérez, E. Meinhardt-Llopis, and G. Facciolo, "TV-L1 Optical Flow Estimation," Image Processing On Line, pp. 137-150, 2013
[18] B. Sugandi, H. Kim, J. K. Tan, and S. Ishikawa, "A Block Matching Technique for Object Tracking Based on Peripheral Increment Sign Correlation Image,"
[19] A. J. Lipton, "Local application of optic flow to analyse rigid versus non-rigid motion," Carnegie Mellon University, The Robotics Institute, 1999.
[20] D. Sun, E. B. Sudderth, and M, J. Black. "Layered segmentation andoptical flow estimation over time." in Proc. IEEE Conference Computer Vision and Pattern Recognition, 2012
[21] K. SuganyaDevi, N. Malmurugan, and R. Sivakumar. "Efficient Foreground Extraction Based on Optical Flow and SMED for Road Traffic Analysis," International Journal of Cyber-Security and Digital Forensics (IJCSDF) vol 1, No. 3, pp. 177-182, 2012
[22] S. Indu, G. Manjari, and B. Asok, "Vehicle tracking and speed estimation using optical flow method," International Journal of Engineering Science and Technology vol. 3, No. 1, pp 429-434, 2011
[23] D. Decarlo, and D. Metaxas. "Optical flow constraints on deformable models with applications to face tracking," International Journal of Computer Vision 38.2 (2000): 99-127.
[24] S. Aslani and H. Mahdavi-Nasab "Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance." International Journal of Electrical, Electronic Science and Engineering Vol. 7 No. 9, pp. 131-135, 2013
[25] C. Lei, and Y. Yee-Hong, "Optical flow estimation on coarse-to-fine region-trees using discrete optimization," Computer Vision, 2009 IEEE 12th International Conference on. IEEE, 2009.
[26] D. DeCarlo, and D. Metaxas, "The integration of optical flow and deformable models with applications to human face shape and motion estimation," in Proc. IEEE Conference Computer Vision and Pattern Recognition, 1996
[27] A. Giachetti, M. Campani, and V. Torre, "The use of optical flow for road navigation," IEEE Trans. Robotics and Automation, on 14.1 (1998): 34-48.
[28] T. Corpetti, D. Heitz, G. Arroyo and E. Me´min, "Fluid experimental flow estimation based on an optical-flow scheme," Experiments in fluids Vol. 40, No. 1, pp. 80-97, 2006
[29] http://samhykim.files.wordpress.com/2011/09/research-paper2.pdf
[30] V. Lempitsky, R. Stefan, and R. Carsten. "FusionFlow: Discrete-continuous optimization for optical flow estimation," in Proc. IEEE Conference Computer Vision and Pattern Recognition, 2008
[31] M. Tao, J. Bai, P. Kohli, and S. Paris, "SimpleFlow: A Non‐iterative, Sublinear Optical Flow Algorithm," Computer Graphics Forum, Vol. 31, No. 2, Blackwell Publishing Ltd, 2012.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔