(18.206.177.17) 您好!臺灣時間:2021/04/23 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林聖育
研究生(外文):Sheng-Yu Lin
論文名稱:以分散式液液微萃取法結合表面輔助雷射脫附游離質譜偵測triazole類抗黴菌藥物
論文名稱(外文):Detection of Triazole antifungal agents by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Dispersive Liquid-Liquid Microextraction
指導教授:張玉珍張玉珍引用關係
指導教授(外文):Yu-Chen Chang
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:112
中文關鍵詞:分散式液液微萃取SALDI-TOFPosaconazoleItraconazole
外文關鍵詞:DLLMESALDI-TOFPosaconazoleItraconazole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
以一新穎技術-分散式液液微萃取法(DLLME)結合表面輔助雷射脫附/游離質譜儀(SALDI/MS)偵測triazole類抗真菌藥物。本研究以Chloroform (50 μL)及Acetone (260 μL)分別作為萃取劑與分散劑於樣品溶液中進行萃取,並以膠體金搭配傳統有機酸(α-CHCA)作為共基質(co-matrix)進行SALDI/MS分析。
在最佳的萃取和偵測條件下,posaconazole之校正曲線範圍介於1.0 ~ 100.0 nM,itraconazole之校正曲線範圍介於2.0 ~ 200.0 nM;Posaconazole及itraconazole之偵測極限(LOD)各別為0.3 nM及0.6 nM;待萃取樣品溶液及萃取後回溶液體之體積比為200,計算Posaconazole及itraconazole之濃縮倍率(enrichment factor)各別為111及121。此方法成功地應用於人類尿液樣品中偵測triazole類抗黴菌藥物,Posaconazole及itraconazole之LOD各別為0.4 nM及0.9 nM;Posaconazole及itraconazole之回收率各別為55.3%及60.3%,此方法具有快速、環保、簡便及低成本等優點。

A novel method for the detection of triazole antifungal agents using dispersive liquid-liquid microextraction (DLLME) coupled to surface-assisted laser desorption/ionization mass spectrometric detection (SALDI/MS) was developed. Acetone and chloroform were used as the disperser solvent and extraction solvents, respectively. After the extraction, triazole antifungal agents was detected using SALDI/MS with colloidal gold and α-CHCA as the co-matrix. Under optimal extraction and detection conditions, the calibration curve, which ranged from 1.0 to 100.0 nM for posaconazole and from 2.0 to 200.0 nM for itraconazole, was observed to be linear. The limit of detection (LOD) at a signal-to-noise ratio of 3 was 0.3 nM for posaconazole and 0.6 nM for itraconazole. With a sample-to-extract volume ratio of 200, the enrichment factor for triazole antifungal agents was calculated to be 111 and 121 for posaconazole and itraconazole, respectively. This method was successfully applied to the determination of triazole antifungal agents in human urine samples. The LOD was 0.4 nM for posaconazole and 0.9 nM for itraconazole. The recoveries were calculated to the 55.3% and 60.3% for posaconazole and itraconazole, respectively. This method is rapid, eco-friendly, simple, and economic.
目錄
中文摘要I
AbstractII
謝誌III
目錄IV
圖目錄VI
表目錄VIII
第一章 緒論1
1-1 抗黴菌藥物簡介1
1-1-1 Itraconazole4
1-1-2 Posaconazole6
1-2 基質輔助雷射脫附游離飛行時間質譜儀
(Matrix-Assisted Laser Desorption/Ionization
Time-of-Flight, MALDI-TOF)簡介8
1-2-1 MALDI發展歷程8
1-2-2 基質輔助雷射脫附游離法10
1-2-3 表面輔助雷射脫附游離法14
1-3 各種微萃取方法簡介17
1-3-1 固相微萃取(Solid Phase Microextraction)18
1-3-2 液相微萃取(Liquid Phase Microextraction)21
1-3-3 分散式液液微萃取(Dipersive Liquid Liquid
Microextraction)25
1-4 文獻回顧29
1-5 研究動機與目的38
第二章 實驗39
2-1 實驗藥品39
2-2 儀器設備41
2-3 實驗方法及步驟42
2-3-1 溶液配製42
2-3-2 尿液樣品採樣及前處理43
2-3-3 基質最佳化樣品製備43
2-3-4 分散式液液微萃取法步驟44
2-3-5 SALDI樣品製備45
2-3-6 濃縮倍率及萃取效率46
2-3-7 質譜操作條件47
第三章 結果與討論48
3-1 基質最佳化48
3-2 分散式液液微萃取條件之優化50
3-2-1 萃取劑之選擇50
3-2-2 分散劑之選擇53
3-2-3 萃取劑體積之影響55
3-2-4 分散劑體積之影響57
3-2-5 待萃取樣品溶液pH值之影響59
3-2-6 添加鹽類之影響61
3-2-7 震盪時間之影響63
3-3 標準溶液之檢量線與偵測極限66
3-3-1 直接分析之檢量線66
3-3-2 分散式液液微萃取之檢量線70
3-4 尿液樣品之分析75
3-4-1 尿液樣品之檢量線與偵測極限77
3-4-2 尿液樣品之回收率81
3-4-3 尿液樣品之精密度與準確度82
3-4-4 尿液樣品之選擇性84
第四章 結論91
第五章 參考文獻92


圖目錄
圖1 Itraconazole分子結構5
圖2 Posaconazole分子結構7
圖3 固相微萃取之萃取步驟20
圖4 (A)直接式單滴微萃取(B)頂空式單滴微萃取22
圖5 直接式動態液相微萃取之流程23
圖6 中空纖維液相微萃取23
圖7 分散式液液微萃取之流程28
圖8 分散式液液微萃取搭配MALDI-TOF MS操作流程44
圖9 不同基質對於Posaconazole游離效率之質譜圖49
圖10 不同種類萃取劑對於抗黴菌藥物萃取效率之影響52
圖11 不同種類分散劑對於抗黴菌藥物萃取效率之影響54
圖12 不同萃取劑體積對於抗黴菌藥物萃取效率之影響56
圖13 不同分散劑體積對於抗黴菌藥物萃取效率之影響58
圖14 pH值對於抗黴菌藥物萃取效率之影響60
圖15 NaCl濃度對於抗黴菌藥物萃取效率之影響62
圖16 震盪時間對於抗黴菌藥物萃取效率之影響64
圖17 Posaconazole直接分析之檢量線67
圖18 Itraconazole直接分析之檢量線68
圖19 水樣品中Posaconazole經DLLME之檢量線71
圖20 水樣品中Itraconazole經DLLME之檢量線72
圖21 尿液樣品添加抗黴菌藥物以SALDI-TOF偵測之圖譜76
圖22 尿液樣品中Posaconazole經DLLME之檢量線78
圖23 尿液樣品中Itraconazole經DLLME之檢量線79
圖24 尿液樣品A以SALDI-TOF偵測之圖譜85
圖25 尿液樣品B以SALDI-TOF偵測之圖譜86
圖26 尿液樣品C以SALDI-TOF偵測之圖譜87
圖27 尿液樣品D以SALDI-TOF偵測之圖譜88
圖28 尿液樣品E以SALDI-TOF偵測之圖譜89
圖29 尿液樣品F以SALDI-TOF偵測之圖譜90


表目錄
表1 有機酸基質與適用之分析物類型12
表2-1 LC搭配UV detector分析azole類化合物31
表2-2 LC搭配UV detector分析azole類化合物32
表2-3 LC搭配UV及FD detector分析azole類化合物33
表3-1 LC搭配MS detector分析azole類化合物34
表3-2 LC搭配MS detector分析azole類化合物35
表3-3 LC搭配MS detector分析azole類化合物36
表4-1 CE搭配UV detector分析azole類化合物37
表5 SALDI-TOF MS之操作參數47
表6各種萃取劑之密度及溶解度51
表7 抗黴菌藥物之最佳萃取條件65
表8 抗黴菌藥物之直接定量分析69
表9 抗黴菌藥物經DLLME之定量分析73
表10 尿液樣品中抗黴菌藥物之定量分析80
表11 抗黴菌藥物經Intra-day及Inter-day之精密度及準確度83

[1] Eiff, C.; Jansen, B.; Kohnen, W.; Becker, K., Infections Associated with Medical Devices. Drugs 2005, 65 (2), 179-214.
[2] Pacetti, S. A.; Gelone, S. P., Caspofungin Acetate for Treatment of Invasive Fungal Infections. Annals of Pharmacotherapy 2003, 37 (1), 90-98.
[3] Kauffman, C. A., New antifungal agents. Seminars in Respiratory and Critical Care Medicine 2004, 25 (2), 233-239.
[4] Gallis, H. A.; Drew, R. H.; Pickard, W. W., Amphotericin B: 30 Years of Clinical Experience. Review of Infectious Diseases 1990, 12 (2), 308-329.
[5] Saag, M. S.; Graybill, R. J.; Larsen, R. A.; Pappas, P. G.; Perfect, J. R.; Powderly, W. G.; Sobel, J. D.; Dismukes, W. E.; Subproject, M. S. G. C., Practice Guidelines for the Management of Cryptococcal Disease. Clinical Infectious Diseases 2000, 30 (4), 710-718.
[6] Del Palacio Hernanz, A.; LÓPez GÓMez, S.; GonzÁLez Lastra, F.; Moreno Palancar, P.; Iglesias DÍEz, L., A comparative double-blind study of terbinafine (Lamisil) and griseofulvin in tinea corporis and tinea cruris. Clinical and Experimental Dermatology 1990, 15 (3), 210-216.
[7] Hoang, A., Caspofungin acetate: an antifungal agent. American Journal of Health-System Pharmacy 2001, 58 (13), 1206-1214.
[8] Thompson Iii, G. R.; Cadena, J.; Patterson, T. F., Overview of Antifungal Agents. Clinics in Chest Medicine 2009, 30 (2), 203-215.
[9] Walsh, T. J.; Anaissie, E. J.; Denning, D. W.; Herbrecht, R.; Kontoyiannis, D. P.; Marr, K. A.; Morrison, V. A.; Segal, B. H.; Steinbach, W. J.; Stevens, D. A.; van Burik, J.-A.; Wingard, J. R.; Patterson, T. F., Treatment of Aspergillosis: Clinical Practice Guidelines of the Infectious Diseases Society of America. Clinical Infectious Diseases 2008, 46 (3), 327-360.
[10] Cartledge, J. D.; Midgely, J.; Gazzard, B. G., Itraconazole solution: higher serum drug concentrations and better clinical response rates than the capsule formulation in acquired immunodeficiency syndrome patients with candidosis. Journal of Clinical Pathology 1997, 50 (6), 477-480.
[11] Smith, J.; Andes, D., Therapeutic Drug Monitoring of Antifungals: Pharmacokinetic and Pharmacodynamic Considerations. Therapeutic Drug Monitoring 2008, 30 (2), 167-172.
[12] Cornely, O. A.; Maertens, J.; Winston, D. J.; Perfect, J.; Ullmann, A. J.; Walsh, T. J.; Helfgott, D.; Holowiecki, J.; Stockelberg, D.; Goh, Y.-T.; Petrini, M.; Hardalo, C.; Suresh, R.; Angulo-Gonzalez, D., Posaconazole vs. Fluconazole or Itraconazole Prophylaxis in Patients with Neutropenia. New England Journal of Medicine 2007, 356 (4), 348-359.
[13] Dodds Ashley, E. P., John, Pharmacology of azoles. 2010.
[14] Posthumus, M. A.; Kistemaker, P. G.; Meuzelaar, H. L. C.; Ten Noever de Brauw, M. C., Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules. Analytical Chemistry 1978, 50 (7), 985-991.
[15] Karas, M.; Bachmann, D.; Hillenkamp, F., Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry 1985, 57 (14), 2935-2939.
[16] Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 1988, 2 (8), 151-153.
[17] Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry 1988, 60 (20), 2299-2301.
[18] Kussmann, M.; Nordhoff, E.; Rahbek-Nielsen, H.; Haebel, S.; Rossel-Larsen, M.; Jakobsen, L.; Gobom, J.; Mirgorodskaya, E.; Kroll-Kristensen, A.; Palm‖, L.; Roepstorff, P., Matrix-assisted Laser Desorption/Ionization Mass Spectrometry Sample Preparation Techniques Designed for Various Peptide and Protein Analytes. Journal of Mass Spectrometry 1997, 32 (6), 593-601.
[19] Zenobi, R.; Knochenmuss, R., Ion formation in MALDI mass spectrometry. Mass Spectrometry Reviews 1998, 17 (5), 337-366.
[20] Knochenmuss, R., Ion formation mechanisms in UV-MALDI. Analyst 2006, 131 (9), 966-986.
[21] Overberg, A.; Karas, M.; Bahr, U.; Kaufmann, R.; Hillenkamp, F., Matrix-assisted infrared-laser (2.94 μm) desorption/ionization mass spectrometry of large biomolecules. Rapid Communications in Mass Spectrometry 1990, 4 (8), 293-296.
[22] Bahr, U.; Karas, M.; Hillenkamp, F., Analysis of biopolymers by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Fresenius' Journal of Analytical Chemistry 1994, 348 (12), 783-791.
[23] Ehring, H.; Karas, M.; Hillenkamp, F., Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix-assisted laser desorption lonization mass spectrometry. Organic Mass Spectrometry 1992, 27 (4), 472-480.
[24] Fitzgerald, M. C.; Parr, G. R.; Smith, L. M., Basic matrixes for the matrix-assisted laser desorption/ionization mass spectrometry of proteins and oligonucleotides. Analytical Chemistry 1993, 65 (22), 3204-3211.
[25] Juhasz, P.; Costello, C. E.; Biemann, K., Matrix-assisted laser desorption ionization mass spectrometry with 2-(4-hydroxyphenylazo)benzoic acid matrix. Journal of The American Society for Mass Spectrometry 1993, 4 (5), 399-409.
[26] Sunner, J.; Dratz, E.; Chen, Y.-C., Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Analytical Chemistry 1995, 67 (23), 4335-4342.
[27] Wei, J.; Buriak, J. M.; Siuzdak, G., Desorption-ionization mass spectrometry on porous silicon. Nature 1999, 399 (6733), 243-246.
[28] Northen, T. R.; Yanes, O.; Northen, M. T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S. L.; Nordstrom, A.; Siuzdak, G., Clathrate nanostructures for mass spectrometry. Nature 2007, 449 (7165), 1033-1036.
[29] Schürenberg, M.; Dreisewerd, K.; Hillenkamp, F., Laser Desorption/Ionization Mass Spectrometry of Peptides and Proteins with Particle Suspension Matrixes. Analytical Chemistry 1998, 71 (1), 221-229.
[30] Wu, J.-Y.; Chen, Y.-C., A novel approach of combining thin-layer chromatography with surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry. Journal of Mass Spectrometry 2002, 37 (1), 85-90.
[31] Hoang, T. T.; Chen, Y.; May, S. W.; Browner, R. F., Analysis of Organoselenium Compounds in Human Urine Using Active Carbon and Chemically Modified Silica Sol−Gel Surface-Assisted Laser Desorption/Ionization High-Resolution Time-of-Flight Mass Spectrometry. Analytical Chemistry 2004, 76 (7), 2062-2070.
[32] Xu, S.; Li, Y.; Zou, H.; Qiu, J.; Guo, Z.; Guo, B., Carbon Nanotubes as Assisted Matrix for Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry 2003, 75 (22), 6191-6195.
[33] Chen, W.-Y.; Wang, L.-S.; Chiu, H.-T.; Chen, Y.-C.; Lee, C.-Y., Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis. Journal of The American Society for Mass Spectrometry 2004, 15 (11), 1629-1635.
[34] Ren, S.-f.; Guo, Y.-l., Oxidized carbon nanotubes as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of biomolecules. Rapid Communications in Mass Spectrometry 2005, 19 (2), 255-260.
[35] McLean, J. A.; Stumpo, K. A.; Russell, D. H., Size-Selected (2−10 nm) Gold Nanoparticles for Matrix Assisted Laser Desorption Ionization of Peptides. Journal of the American Chemical Society 2005, 127 (15), 5304-5305.
[36] Chen, W.-Y.; Chen, Y.-C., Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Analytical and Bioanalytical Chemistry 2006, 386 (3), 699-704.
[37] Huang, Y.-F.; Chang, H.-T., Nile Red-Adsorbed Gold Nanoparticle Matrixes for Determining Aminothiols through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry 2006, 78 (5), 1485-1493.
[38] Hu, C.-C.; Huang, M.-F.; Chang, H.-T., Quantitative surface-assisted laser desorption/ionization–MS approaches for bioanalysis. Bioanalysis 2013, 5 (6), 633-635.
[39] Arakawa, R.; Kawasaki, H., Functionalized Nanoparticles and Nanostructured Surfaces for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Sciences 2010, 26 (12), 1229-1240.
[40] Chiang, C. K.; Chen, W. T.; Chang, H. T., Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chemical Society Reviews 2011, 40 (3), 1269-1281.
[41] Law, K. P.; Larkin, J., Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Analytical and Bioanalytical Chemistry 2011, 399 (8), 2597-2622.
[42] Chen, W. T.; Tomalova, I.; Preisler, J.; Chang, H. T., Analysis of Biomolecules through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Employing Nanomaterials. Journal of the Chinese Chemical Society 2011, 58 (6), 769-778.
[43] Kailasa, S. K.; Wu, H. F., One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS. Analyst 2012, 137 (7), 1629-1638.
[44] Lim, A. Y.; Ma, J.; Boey, Y. C. F., Development of Nanomaterials for SALDI-MS Analysis in Forensics. Advanced Materials 2012, 24 (30), 4211-4216.
[45] Kawasaki, H.; Nakai, K.; Arakawa, R.; Athanassiou, E. K.; Grass, R. N.; Stark, W. J., Functionalized Graphene-Coated Cobalt Nanoparticles for Highly Efficient Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Analysis. Analytical Chemistry 2012, 84 (21), 9268-9275.
[46] Ma, R. N.; Lu, M. H.; Ding, L.; Ju, H. X.; Cai, Z. W., Surface-Assisted Laser Desorption/Ionization Mass Spectrometric Detection of Biomolecules by Using Functional Single-Walled Carbon Nanohorns as the Matrix. Chemistry - A European Journal 2013, 19 (1), 102-108.
[47] Kailasa, S. K.; Wu, H. F., Surface-assisted laser desorption-ionization mass spectrometry of oligosaccharides using magnesium oxide nanoparticles as a matrix. Microchimica Acta 2013, 180 (5-6), 405-413.
[48] Lu, T.; Olesik, S. V., Electrospun Nanofibers as Substrates for Surface-Assisted Laser Desorption/Ionization and Matrix-Enhanced Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry 2013, 85 (9), 4384-4391.
[49] Chen, W.-T.; Huang, M.-F.; Chang, H.-T., Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry to Detect ss- and ds-Oligodeoxynucleotides. Journal of The American Society for Mass Spectrometry 2013, 24 (6), 877-883.
[50] Salwiński, A.; Silva, D.; Delépée, R.; Maunit, B., Enzyme-Coupled Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for Searching for Low-Mass Inhibitors of Enzymes in Complex Mixtures. Journal of The American Society for Mass Spectrometry 2014, 25 (4), 538-547.
[51] Chen, K.-Y.; Yang, T.; Chang, S., Determination of Macrolide Antibiotics Using Dispersive Liquid–Liquid Microextraction Followed by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Journal of The American Society for Mass Spectrometry 2012, 23 (6), 1157-1160.
[52] Cheng, M.-C.; Chi, K.-M.; Chang, S. Y., Detection of digoxin in urine samples by surface-assisted laser desorption/ionization mass spectrometry with dispersive liquid–liquid microextraction. Talanta 2013, 115 (0), 123-128.
[53] Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry 1990, 62 (19), 2145-2148.
[54] Kataoka, H.; Lord, H. L.; Pawliszyn, J., Applications of solid-phase microextraction in food analysis. Journal of Chromatography A 2000, 880 (1–2), 35-62.
[55] Wang, H.; Campiglia, A. D., Determination of Polycyclic Aromatic Hydrocarbons in Drinking Water Samples by Solid-Phase Nanoextraction and High-Performance Liquid Chromatography. Analytical Chemistry 2008, 80 (21), 8202-8209.
[56] Leopold, K.; Foulkes, M.; Worsfold, P. J., Gold-Coated Silica as a Preconcentration Phase for the Determination of Total Dissolved Mercury in Natural Waters Using Atomic Fluorescence Spectrometry. Analytical Chemistry 2009, 81 (9), 3421-3428.
[57] Zhang, S.; Niu, H.; Hu, Z.; Cai, Y.; Shi, Y., Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Journal of Chromatography A 2010, 1217 (29), 4757-4764.
[58] Teng, C.-H.; Ho, K.-C.; Lin, Y.-S.; Chen, Y.-C., Gold Nanoparticles as Selective and Concentrating Probes for Samples in MALDI MS Analysis. Analytical Chemistry 2004, 76 (15), 4337-4342.
[59] Su, C.-L.; Tseng, W.-L., Gold Nanoparticles as Assisted Matrix for Determining Neutral Small Carbohydrates through Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry 2007, 79 (4), 1626-1633.
[60] Chang, S. Y.; Zheng, N.-Y.; Chen, C.-S.; Chen, C.-D.; Chen, Y.-Y.; Wang, C. R. C., Analysis of Peptides and Proteins Affinity-Bound to Iron Oxide Nanoparticles by MALDI MS. Journal of The American Society for Mass Spectrometry 2007, 18 (5), 910-918.
[61] Prosen, H.; Zupančič-Kralj, L., Solid-phase microextraction. TrAC Trends in Analytical Chemistry 1999, 18 (4), 272-282.
[62] Jeannot, M. A.; Cantwell, F. F., Solvent Microextraction into a Single Drop. Analytical Chemistry 1996, 68 (13), 2236-2240.
[63] Liu, H.; Dasgupta, P. K., Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop. Analytical Chemistry 1996, 68 (11), 1817-1821.
[64] Pedersen-Bjergaard, S.; Rasmussen, K. E., Liquid−Liquid−Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis. Analytical Chemistry 1999, 71 (14), 2650-2656.
[65] Sudhir, P.-R.; Wu, H.-F.; Zhou, Z.-C., Identification of Peptides Using Gold Nanoparticle-Assisted Single-Drop Microextraction Coupled with AP-MALDI Mass Spectrometry. Analytical Chemistry 2005, 77 (22), 7380-7385.
[66] Sudhir, P.-R.; Shrivas, K.; Zhou, Z.-C.; Wu, H.-F., Single drop microextraction using silver nanoparticles as electrostatic probes for peptide analysis in atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry and comparison with gold electrostatic probes and silver hydrophobic probes. Rapid Communications in Mass Spectrometry 2008, 22 (19), 3076-3086.
[67] Shastri, L.; Kailasa, S. K.; Wu, H.-F., Nanoparticle-single drop microextraction as multifunctional and sensitive nanoprobes: Binary matrix approach for gold nanoparticles modified with (4-mercaptophenyliminomethyl)-2-methoxyphenol for peptide and protein analysis in MALDI-TOF MS. Talanta 2010, 81 (4–5), 1176-1182.
[68] Shen, G.; Lee, H. K., Hollow Fiber-Protected Liquid-Phase Microextraction of Triazine Herbicides. Analytical Chemistry 2001, 74 (3), 648-654.
[69] Ahmadi, F.; Assadi, Y.; Hosseini, S. M. R. M.; Rezaee, M., Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography-flame photometric detector. Journal of Chromatography A 2006, 1101 (1–2), 307-312.
[70] Rezaee, M.; Assadi, Y.; Milani Hosseini, M.-R.; Aghaee, E.; Ahmadi, F.; Berijani, S., Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A 2006, 1116 (1–2), 1-9.
[71] Berijani, S.; Assadi, Y.; Anbia, M.; Milani Hosseini, M.-R.; Aghaee, E., Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection: Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. Journal of Chromatography A 2006, 1123 (1), 1-9.
[72] Zhao, E.; Zhao, W.; Han, L.; Jiang, S.; Zhou, Z., Application of dispersive liquid–liquid microextraction for the analysis of organophosphorus pesticides in watermelon and cucumber. Journal of Chromatography A 2007, 1175 (1), 137-140.
[73] Farahani, H.; Norouzi, P.; Dinarvand, R.; Ganjali, M. R., Development of dispersive liquid–liquid microextraction combined with gas chromatography–mass spectrometry as a simple, rapid and highly sensitive method for the determination of phthalate esters in water samples. Journal of Chromatography A 2007, 1172 (2), 105-112.
[74] García-López, M.; Rodríguez, I.; Cela, R., Development of a dispersive liquid–liquid microextraction method for organophosphorus flame retardants and plastizicers determination in water samples. Journal of Chromatography A 2007, 1166 (1–2), 9-15.
[75] Nagaraju, D.; Huang, S.-D., Determination of triazine herbicides in aqueous samples by dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry. Journal of Chromatography A 2007, 1161 (1–2), 89-97.
[76] Fariña, L.; Boido, E.; Carrau, F.; Dellacassa, E., Determination of volatile phenols in red wines by dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry detection. Journal of Chromatography A 2007, 1157 (1–2), 46-50.
[77] Fattahi, N.; Samadi, S.; Assadi, Y.; Hosseini, M. R. M., Solid-phase extraction combined with dispersive liquid–liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples. Journal of Chromatography A 2007, 1169 (1–2), 63-69.
[78] Rahnama Kozani, R.; Assadi, Y.; Shemirani, F.; Milani Hosseini, M. R.; Jamali, M. R., Determination of Trihalomethanes in Drinking Water by Dispersive Liquid–Liquid Microextraction then Gas Chromatography with Electron-Capture Detection. Chroma 2007, 66 (1-2), 81-86.
[79] Farajzadeh, M. A.; Bahram, M.; Jönsson, J. Å., Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography-diode array detection as an efficient and sensitive technique for determination of antioxidants. Analytica Chimica Acta 2007, 591 (1), 69-79.
[80] Wei, G.; Li, Y.; Wang, X., Application of dispersive liquid–liquid microextraction combined with high-performance liquid chromatography for the determination of methomyl in natural waters. Journal of Separation Science 2007, 30 (18), 3262-3267.
[81] Melwanki, M. B.; Fuh, M.-R., Dispersive liquid–liquid microextraction combined with semi-automated in-syringe back extraction as a new approach for the sample preparation of ionizable organic compounds prior to liquid chromatography. Journal of Chromatography A 2008, 1198–1199 (0), 1-6.
[82] Farhadi, K.; Matin, A.; Hashemi, P., LC Determination of Trace Amounts of Phenoxyacetic Acid Herbicides in Water after Dispersive Liquid–Liquid Microextraction. Chroma 2009, 69 (1-2), 45-49.
[83] Zgoła-Grześkowiak, A., Application of DLLME to Isolation and Concentration of Non-Steroidal Anti-Inflammatory Drugs in Environmental Water Samples. Chroma 2010, 72 (7-8), 671-678.
[84] Fattahi, N.; Assadi, Y.; Hosseini, M. R. M.; Jahromi, E. Z., Determination of chlorophenols in water samples using simultaneous dispersive liquid–liquid microextraction and derivatization followed by gas chromatography-electron-capture detection. Journal of Chromatography A 2007, 1157 (1–2), 23-29.
[85] Yamini, Y.; Rezaee, M.; Khanchi, A.; Faraji, M.; Saleh, A., Dispersive liquid–liquid microextraction based on the solidification of floating organic drop followed by inductively coupled plasma-optical emission spectrometry as a fast technique for the simultaneous determination of heavy metals. Journal of Chromatography A 2010, 1217 (16), 2358-2364.
[86] Asadollahi, T.; Dadfarnia, S.; Shabani, A. M. H., Separation/preconcentration and determination of vanadium with dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry. Talanta 2010, 82 (1), 208-212.
[87] Wang, C.; Wu, Q.; Wu, C.; Wang, Z., Application of dispersion–solidification liquid–liquid microextraction for the determination of triazole fungicides in environmental water samples by high-performance liquid chromatography. Journal of Hazardous Materials 2011, 185 (1), 71-76.
[88] Hashemi, P.; Beyranvand, S.; Mansur, R. S.; Ghiasvand, A. R., Development of a simple device for dispersive liquid–liquid microextraction with lighter than water organic solvents: Isolation and enrichment of glycyrrhizic acid from licorice. Analytica Chimica Acta 2009, 655 (1–2), 60-65.
[89] Hu, X.-Z.; Wu, J.-H.; Feng, Y.-Q., Molecular complex-based dispersive liquid–liquid microextraction: Analysis of polar compounds in aqueous solution. Journal of Chromatography A 2010, 1217 (45), 7010-7016.
[90] Takagai, Y.; Igarashi, S., UV-detection capillary electrophoresis for benzo[a]pyrene and pyrene following a two-step concentration system using homogeneous liquid-liquid extraction and a sweeping method. Analyst 2001, 126 (5), 551-552.
[91] Bai, D.; Li, J.; Chen, S. B.; Chen, B. H., A Novel Cloud-Point Extraction Process for Preconcentrating Selected Polycyclic Aromatic Hydrocarbons in Aqueous Solution. Environmental Science &; Technology 2001, 35 (19), 3936-3940.
[92] Rezaee, M.; Yamini, Y.; Khanchi, A.; Faraji, M.; Saleh, A., A simple and rapid new dispersive liquid–liquid microextraction based on solidification of floating organic drop combined with inductively coupled plasma-optical emission spectrometry for preconcentration and determination of aluminium in water samples. Journal of Hazardous Materials 2010, 178 (1–3), 766-770.
[93] Meng, L.; Wang, B.; Luo, F.; Shen, G.; Wang, Z.; Guo, M., Application of dispersive liquid–liquid microextraction and CE with UV detection for the chiral separation and determination of the multiple illicit drugs on forensic samples. Forensic Science International 2011, 209 (1–3), 42-47.
[94] Tsai, C.-J.; Chen, Y.-L.; Feng, C.-H., Dispersive liquid–liquid microextraction combined with microwave-assisted derivatization for determining lipoic acid and its metabolites in human urine. Journal of Chromatography A 2013, 1310 (0), 31-36.
[95] Abdelhamid, H. N.; Bhaisare, M. L.; Wu, H.-F., Ceria nanocubic-ultrasonication assisted dispersive liquid–liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis. Talanta 2014, 120 (0), 208-217.
[96] Zgoła-Grześkowiak, A.; Grześkowiak, T., Dispersive liquid-liquid microextraction. TrAC Trends in Analytical Chemistry 2011, 30 (9), 1382-1399.
[97] Kim, H.; Kumari, P.; Laughlin, M.; Hilbert, M. J.; Indelicato, S. R.; Lim, J.; Lin, C.-C.; Nomeir, A. A., Use of high-performance liquid chromatographic and microbiological analyses for evaluating the presence or absence of active metabolites of the antifungal posaconazole in human plasma. Journal of Chromatography A 2003, 987 (1–2), 243-248.
[98] Wong, J. W.; Nisar, U.-R.; Yuen, K. H., Liquid chromatographic method for the determination of plasma itraconazole and its hydroxy metabolite in pharmacokinetic/bioavailability studies. Journal of Chromatography B 2003, 798 (2), 355-360.
[99] Chhun, S.; Rey, E.; Tran, A.; Lortholary, O.; Pons, G.; Jullien, V., Simultaneous quantification of voriconazole and posaconazole in human plasma by high-performance liquid chromatography with ultra-violet detection. Journal of Chromatography B 2007, 852 (1–2), 223-228.
[100] Kahle, K.; Langmann, P.; Schirmer, D.; Lenker, U.; Keller, D.; Helle, A.; Klinker, H.; Heinz, W. J., Simultaneous Determination of Voriconazole and Posaconazole Concentrations in Human Plasma by High-Performance Liquid Chromatography. Antimicrobial Agents and Chemotherapy 2009, 53 (7), 3140-3142.
[101] Gordien, J.-B.; Pigneux, A.; Vigouroux, S.; Tabrizi, R.; Accoceberry, I.; Bernadou, J.-M.; Rouault, A.; Saux, M.-C.; Breilh, D., Simultaneous determination of five systemic azoles in plasma by high-performance liquid chromatography with ultraviolet detection. Journal of Pharmaceutical and Biomedical Analysis 2009, 50 (5), 932-938.
[102] Moradi, M.; Yamini, Y.; Vatanara, A.; Saleh, A.; Hojati, M.; Seidi, S., Monitoring of trace amounts of some anti-fungal drugs in biological fluids by hollow fiber based liquid phase microextraction followed by high performance liquid chromatography. Analytical Methods 2010, 2 (4), 387-392.
[103] Adlnasab, L.; Ebrahimzadeh, H.; Yamini, Y.; Mirzajani, F., Optimization of a novel method based on solidification of floating organic droplet by high-performance liquid chromatography for evaluation of antifungal drugs in biological samples. Talanta 2010, 83 (2), 370-378.
[104] Xia, Y.; Zhi, X.; Wang, X.; Chen, M.; Cheng, J., Ultrasound-enhanced surfactant-assisted dispersive liquid–liquid microextraction and high-performance liquid chromatography for determination of ketoconazole and econazole nitrate in human blood. Analytical and Bioanalytical Chemistry 2012, 402 (3), 1241-1247.
[105] Verweij-van Wissen, C. P. W. G. M.; Burger, D. M.; Verweij, P. E.; Aarnoutse, R. E.; Brüggemann, R. J. M., Simultaneous determination of the azoles voriconazole, posaconazole, isavuconazole, itraconazole and its metabolite hydroxy-itraconazole in human plasma by reversed phase ultra-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B 2012, 887–888 (0), 79-84.
[106] Zhang, M.; Moore, G. A.; Barclay, M. L.; Begg, E. J., A Simple High-Performance Liquid Chromatography Method for Simultaneous Determination of Three Triazole Antifungals in Human Plasma. Antimicrobial Agents and Chemotherapy 2013, 57 (1), 484-489.
[107] Yahaya, N.; Sanagi, M. M.; Nur, H.; Wan Ibrahim, W. A.; Kamaruzaman, S.; Aboul-Enein, H. Y., Solid-phase membrane tip extraction combined with liquid chromatography for the determination of azole antifungal drugs in human plasma. Analytical Methods 2014, 6 (10), 3375-3381.
[108] Srivatsan, V.; Dasgupta, A. K.; Kale, P.; Datla, R. R.; Soni, D.; Patel, M.; Patel, R.; Mavadhiya, C., Simultaneous determination of itraconazole and hydroxyitraconazole in human plasma by high-performance liquid chromatography. Journal of Chromatography A 2004, 1031 (1–2), 307-313.
[109] Redmann, S.; Charles, B. G., A rapid HPLC method with fluorometric detection for determination of plasma itraconazole and hydroxy-itraconazole concentrations in cystic fibrosis children with allergic bronchopulmonary aspergillosis. Biomedical Chromatography 2006, 20 (4), 343-348.
[110] Müller, C.; Arndt, M.; Queckenberg, C.; Cornely, O. A.; Theisohn, M., HPLC analysis of the antifungal agent posaconazole in patients with haematological diseases. Mycoses 2006, 49, 17-22.
[111] Neubauer, W.; König, A.; Bolek, R.; Trittler, R.; Engelhardt, M.; Jung, M.; Kümmerer, K., Determination of the antifungal agent posaconazole in human serum by HPLC with parallel column-switching technique. Journal of Chromatography B 2009, 877 (24), 2493-2498.
[112] Shen, J. X.; Krishna, G.; Hayes, R. N., A sensitive liquid chromatography and mass spectrometry method for the determination of posaconazole in human plasma. Journal of Pharmaceutical and Biomedical Analysis 2007, 43 (1), 228-236.
[113] Nomeir, A. A.; Pramanik, B. N.; Heimark, L.; Bennett, F.; Veals, J.; Bartner, P.; Hilbert, M.; Saksena, A.; McNamara, P.; Girijavallabhan, V.; Ganguly, A. K.; Lovey, R.; Pike, R.; Wang, H.; Liu, Y.-T.; Kumari, P.; Korfmacher, W.; Lin, C.-C.; Cacciapuoti, A.; Loebenberg, D.; Hare, R.; Miller, G.; Pickett, C., Posaconazole (Noxafil, SCH 56592), a new azole antifungal drug, was a discovery based on the isolation and mass spectral characterization of a circulating metabolite of an earlier lead (SCH 51048). Journal of Mass Spectrometry 2008, 43 (4), 509-517.
[114] Steene, J.; Lambert, W., Comparison of matrix effects in HPLC-MS/MS and UPLC-MS/MS analysis of nine basic pharmaceuticals in surface waters. Journal of The American Society for Mass Spectrometry 2008, 19 (5), 713-718.
[115] Rhim, S. Y.; Park, J. H.; Park, Y. S.; Kim, D. S.; Lee, M. H.; Shaw, L. M.; Kang, J. S., A sensitive validated LC-MS/MS method for quantification of itraconazole in human plasma for pharmacokinetic and bioequivalence study in 24 Korean volunteers. Die Pharmazie 2009, 64 (2), 71-75.
[116] Cunliffe, J. M.; Noren, C. F.; Hayes, R. N.; Clement, R. P.; Shen, J. X., A high-throughput LC–MS/MS method for the quantitation of posaconazole in human plasma: Implementing fused core silica liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis 2009, 50 (1), 46-52.
[117] Decosterd, L. A.; Rochat, B.; Pesse, B.; Mercier, T.; Tissot, F.; Widmer, N.; Bille, J.; Calandra, T.; Zanolari, B.; Marchetti, O., Multiplex Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Quantification in Human Plasma of Fluconazole, Itraconazole, Hydroxyitraconazole, Posaconazole, Voriconazole, Voriconazole-N-Oxide, Anidulafungin, and Caspofungin. Antimicrobial Agents and Chemotherapy 2010, 54 (12), 5303-5315.
[118] Huang, Q.; Yu, Y.; Tang, C.; Peng, X., Determination of commonly used azole antifungals in various waters and sewage sludge using ultra-high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 2010, 1217 (21), 3481-3488.
[119] Baietto, L.; D'Avolio, A.; Ventimiglia, G.; De Rosa, F. G.; Siccardi, M.; Simiele, M.; Sciandra, M.; Di Perri, G., Development, Validation, and Routine Application of a High-Performance Liquid Chromatography Method Coupled with a Single Mass Detector for Quantification of Itraconazole, Voriconazole, and Posaconazole in Human Plasma. Antimicrobial Agents and Chemotherapy 2010, 54 (8), 3408-3413.
[120] Baietto, L.; D'Avolio, A.; Marra, C.; Simiele, M.; Cusato, J.; Pace, S.; Ariaudo, A.; De Rosa, F. G.; Di Perri, G., Development and validation of a new method to simultaneously quantify triazoles in plasma spotted on dry sample spot devices and analysed by HPLC-MS Journal of Antimicrobial Chemotherapy 2012, 67 (11), 2645-2649.
[121] Beste, K. Y.; Burkhardt, O.; Kaever, V., Rapid HPLC–MS/MS method for simultaneous quantitation of four routinely administered triazole antifungals in human plasma. Clinica Chimica Acta 2012, 413 (1–2), 240-245.
[122] Jourdil, J.-F.; Tonini, J.; Stanke-Labesque, F., Simultaneous quantitation of azole antifungals, antibiotics, imatinib, and raltegravir in human plasma by two-dimensional high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography B 2013, 919–920 (0), 1-9.
[123] Casado, J.; Rodríguez, I.; Ramil, M.; Cela, R., Selective determination of antimycotic drugs in environmental water samples by mixed-mode solid-phase extraction and liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of Chromatography A 2014, 1339 (0), 42-49.
[124] Breadmore, M. C.; Procházková, A.; Theurillat, R.; Thormann, W., Determination of itraconazole and hydroxyitraconazole in human serum and plasma by micellar electrokinetic chromatography. Journal of Chromatography A 2003, 1014 (1–2), 57-70.
[125] Liao, H.-W.; Lin, S.-W.; Wu, U.-I.; Kuo, C.-H., Rapid and sensitive determination of posaconazole in patient plasma by capillary electrophoresis with field-amplified sample stacking. Journal of Chromatography A 2012, 1226 (0), 48-54.
[126] Keating, C. D.; Kovaleski, K. M.; Natan, M. J., Protein:Colloid Conjugates for Surface Enhanced Raman Scattering:  Stability and Control of Protein Orientation. The Journal of Physical Chemistry B 1998, 102 (47), 9404-9413.
[127] Kladnik, G.; Cvetko, D.; Batra, A.; Dell’Angela, M.; Cossaro, A.; Kamenetska, M.; Venkataraman, L.; Morgante, A., Ultrafast Charge Transfer through Noncovalent Au–N Interactions in Molecular Systems. The Journal of Physical Chemistry C 2013, 117 (32), 16477-16482.
[128] Vickackaite, V.; Pusvaskiene, E., Dispersion-solidification liquid–liquid microextraction for volatile aromatic hydrocarbons determination: Comparison with liquid phase microextraction based on the solidification of a floating drop. Journal of Separation Science 2009, 32 (20), 3512-3520.
[129] Health, U. S. D. o.; Human Services, F.; Drug Administration Centre for Drug, E.; Research, C. f. V. M., Guidance for Industry, Bioanalytical Method Validation. http://www.fda.gov/cder/guidance/index.htm 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔