(54.236.58.220) 您好!臺灣時間:2021/03/08 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳嘉峰
研究生(外文):Chia-Feng Chen
論文名稱:熱沖壓成形之電阻加熱方法研究
論文名稱(外文):Study on Hot Stamping by Resistance Heating
指導教授:林栢村林栢村引用關係
指導教授(外文):Bor-Tsuen Lin
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:機械與自動化工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:90
中文關鍵詞:錳硼鋼熱間沖壓成形電阻加熱有限元素分析
外文關鍵詞:Finite Element MethodBoron AlloysHot StampingResistance Heating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,在交通工具業上,人們為了提升安全性並朝著輕量化與節能的方向發展,錳硼鋼板的應用比例逐年增加。錳硼鋼(22MnB5)經由熱間沖壓成形後,可獲得更高強度產品,並改善冷間沖壓成形所遇到的瓶頸,如板金成形後回彈量大、成品成形精度差、容易產生表面缺陷。為解決上述之成形問題,提高沖壓成形之溫度有其必要性。
本研究開發出一電阻式加熱系統應用於錳硼鋼板加熱。首先探討電阻加熱原理並進行系統設備開發,然後搭配電阻加熱實驗治具完成整個電阻式加熱系統,再利用有限元素分析軟體ANSYS進行電阻加熱模擬分析,分析條件包括電流、電壓、熱對流係數與加熱時間等,並將分析結果與實驗結果進行比較,使實驗與模擬結果誤差在10%以內,並找出最佳加熱參數,以提供後續模內淬火製程參數參考。最後,以汽車車門防撞鋼板為載具進行熱沖壓成形實驗。
結果顯示:透過電阻式加熱只需約51秒即可達到目標溫度(850℃),且產品表面幾乎無脫碳氧化層。電阻加熱分析與實驗比較結果,兩者誤差分別為5.27%、4.82%、7.20%、8.14%,誤差皆在10%以內。最後,以最佳加熱參數,進行車門防撞鋼樑之熱沖壓成形實驗,成品的金相組織大多為麻田散鐵組織,抗拉強度達到1250 MPa ,平均硬度在460 HV 以上,可以滿足汽車安全性零件之使用需求。
In recent years, in the transport industry, people in order to promote security and towards lightweight and energy saving direction of development, gradually application proportion of boron steel increased year by year. Get higher strength production by hot stamping process, improving the metal forming characteristics at cold temperature are poor, such as large springback after sheet metal forming, poor precision in processed products, and a variety of surface defects. Avoiding these issues requires that the stamping temperature be increased.
This study developed of the resistance heating system for boron steel heating. At first, investigated the principle of resistance heating and system development, then completed the resistance heating system with the experiment fixture. The second, the simulation of resistance heating is calculated by the FEM software ANSYS. The conditions of analysis include current, voltage, and the heat convection coefficient and heating time, etc. The results of the resistance heating experiment and the simulation are compared, let experiment and simulation results within 10% error. the optimal heating parameters are obtained by compared of results. Finally, the bumper beam is made to confirm hot stamping process parameters.
Experimental results show that the temperature increases up to 850℃ in only 51 seconds through the resistance heating, the formed product surface almost no deteriorates due to the oxidation of the sheet. Both the results of the resistance heating experiment and the simulation, the errors were 5.27%, 4.82%, 7.20% and 8.14%, are less than 10%. Finally, for bumper beam with optimal heating parameters of hot stamping, the microstructure is uniform martensite, the tensile strength is 1250 MPa, and the hardness is 460 HV. The results can meet the safety parts of automobile requirements.
摘要 I
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機、目的與方法 10
1.4 論文架構 12
第二章 電阻加熱系統開發 13
2.1 電阻加熱原理 13
2.2 電阻加熱系統 14
2.3 電阻加熱設備 15
2.4 電阻加熱實驗治具設計與製作 20
2.3.1 實驗治具設計 21
2.3.2 實驗治具製作 22
第三章 電阻加熱分析模擬與實驗 23
3.1 電阻加熱分析模型建立 23
3.2 電阻加熱分析模擬 24
3.2.1 材料設定 24
3.2.2 邊界條件設定 26
3.3 電阻加熱實驗 27
3.3.1 實驗材料 28
3.3.2 實驗參數 29
3.4 紅外線熱影像儀量測 30
第四章 熱沖壓之電阻加熱成形實驗 31
4.1 研究載具介紹 32
4.2 熱沖壓模具設計 33
4.3 熱沖壓模具 34
4.4 成形實驗設備 34
4.5 熱沖壓成形實驗 36
第五章 結果與討論 42
5.1 電阻加熱分析模擬與實驗結果 42
5.1.1 電阻加熱分析模擬結果 42
5.1.2 電阻加熱實驗結果 44
5.1.3 電阻加熱分析模擬與實驗結果驗證 47
5.2 熱沖壓之電阻加熱成形實驗結果 49
5.2.1 金相組織試驗 51
5.2.2 微克氏硬度試驗 52
5.2.3 抗拉強度試驗 54
第六章 結論與未來研究方向 55
參考文獻 57
附錄A 電阻加熱分析模擬結果 62
附錄B 電阻加熱實驗結果 66
附錄C 電阻加熱分析與實驗比較結果 72
[1] Y. Chang, Z.H. Meng. “Influence of Hot Press Forming Techniques on Properties of Vehicle High Strength Steels”, Journal of Iron and Steel Research, vol. 18, pp. 59-63, 2011.
[2] A. Fosbury, S.K. Wang, Y.F. Pin. “The interlaminar interface of a carbon fiber polymer-matrix composite as a resistance heating element”, Composites Part A: Applied Science and Manufacturing, vol. 34, pp. 933-940, 2003.
[3] R. Neugebauer, T. Altan, M. Geiger. “Sheet metal forming at elevated temperatures”, CIRP Annals - Manufacturing Technology, vol. 55, pp. 793-816, 2006.
[4] A. Bardelcik, C.P. Salisbury. “Effect of cooling rate on the high strain rate properties of boron steel”, International Journal of Impact Engineering, vol. 37, pp. 694-702, 2010.
[5] K. Mori, Y. Okudo. “Tailor die quenching in hot stamping for producing ultra-high strength steel formed parts having strength distribution”, CIRP Annals - Manufacturing Technology, vol. 59, pp. 291-294, 2010.
[6] Steel Market Development Institute , http://www.autosteel.org/
[7] H. Karbasian, A.E. Tekkaya, “A review on hot stamping”, Journal of Materials Processing Technology, vol. 210, pp. 2103-2118, 2009.
[8] M. Merklein, J. Lechler, “Investigation of the thermo-mechanical properties of hot stamping steels”, Journal of Materials Processing Technology, vol. 177, pp. 452-455, 2006.
[9] A. Turetta, S. Bruschi, A. Ghiotti, “Investigation of 22MnB5 formability in hot stamping operations”, Journal of Materials Processing Technology, vol. 177, pp. 396-400, 2006.
[10] E. Billur, T. Altan, “Hot Stamping of Boron Steels”, Workshop on Advanced Sheet Metal Forming and Stamping Technology, 2012.
[11] M. Naderi, A. Saeed-Akbari, W. Bleck, “The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel”, Materials Science and Engineering, vol. 487, pp. 445-455, 2008.
[12] H. Hoffmann, H. So, H. Steinbeiss, “Design of Hot Stamping Tools with Cooling System”, CIRP Annals - Manufacturing Technology, vol. 56, pp. 269-272, 2007.
[13] H. Steinbeiss, H. So, T. Michelitsch, H. Hoffmann, “Method for optimizing the cooling design of hot stamping tools”, Production Engineering-Research and Development, vol. 1, pp. 149-155, 2007.
[14] M. Geiger, M. Merklein, C. Hoff, “Basic Investigations on the Hot Stamping Steel 22MnB5”, Advanced Materials Re487search, vol. 6-8, pp.795-804, 2005.
[15] A.B. Shapiro, “Using LS-Dyna for Hot Stamping”, 7th European LS-DYNA Conference, 2009.
[16] C.X. Lei, J.J. Cui, Z.W. Xing, “Investigation of Cooling Effect of Hot-stamping Dies by Numerical Simulation”, 2012 International Conference on Solid State Devices and Materials Science, vol. 25, pp. 118-124, 2012.
[17] K.I. Mori, “Smart hot stamping of ultra-high strength steel parts”, Department of Mechanical Engineering, vol. 22, pp. 496-503, 2012.
[18] J. Yanagimoto, R. Izumi, “Continuous electric resistance heating—Hot forming system for high-alloy metals with poor workability”, Journal of Materials Processing Technology, vol. 209, pp. 3060-3068, 2009.
[19] K. Mori, S. Maki, M. Ishiguro, “Improvement of product strength and formability in stamping of Al–Mg–Si alloy sheets having bake hardenability by resistance heat and artificial aging treatments”, International Journal of Machine Tools & Manufacture, vol. 46, pp. 1966-1971, 2006.
[20] K. Mori, T. Maeno, Y. Fukui, “Spline forming of ultra-high strength gear drum using resistance heating of side wall of cup”, CIRP Annals - Manufacturing Technology, vol. 60, pp. 299-302, 2011.
[21] K. Mori, S. Saito, S. Maki, “Warm and hot punching of ultra high strength steel sheet”, CIRP Annals - Manufacturing Technology, vol. 57, pp. 321-324, 2008.
[22] K. Mori, S. Maki, Y. Tanaka, “Warm and Hot Stamping of Ultra High Tensile Strength Steel Sheets Using Resistance Heating”, CIRP Annals - Manufacturing Technology, vol. 54, pp. 209-212, 2005.
[23] K. Mori, T. Maeno, S. Fuzisaka, “Punching of ultra-high strength steel sheets using local resistance heating of shearing zone”, Journal of Materials Processing Technology, vol. 212, pp. 534-540, 2012.
[24] K. Mori, T. Maeno, K. Mongkolkaji, “Tailored die quenching of steel parts having strength distribution using bypass resistance heating in hot stamping”, Journal of Materials Processing Technology, vol. 213, pp. 508-514, 2013.
[25] S.J. Maki, Y.S. Harada, K.I. Mori, “Application of resistance heating technique to mushy state forming of aluminium alloy”, Journal of Materials Processing Technology, vol. 126-126, pp. 477-482, 2002.
[26] Y.F. Tzeng, F.C. Chen, “Application of resistance heating technique to mushy state forming of aluminium alloy”, Materials and Design, vol. 28, pp. 1159-1168, 2007.
[27] F. Borsetto, A. Ghiotti, S. Bruschi, “Investigation of the high strength steel Al-Si coating during hot stamping operations”, Key Engineering Materials, vol. 410-411, pp. 289-296, 2009.
[28] K. Mori, D. Ito, “Prevention of oxidation in hot stamping of quenchable steel sheet by oxidation preventive oil”, CIRP Annals-Manufacturing Technology, vol. 58, pp. 267-270, 2009.
[29] J.H. Jang, J.H. Lee, B.D. Joo, “Flow characteristics of aluminum coated boron steel in hot press forming”, Trans. Nonferrous Met. Soc. China, vol. 19, pp. 913-916, 2009.
[30] P. Åkerström, M. Oldenburg, “Austenite decomposition during press hardening of a boron steel-Computer simulation and test”, Journal of Materials Processing Technology, vol. 174, pp. 399-406, 2006.
[31] J. Zhou, B. Wang, J. Lin, “Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm”, Archives of Civil and Mechanical Engineering, vol. 13, pp. 410-411, 2013.
[32] F.B. Pickering. “Steels: Melal/urgical Principles”, In Encyclopedia of Materials Science and Engineering.vol. 6. M.D. Bever(ed.),The MIT Press.Cambridge. Mass., 1986.
[33] E.J. Cookson, D.E. Floyd, A.J. Shih, “Design, manufacture, and analysis of metal foam electrical resistance heater”, International Journal of Mechanical Sciences, vol. 48, pp. 1314-1322, 2006.
[34] S. Maki, Y. Harada, K. Mori, “Sinter-joining of different metal powder compacts using resistance heating”, Journal of Materials Processing Technology, vol. 143-144, pp. 561-566, 2003.
[35] 楊正鈺,2013,“錳硼鋼板之熱間沖壓研究,國立高雄第一科技大學,碩士論文。
[36] J. Aspacher, “Forming hardening concepts”, In: 1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany, pp. 77-81, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔