跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/02 23:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:涂意宜
論文名稱:使用分散式液液微萃取結合場放大樣品堆積技術搭配毛細管電泳在人體尿液及血清中同時測定4種Phenothiazine藥物
指導教授:謝明穆張玉珍張玉珍引用關係
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:121
中文關鍵詞:藥物毛細管電泳分散式液液微萃取場放大樣品堆積
外文關鍵詞:PhenothiazineCEDLLMEFASS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Phenothiazine類藥物已經有很長一段時間被廣泛使用作為抗精神病藥、鎮定劑、抗帕金森病藥及抗組織胺藥等。在本研究中,藉由使用分散式液液微萃取(DLLME)結合場放大樣品堆積技術(FASS)搭配毛細管電泳,開發出一個簡單、快速和靈敏的方法在人體的尿液及血清樣品中測定4種phenothiazine類藥物。在最佳化條件下,1 mL的樣品溶液,使用30 µL的chloroform萃取劑、200 µL tetrahydrofuran的分散劑及萃取時間僅需短短的一分鐘就能獲得1071–1565倍的高濃縮倍率,所偵測到的線性範圍在0.8–400 nM (r > 0.9948)。Phenothiazine藥物在尿液及血清樣品中的準確度分別在-14.3%–7.6%和-4.4%–5.4%,偵測極限分別為0.5–0.7 nM和 0.7–0.9 nM。依結果顯示,DLLME–FASS–CE被證明是一個快速、簡便的方法且可成功的應用人體的尿液及血清樣品中測定4種phenothiazine類藥物。

Phenothiazine drugs have been widely used as neuroleptics, tranquilizers, antiparkinsonian drugs, and antihistamines for a long time now. In this study, we propose a simple, rapid, and sensitive method to determine the of four phenothiazine drugs , namely, (trifluoperazine, fluphenazine, prochlorperazine, and perphenazine) in human urine and serum samples by using dispersive liquid–liquid microextraction (DLLME) combined with field-amplified sample stacking (FASS) in capillary electrophoresis(CE). Under optimum conditions, 1.00 mL of sample solution, 30 µL of chloroform as extraction solvent, 200 µL of tetrahydrofuran as dispersive solvent and an extraction time of less than 1 min resulted in high enrichment factor in the ranges of 1071–1565, Moreover, good linearity was obtained from 0.8–400 nM (r > 0.9948). Accuracy of all the phenothiazine drugs from urine and serum samples were in the ranges of -14.3%–7.6% and -4.4%–5.4%, respectively . The corresponding, limits of detection ranges were from 0.5–0.7 nM and 0.7–0.9 nM, respectively. These results suggest that the DLLME–FASS-CE is a rapid and, convenient method that can be successfully applied for determining phenothiazine drugs in human urine and serum samples.

謝誌 I
摘要 V
Abstract VIII
目錄 X
圖目 IX
表目 X
壹、 緒論 1
一、抗精神病藥物簡介 1
1. Phenothiazine藥物 2
2. 分析物簡介 4
二、 Phenothiazine藥物分析方法 9
三、 毛細管電泳簡介 15
1. 毛細管電泳的發展 17
2. 毛細管電泳的應用模式 20
2.1 毛細管區帶電泳(CZE) 20
2.2 微胞電動層析法(MEKC) 22
2.3 毛細管凝膠電泳法(CGE) 24
2.4 毛細管等速電泳法(CITP) 24
2.5 毛細管電層析法(CEC) 25
2.6 毛細管等電聚焦電泳法(CIEF) 25
3. 線上樣品堆積方法 27
3.1 場放大樣品堆積法(Field-amplified sample stacking, FASS) 28
3.2 大體積樣品堆積法(Large volume sample stacking, LVSS) 28
3.3酸鹼調控堆積法(pH-mediated stacking) 30
3.4 掃集式堆積法(sweeping) 30
四、萃取方法 33
1. 液液萃取(LLE) 34
2. 固相萃取(SPE) 35
3. 固相微萃取(SPME) 36
4. 液相微萃取(LPME) 37
5. 分散式液液微萃取(DLLME) 38
五、研究動機與目的 41
貳、 實驗 42
一、 儀器設備 42
二、 藥品 44
三、 實驗方法 46
1. CE-UV偵測系統 46
2. 儲存溶液的配製 47
3. 緩衝溶液的配製 48
4. 分散式液液微萃取步驟 49
5. 尿液樣品直接分析 51
6. 尿液樣品經分散式液液微萃取後分析 51
7. 血清樣品直接分析 51
8. 血清樣品經分散式液液微萃取後分析 52
9. 毛細管電泳處理與進樣方式 52
參、 結果與討論 54
一、 電泳最佳分離條件 54
二、 分散式液液微萃取 (DLLME) 58
1. 萃取劑的選擇 59
2. 分散劑的選擇 62
3. 萃取劑體積的影響 65
4. 分散劑體積的影響 68
5. 溶液pH值對於萃取效率的影響 71
6. 萃取時間的探討 74
7. 鹽類添加量的影響 76
8. 分散式液液微萃取最佳條件 78
三、 線上濃縮機制 80
1. 注射方式及時間的探討 81
四、 結合分散式液液微萃取與線上濃縮 85
五、 方法確效 88
1. 標準樣品直接分析 88
2. 樣品經分散式液液微萃取後分析 89
3. 結合分散式液液微萃取與線上濃縮 90
4. 靈敏度及提升倍率 91
六、 生物樣品的應用 97
1. 尿液樣品 97
1.1 尿液樣品的分析 97
1.2 尿液樣品經DLLME萃取後的檢量線 98
1.3尿液樣品的再現性 99
1.4 分析方法之再現性 100
1.5 選擇性測試 100
2. 血清樣品 104
2.1 血清樣品的分析 104
2.2 血清樣品經DLLME萃取後的檢量線 105
2.3 血清樣品的再現性 106
2.4 分析方法之再現性 107
2.5 選擇性測試 107
肆、結論 111
參考文獻 112


圖1. Phenothiazine 基本結構 3
圖2. CE平面流型與HPLC之拋物線流型 ..16
圖3. 毛細管區帶電泳(CZE)分離示意圖 .21
圖4. 微胞電動層析(MEKC)分離示意圖 23
圖5. 場放大樣品堆積(FASS)流程示意圖 29
圖6. 掃集堆積法(Sweeping)流程示意圖 32
圖7. 毛細管電泳儀器之示意圖 46
圖8. 分散式液液微萃取之流程圖 50
圖9. 分析物最佳條件分離電泳圖 57
圖10. 萃取劑的選擇 61
圖11. 分散劑的選擇 64
圖12. 萃取劑體積之影響 67
圖13. 分散劑體積之影響 70
圖14. 溶液pH值的影響 73
圖15. 萃取時間的影響 75
圖16. 鹽類添加的影響 77
圖17. 分散式液液微萃取最佳條件標準層析圖 79
圖18. 毛細管進樣時間及體積變化量 83
圖19. 分析物訊號面積 84
圖20. 不同濃縮方式示意圖 86
圖21. DLLME結合線上濃縮所能測得的最低濃度 87
圖22. 尿液樣品添加與萃取結合FASS層析圖 101
圖23. 血清樣品添加與萃取結合FASS層析圖 108

表1. 分析物結構 8
表2. Phenothiazine類藥物被應用於不同樣品前處理與偵測儀器之分析 12
表3. 萃取劑之性質 60
表4. 分散劑之極性 62
表5. 分散式液液微萃取最佳條件 78
表6. 標準品直接分析 92
表7. 標準品經由分散式液液微萃取後分析 93
表8. 標準品經由分散式液液微萃取結合線上濃縮後分析 94
表9. 比較所有分析方法之偵測極限 95
表10. 比較所有分析方法之濃縮倍率 96
表11. 尿液樣品添加經由分散式液液微萃取結合線上濃縮後分析 102
表12. 尿液樣品添加之相對誤差、再現性及選擇性 103
表13. 血清樣品添加經由分散式液液微萃取結合線上濃縮後分析 109
表14. 血清樣品添加之相對誤差、再現性及選擇 110


1. Saracino, M. A.; Amore, M.; Baioni, E.; Petio, C.; Raggi, M. A., Determination of selected phenothiazines in human plasma by solid-phase extraction and liquid chromatography with coulometric detection. Analytica chimica acta 2008, 624, (2), 308-16.
2. Xiao, Q.; Hu, B., Hollow fiber-liquid phase microextraction combined with gas chromatography for the determination of phenothiazine drugs in urine. Journal of Chromatography B 2010, 878, (19), 1599-604.
3. Pluta, K.; Morak-Mlodawska, B.; Jelen, M., Recent progress in biological activities of synthesized phenothiazines. European journal of medicinal chemistry 2011, 46, (8), 3179-89.
4. Tanaka, E.; Nakamura, T.; Terada, M.; Shinozuka, T.; Hashimoto, C.; Kurihara, K.; Honda, K., Simple and simultaneous determination for 12 phenothiazines in human serum by reversed-phase high-performance liquid chromatography. Journal of Chromatography B 2007, 854, (1-2), 116-20.
5. Sudeshna, G.; Parimal, K., Multiple non-psychiatric effects of phenothiazines: a review. European journal of pharmacology 2010, 648, (1-3), 6-14.
6. Lin, C. E.; Liao, W. S.; Chen, K. H.; Lin, W. Y., Influence of pH on electrophoretic behavior of phenothiazines and determination of pKa values by capillary zone electrophoresis. Electrophoresis 2003, 24, (18), 3154-9.
7. Busanello, A.; Peroza, L. R.; Wagner, C.; Sudati, J. H.; Pereira, R. P.; Prestes Ade, S.; Rocha, J. B.; Fachinetto, R.; Barbosa, N. B., Resveratrol reduces vacuous chewing movements induced by acute treatment with fluphenazine. Pharmacology, biochemistry, and behavior 2012, 101, (2), 307-10.
8. Zhou, X.; Dong, X. W.; Priestley, T., The neuroleptic drug, fluphenazine, blocks neuronal voltage-gated sodium channels. Brain research 2006, 1106, (1), 72-81.
9. Vinson, D. R., Diphenhydramine in the treatment of akathisia induced by prochlorperazine. The Journal of emergency medicine 2004, 26, (3), 265-70.
10. Shin, S. Y.; Choi, B. H.; Kim, J. R.; Kim, J. H.; Lee, Y. H., Suppression of P-glycoprotein expression by antipsychotics trifluoperazine in adriamycin-resistant L1210 mouse leukemia cells. European journal of pharmaceutical science 2006, 28, (4), 300-6.
11. Idris, A. M., On-line coupling of solid-phase extraction, derivatization reaction and spectrophotometry by sequential injection analysis: application to trifluoperazine assay in human urine. Journal of pharmacological and toxicological methods 2007, 56, (3), 330-5.
12. Dhabab, J. M.; Al-Ameri, S. A. H.; Taufeeq, A. H., Separation and determination of trifluoperazine and prochlorperazine in pharmaceutical preparations by HPLC. Journal of the Association of Arab Universities for Basic and Applied Sciences 2013, 13, (1), 14-18.
13. Cruz-Vera, M.; Lucena, R.; Cardenas, S.; Valcarcel, M., Determination of phenothiazine derivatives in human urine by using ionic liquid-based dynamic liquid-phase microextraction coupled with liquid chromatography. Journal of chromatography B 2009, 877, (1-2), 37-42.
14. Caffieri, S.; Miolo, G.; Seraglia, R.; Dalzoppo, D.; Toma, F. M.; Henegouwen, G. M. J. B. v., Photoaddition of Fluphenazine to Nucleophiles in Peptides and Proteins. Possible Cause of Immune Side Effects. Chem. Res. Toxicol. 2007, 20, 1470-1476.
15. Marco Coppola, D.; Donald M Yealy, M., FACEP ; Robert A Leibold, M., Randomized, Placebo-Controlled Evaluation of Prochlorperazine Versus Metoclopramide for Emergency Department Treatment of Migraine Headache. Annals of emergency medicine 1995, 25, (2), 541-546.
16. Vinson, D. R.; Drotts, D. L., Diphenhydramine for the prevention of akathisia induced by prochlorperazine: a randomized, controlled trial. Annals of emergency medicine 2001, 37, (2), 125-31.
17. Vinson, D. R., Diphenhydramine in the treatment of akathisia induced by prochlorperazine. The Journal of emergency medicine 2004, 26, (3), 265-70.
18. Yan, M.; Zhu, Y. G.; Li, H. D.; Chen, B. M.; Ma, N.; Lei, Y. Q.; Liu, Y. P., Quantification of prochlorperazine maleate in human plasma by liquid chromatography-mass spectrometry: Application to a bioequivalence study. Journal of chromatography B 2009, 877, (27), 3243-7.
19. Ventura, R.; Casasampere, M.; Berge´s, R.; Ferna´ndez-Mora´n, J.; Segura, J., Quantification of perphenazine in Eurasian otter (Lutra lutra lutra) urine samples by gas chromatography–mass spectrometry. Journal of Chromatography B 2002, 769,(1), 79-87.
20. Pedernera, C.; Ruiz, J. L.; Castells, G.; Manteca, X.; Cristofol, C., HPLC quantification of perphenazine in sheep plasma: application to a pharmacokinetic study. Journal of chromatography. B 2007, 854, (1-2), 308-12.
21. Liu, D.; Jin, W., Amperometric detection of perphenazine at a carbon fiber micro-disk bundle electrode by capillary zone electrophoresis. Journal of Chromatography B 2003, 789, (2), 411-415.
22. Xu, L.; Li, L.; Huang, J.; You, T., Analysis of perphenazine and fluphenazine by capillary electrophoresis coupled with tris (2,2'-bipyridyl) ruthenium (II) electrochemiluminescence detection. Talanta 2014, 118, 1-6.
23. Le, D. C.; Morin, C. J.; Beljean, M.; Siouffi, A. M.; Desbène, P. L., Electrophoretic separations of twelve phenothiazines and N-demethyl derivatives by using capillary zone electrophoresis and micellar electrokinetic chromatography with non ionic surfactant. Journal of Chromatography A 2005, 1063, (1-2), 235-240.
24. Dziomba, S.; Kowalski, P.; Baczek, T., Micelle to solvent stacking of tricyclic psychiatric drugs in capillary electrophoresis. Journal of pharmaceutical and biomedical analysis 2012, 62, 149-54.
25. Chen, K.-H.; Lin, C.-E.; Liao, W.-S.; Lin, W.-Y.; Hsiao, Y.-Y., Separation and migration behavior of structurally related phenothiazines in cyclodextrin-modified capillary zone electrophoresis. Journal of Chromatography A 2002, 979,(1-2), 399-408.
26. Hayen, H.; Karst, U., Analysis of Phenothiazine and Its Derivatives Using LC/Electrochemistry/MS and LC/Electrochemistry/Fluorescence. Analytical Chemistry 2003, 75,(18), 4833-4840.
27. Reubsaet, J. L. E.; Pedersen-Bjergaard, S., Screening for central nervous system-stimulating drugs in human plasma by liquid chromatography with mass spectrometric detection. Journal of Chromatography A 2004, 1031, (1-2), 203-211.
28. Persike, M.; Karas, M., Rapid simultaneous quantitative determination of different small pharmaceutical drugs using a conventional matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system. Rapid communications in mass spectrometry : RCM 2009, 23, (22), 3555-62.
29. Choi, J. H.; Lamshoft, M.; Zuhlke, S.; Park, K. H.; Shim, J. H.; Spiteller, M., Determination of sedatives and adrenergic blockers in blood meal using accelerated solvent extraction and Orbitrap mass spectrometry. Journal of chromatography. A 2012, 1260, 111-9.
30. Peysson, W.; Vulliet, E., Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography-time-of-flight-mass spectrometry. Journal of chromatography. A 2013, 1290, 46-61.
31. Tiselius, A., Electrophoretic analysis of normal and immune sera. Institute of Physical Chemistry, University of Upsala 1937,31,(9) 1464-1477.
32. Hjertén, S., Free zone electrophoresis. Chromatographic Reviews 1967, 9, (2), 122-219.
33. Mikkers, F. E. P.; Everaerts, F. M.; Verheggen, T. P. E. M., High-performance zone electrophoresis. Journal of Chromatography A 1979, 169, (0), 11-20.
34. Jorgenson, J. W.; Lukacs, K. D., Zone Electrophoresis in Open-Tubular Glass Capillaries. Analytical Chemistry 1981, 53, (8), 1302-1305.
35. Jorgenson, J. W.; Lukacs, K. D., Free-Zone Electrophoresisin GlassCapillaries. The American Association for Clinical Chemistry 1981, 27, (9), 1551-1553.
36. Jorgenson, J. W.; Lukacs, K. D., High-resolution separations based on electrophoresis and electroosmosis. Journal of Chromatography A 1981, 218, (0), 209-216.
37. Terabe, S.; Otsuka, K.; Ichikawa, K.; Tsuchiya, A.; Ando, T., Electrokinetic Separations with Micellar Solutions and Open-Tubular Capillaries. Analytical Chemistry 1984, 56, (1), 113-116.
38. Terabe, S.; Otsuka, K.; Ando, T., Electrokinetic Chromatography with Micellar Solution and Open-Tubular Capillary. Analytical Chemistry 1985, 57,(4), 834-841.
39. Hjertén, S.; Zhu, M.-d., Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. Journal of Chromatography A 1985, 346, (0), 265-270.
40. Cohen, A. S.; Karger, B. L., High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins. Journal of Chromatography A 1987, 397, (0), 409-417.
41. anzler, K.; Greve, K. S.; Cohen, A. S.; Karger, B. L., High-Performance Capillary Electrophoresis of SDS-Protein Complexes Using UV-Transparent Polymer Networks. Analytical Chemistry 1992, 64, (22), 2085-2071.
42. Lauer, H. H.; McManigill, D., Capillary Zone Electrophoresis of Proteins in Untreated Fused Silica Tubing. Analytical Chemistry 1986, 58, (1), 170-175.
43. für, M.-P.-I.; Genetik, m.; Berlin-Dahlem, G., Principles of DNA separation with capillary electrophoresis. Electrophoresis 2001, 22, (4), 629-643.
44. Terabe, S., Micellar Electrokinetic. Analytical Chemistry 2004, (1-2),241-246.
45. Hansen, S. H.; Gabel-Jensen, C.; El-Sherbiny, D. T. k. M., Microemulsion electrokinetic chromatography - or solvent-modified micellar electrokinetic chromatography? Analytical chemistry 2001, 20, (11), 614-619.
46. Fuguet, E.; Ra`fols, C.; Bosch, E.; Abraham, M. H.; Rose´sa, M. ı., Solute–solvent interactions in micellar electrokinetic chromatography, III. Characterization of the selectivity of micellar electrokinetic chromatography systems. Journal of Chromatography A 2002, 942, 237–248.
47. Hong, J. W.; Fujii, T.; Seki, M.; Yamamoto, T.; Endo, I., Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. Electrophoresis 2001, 22, (2), 328-333.
48. von Brocke, A.; Freudemann, T.; Bayer, E., Performance of capillary gel electrophoretic analysis of oligonucleotides coupled on-line with electrospray mass spectrometry. Journal of Chromatography A 2003, 991, (1), 129-141.
49. GariÄa-Cannas, V.; GonzaÄlez, R.; Cifuentes, A., Ultrasensitive Detection of Genetically Modified Maize DNA by Capillary Gel Electrophoresis with Laser-Induced Fluorescence Using Different Fluorescent Intercalating Dyes. journal of agricultufal and food chemistry 2002, 50, (16), 4497-4502.
50. Yang, C.; Liu, H.; Yang, Q.; Zhang, L.; Zhang, W.; Zhang, Y., On-Line Hyphenation of Capillary Isoelectric Focusing and Capillary Gel Electrophoresis by a Dialysis Interface. Analytical chemistry 2003, 75, (2), 215-218.
51. R, H.; Udseth; Loo, J. A.; Smith, R. D., Capillary Isotachophoresis/Mass Spectrometry. Analytical chemistry 1989, 61, (3), 282-232.
52. Martens, J. H. P. A.; Reijenga, J. C.; Boonkkamp, J. H. M. t. T.; Mattheij, R. M. M.; Everaerts, F. M., Transient modelling of capillary electrophoresis Isotachophoresis. Journal of Chromatography A 1997, 772, (1-2), 49-62.
53. Dittmann, M. M.; Rozing, G. E., Capillary electrochromatography- a high-efficiency micro-separation technique. Journal of Chromatography A 1996, 774, (1-2),63-74.
54. Dermaux, A.; Sandra, P., Applications of capillary electrochromatography. Electrophoresis 1999, 20, (15-16),3027-3065.
55. Rathore, A. S.; Horviáth, C., Capillary electrochromatography: theories on electroosmotic flow in porous media. Journal of Chromatography A 1997, 781, (1-2),185-195.
56. Shen, Y.; Smith, R. D., High-Resolution Capillary Isoelectric Focusing of Proteins Using Highly Hydrophilic-Substituted Cellulose-Coated Capillaries. J. Microcolumn Separations 2000, 12, (3), 135-141.
57. Wu, X.-Z.; Sze, N. S.-K.; Pawliszyn, J., Miniaturization of capillary isoelectric focusing. Electrophoresis 2001, 22, (18), 3968-3971.
58. Jensen, P. K.; Paìa-Tolić, L.; Peden, K. K.; Martinović, S.; Lipton, M. S.; Anderson, G. A.; Tolić, N.; Wong, K.-K.; Smith, R. D., Mass spectrometic detection for capillary isoelectric focusing separations of complex protein mixtures. Electrophoresis 2000, 21, (7), 1372-1380.
59. Torres-Cartas, S.; Martin-Biosca, Y.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J., Comparison between micellar liquid chromatography and capillary zone electrophoresis for the determination of hydrophobic basic drugs in pharmaceutical preparations. Biomedical chromatography : BMC 2007, 21, (1), 21-28.
60. Muijselaar, P. G. H. M.; Claessens, H. A.; Cramers, C. A., Determination of structurally related phenothiazines by capillary zone electrophoresis and micellar electrokinetic chromatography. Journal of Chromatography A 1996, 735, (1–2), 395-402.
61. Yang, Q.; Tomlinson, A. J.; Naylor, S., Membrane Preconcentration CE. Analytical Chemistry News &; Features 1999, 183-189.
62. Slampova, A.; Mala, Z.; Pantuckova, P.; Gebauer, P.; Bocek, P., Contemporary sample stacking in analytical electrophoresis. Electrophoresis 2013, 34, (1), 3-18.
63. Shihabi, Z. K., Stacking in capillary zone electrophoresis. Journal of Chromatography A 2000, 902, (1), 107-117.
64. Simpson, S. L., Jr.; Quirino, J. P.; Terabe, S., On-line sample preconcentration in capillary electrophoresis. Fundamentals and applications. Journal of chromatography. A 2008, 1184, (1-2), 504-541.
65. Kitagawa, F.; Otsuka, K., Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. Journal of chromatography. A 2014, 1335, 43-60.
66. Osbourn, D. M.; Weiss, D. J.; Lunte, C. E., On-line preconcentration methods for capillary electrophoresis. Electrophoresis 2000, 21, (14), 2768-2779.
67. Quirino, J. P.; Terabe, S., Sample stacking of cationic and anionic analytes in capillary electrophoresis. Journal of Chromatography A 2000, 902, (1), 119-135.
68. McGrath, G.; Smyth, W. F., Large-volume sample stacking of selected drugs of forensic significance by capillary electrophoresis. Journal of Chromatography B: Biomedical Sciences and Applications 1996, 681, (1), 125-131.
69. Osbourn, D. M.; Weiss, D. J.; Lunte, C. E., On-line preconcentration methods for capillary electrophoresis. Electrophoresis 2000, 21, (14), 2768-2779.
70. Arnett, S. D.; Lunte, C. E., Enhanced pH-mediated stacking of anions for CE incorporating a dynamic pH junction. Electrophoresis 2007, 28, (20), 3786-93.
71. Xiong, Y.; Park, S.-R.; Swerdlow, H., Base Stacking: pH-Mediated On-Column Sample Concentration for Capillary DNA Sequencing. Analytical chemistry 1998,70, (17), 3605-3611.
72. Quirino, J. P.; Terabe, S., Sweeping of Analyte Zones in Electrokinetic Chromatography. Analytical chemistry 1999, 71, (8), 1638-1644.
73. Urbánek, M.; Křivánková, L.; Boček, P., Stacking phenomena in electromigration: From basic principles to practical procedures. Electrophoresis 2003, 24, (3), 466-485.
74. Quirino, J. P.; Kim, J.-B.; Terabe, S., Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis. Journal of Chromatography A 2002, 965, (1–2), 357-373.
75. Larsimont, V.; Meins, J.; Fieger-Büschges, H.; Henning, B., Validated high-performance liquid chromatographic assay for the determination of promazine in human plasma: Application to pharmacokinetic studies. Journal of Chromatography B: Biomedical Sciences and Applications 1998, 719, (1–2), 222-226.
76. Kudo, K.; Inoue, H.; Ishida, T.; Tsuji, A.; Ikeda, N., A fatal case of amoxapine poisoning under the influence of chronic use of psychotropic drugs. Legal medicine 2007, 9, (2), 63-67.
77. arafraz-Yazdi, A.; Amiri, A., Liquid-phase microextraction. TrAC Trends in Analytical Chemistry 2010, 29, (1), 1-14.
78. Hennion, M.-C., Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. Journal of Chromatography A 1999, 856, (1–2), 3-54.
79. Mou, C.; Ganju, N.; Sridhar, K. S.; Krishan, A., Simultaneous quantitation of plasma doxorubicin and prochlorperazine content by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications 1997, 703, (1–2), 217-224.
80. Mercolini, L.; Bugamelli, F.; Kenndler, E.; Boncompagni, G.; Franchini, L.; Raggi, M. A., Simultaneous determination of the antipsychotic drugs levomepromazine and clozapine and their main metabolites in human plasma by a HPLC-UV method with solid-phase extraction. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 2007, 846, (1-2), 273-280.
81. Kumazawa, T.; Hasegawa, C.; Uchigasaki, S.; Lee, X. P.; Suzuki, O.; Sato, K., Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography-mass spectrometry. Journal of chromatography. A 2011, 1218, (18), 2521-2527.
82. Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical chemistry 1990, 62, (19), 2145-2148.
83. Kumazawa, T.; Seno, H.; Watanabe-Suzuki, K.; Hattori, H.; Ishii, A.; Sato, K.; Suzuki, O., Determination of phenothiazines in human body fluids by solid-phase microextraction and liquid chromatography/tandem mass spectrometry. Journal of Mass Spectrometry 2000, 35, (9), 1091-1099.
84. Kumazawa, T.; Lee, X.-P.; Sato, K.; Suzuki, O., Solid-phase microextraction and liquid chromatography/mass spectrometry in drug analysis. Analytica chimica acta 2003, 492, (1-2), 49-67.
85. Liu, H.; Dasgupta, P. K., Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop. Analytical chemistry 1996, 68, (11), 1817-1821.
86. Pedersen-Bjergaard, S.; Rasmussen, K. E., Liquid-Liquid-Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis. Analytical chemistry 1999, 71, (14), 2650-2656.
87. Shen, G.; Lee, H. K., Hollow Fiber-Protected Liquid-Phase Microextraction of Triazine Herbicides. Analytical chemistry 2002, 74, (3), 648-654.
88. Lin, S. C.; Whang, C. W., Capillary electrophoretic separation of tricyclic antidepressants using a polymer-coated capillary and beta-cyclodextrin as an electrolyte additive. Journal of separation science 2008, 31, (22), 3921-3929.
89. Xiao, Q.; Hu, B., Hollow fiber-liquid phase microextraction combined with gas chromatography for the determination of phenothiazine drugs in urine. Journal of Chromatography B 2010, 878, (19), 1599-1604.
90. Rezaee, M.; Assadi, Y.; Milani Hosseini, M. R.; Aghaee, E.; Ahmadi, F.; Berijani, S., Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of chromatography. A 2006, 1116, (1-2), 1-9.
91. Zgoła-Grześkowiak, A.; Grześkowiak, T., Dispersive liquid-liquid microextraction. TrAC Trends in Analytical Chemistry 2011, 30, (9), 1382-1399.
92. Herrera-Herrera, A. V.; Asensio-Ramos, M.; Hernández-Borges, J.; Rodríguez-Delgado, M. Á., Dispersive liquid-liquid microextraction for determination of organic analytes. TrAC Trends in Analytical Chemistry 2010, 29, (7), 728-751.
93. Yazdi, A. S.; Razavi, N.; Yazdinejad, S. R., Separation and determination of amitriptyline and nortriptyline by dispersive liquid-liquid microextraction combined with gas chromatography flame ionization detection. Talanta 2008, 75, (5), 1293-1299.
94. Yan, H.; Wang, H.; Qin, X.; Liu, B.; Du, J., Ultrasound-assisted dispersive liquid-liquid microextraction for determination of fluoroquinolones in pharmaceutical wastewater. Journal of pharmaceutical and biomedical analysis 2011, 54, (1), 53-57.
95. Zhang, S.; Li, C.; Song, S.; Feng, T.; Wang, C.; Wang, Z., Application of dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for trace analysis of six carbamate pesticides in apples. Analytical Methods 2010, 2, (1), 54-62.
96. Huang, K. J.; Wei, C. Y.; Liu, W. L.; Xie, W. Z.; Zhang, J. F.; Wang, W., Ultrasound-assisted dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-fluorescence detection for sensitive determination of biogenic amines in rice wine samples. Journal of chromatography. A 2009, 1216, (38), 6636-6641.
97. Alshana, U.; Goger, N. G.; Ertas, N., Dispersive liquid-liquid microextraction combined with field-amplified sample stacking in capillary electrophoresis for the determination of non-steroidal anti-inflammatory drugs in milk and dairy products. Food chemistry 2013, 138, (2-3), 890-897.
98. Zhang, S.; Yang, X.; Yin, X.; Wang, C.; Wang, Z., Dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for the determination of some neonicotinoid insecticides in cucumber samples. Food chemistry 2012, 133, (2), 544-550.
99. 勞工安全衛生研究所-物質安全資料表: http://www.ilosh.gov.tw/wSite/lp?ctNode=592&;mp=11
100. Sarafraz-Yazdi, A.; Amiri, A., Liquid-phase microextraction. TrAC Trends in Analytical Chemistry 2010, 29, (1), 1-14.
101. Thermo Scientific.,Solvent Properties Chromatography Columns and Consumables. 4-235.
102. Xiong, C.; Ruan, J.; Cai, Y.; Tang, Y., Extraction and determination of some psychotropic drugs in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. Journal of pharmaceutical and biomedical analysis 2009, 49, (2), 572-578.
103. Cruz-Vera, M.; Lucena, R.; Cardenas, S.; Valcarcel, M., Determination of phenothiazine derivatives in human urine by using ionic liquid-based dynamic liquid-phase microextraction coupled with liquid chromatography. Journal of chromatography. B 2009, 877, (1-2), 37-42.
104. Farhadi, K.; Farajzadeh, M. A.; Matin, A. A., Liquid chromatographic determination of benomyl in water samples after dispersive liquid-liquid microextraction. Journal of separation science 2009, 32, (14), 2442-2447.
105. Chou, T. Y.; Lin, S. L.; Fuh, M. R., Determination of phenylurea herbicides in aqueous samples using partitioned dispersive liquid-liquid microextraction. Talanta 2009, 80, (2), 493-438.
106. Soisungnoen, P.; Burakham, R.; Srijaranai, S., Determination of organophosphorus pesticides using dispersive liquid-liquid microextraction combined with reversed electrode polarity stacking mode-micellar electrokinetic chromatography. Talanta 2012, 98, 62-68.
107. Psillakis, E.; Kalogerakis, N., Application of solvent microextraction to the analysis of nitroaromatic explosives in water samples. Journal of Chromatography A 2001, 907, (1–2), 211-219.
108. Quirino, J. P.; Guidote, A. M., Jr., Two-step stacking in capillary zone electrophoresis featuring sweeping and micelle to solvent stacking: II. Organic anions. Journal of chromatography. A 2011, 1218, (7), 1004-1010.
109. Thompson, J. W.; Kaiser, T. J.; Jorgenson, J. W., Viscosity measurements of methanol-water and acetonitrile-water mixtures at pressures up to 3500 bar using a novel capillary time-of-flight viscometer. Journal of chromatography. A 2006, 1134, (1-2), 201-209.
110. Huang, S. W.; Hsieh, M. M.; Chang, S. Y., Sensitive determination of sertraline by capillary electrophoresis with dispersive liquid-liquid microextraction and field-amplified sample stacking. Talanta 2012, 101, 460-464.
111. Guidance for Industry Bioanalytical Method Validation. Food and Drug Administration 2013, 1-28.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊