(3.238.174.50) 您好!臺灣時間:2021/04/16 16:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔣忠誠
研究生(外文):Chung Cheng-Chiang
論文名稱:氮化鋁鎵/氮化鋁/氮化鎵系列高電子遷移率電晶體之研究
論文名稱(外文):Investigation of AlGaN/AlN/GaN-Based High Electron Mobility Transistors
指導教授:蔡榮輝蔡榮輝引用關係
指導教授(外文):Tsai Jung-Hui
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:113
中文關鍵詞:氮化鋁鎵/氮化鎵氮化鋁鎵/氮化鋁/氮化銦鎵/氮化鎵高電子移動率電晶體
外文關鍵詞:AlGaN/GaNAlGaN/AlN/AlInN/GaNHEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
由於氮化鎵材料具寬能隙,高化學穩定性,耐腐蝕性,耐熱性,固具有廣泛的國防軍事及工業上等多方面的用途。而以氮化鎵為基礎的高電子遷移率場效電晶體(HEMTs)在高頻與高功率方面表現優異,近年來,產業界積極研發低成本與高性能的結構,使得以氮化鎵為基礎的高電子遷移率場效電晶體市場越來越受到重視。為了進一步改善與提升元件特性,本論文採用氮化鋁鎵/氮化鎵高電子遷移率場效電晶體結構,提出使用高摻雜濃度的氮化鎵覆蓋層與閘極蝕刻技術來改善接觸電阻問題,並在氮化鋁鎵層跟氮化鎵層之間成長氮化鋁層提高通道的二維電子氣與改善在低溫時的合金散射效應,實驗結果顯示以閘極長度為1μm時,氮化鎵/氮化鋁鎵/氮化鋁/氮化鎵HEMT結構可獲得最大飽和電流與最大轉導值分為460 mA/mm與94.2 mS/mm。最後,為了進一步提高元件特性,使用5 nm的氮化銦鎵層取代氮化鎵作為通道層以改提升元件的直流與高頻特性。模擬的研究結果發現,閘極長度為1μm時,氮化鋁鎵/氮化鋁/氮化銦鎵/氮化鎵的HEMT結構可獲得4.45 × 1020 cm-2的二維電子氣、最大飽和電流與最大轉導值分別為961.5 mA/mm與126.4 mS/mm,顯見較高的二維電子氣濃度對於飽和電流及直流轉導值上相當有幫助。而在高頻特性的部分氮化鋁鎵/氮化鋁/氮化銦鎵/氮化鎵的HEMT結構的ft與fmax分別為19.8 GHz與29.1 GHz,其值皆高於氮化鋁鎵/氮化鎵 HEMT結構。
Because GaN material has wide band gap, high chemical stability, high corrosion resistance, and high temperature resistance property, it has been widely applied in defense of military and industry. The GaN-based high electron mobility transistors (HEMTs) has excellent performance in high frequency and high power application. In recent years, attributed that some low-cost and high-performance structures have been already developed, the GaN-based HEMTs have attracted considerable attention in industrial market. In this thesis, for the AlGaN/GaN HEMT structure, three main issues include that (i) a high doped concentration at GaN cap layer and the gate recess to reduce the contact resistance, (ii) an AlN interfacial layer between the GaN buffer layer and AlGaN barrier layer was used to enhance two-dimensional electron gas (2DEG) and improve the alloy disorder scattering effect. (iii) 5 nm an InGaN layer is employed to replace the GaN channel layer, to improved DC and RF characteristics of the device. The experimental results showed that the GaN/AlGaN/AlN/GaN HEMT structure with gate length is 1μm exhibit a maximum saturation current of 503.86 mA/mm and a maximum transconductance of 94.2 mS/mm. On the other hand, for the AlGaN/AlN/InGaN/GaN HEMT by simulation results, the 2DEG in channel is 2.97 × 1020 cm-3. In addition, the maximum saturation current and the maximum transconductance are of 961.5 mA/mm and 126.4 mS/mm, respectively. Obviously, the results showed large 2DEG, saturation current, and transconductance, simultaneously. Moreover, in the microwave characteristics of the AlGaN/AlN/InGaN/GaN HEMT structure, ft and fmax are of 19.8 GHz and 29.1 GHz, respectively. These values are higher than the AlGaN/GaN HEMT structures.
CONTENTS
Abstract (Chinese) i
Abstract (English) iii
Table Lists xx
Figure Captions xxi
Chapter 1 Introduction 1
1-1 General Background Information 1
1-2 Properties of Materials 2
1-3 High Electron Mobility Transistors (HEMTs) 3
1-4 Purpose of Research 5
1-5 Thesis Organizations 6
Chapter 2 Experimental characteristics of AlGaN/AlN/GaN high electron mobility transistors (HEMTs) 7
2-1 Introduction 7
2-2 Device preparation and fabrication. 9
2-2-1 Device structure 10
2-2-2 Device fabrication 10
2-3 Experimental Result and Discussion 10
2-4 Summary 13
Chapter 3 Simulated evaluation and anaysis of AlGaN/AlN/GaN and AlGaN/GaN high electron mobility transistors (HEMTs) 15
3-1 Introduction 15
3-2 Simulation Environment 16
3-2-1 Device Simulation Framework 16
3-2-2 Model and Parameter Settings 17
3-2-3 Validation of Simulation Accuracy 17
3-3 Device Structures 19
3-4 Research Result and Discussion 20
3-5 Conclusions 26
Chapter 4 Simulated evaluation and anaysis of AlGaN/AlN/InGaN/GaN high electron mobility transistors (HEMTs) 27
4-1 Introduction 27
4-2 Device Structures 29
4-3 Result and Discussion 29
4-4 Conclusions 32
Chapter 5 Conclusion and Prospects 33
5-1 Conclusion 33
5-2 Prospects and Future Work 34
References 37
Tables 45
Figures 50

Table Lists

Table 1 Summary of physical models.
Table 2 Summary of material dependent physical models to the AlInGaN system.
Table 3 Summary of material parameters for GaN, InN, and AlN system.
Table 4-1 Summary of AlGaN/AlN/GaN HEMTs performance.
Table 4-2 Summary of AlGaN/AlN/InGaN/GaN HEMTs performance.


Figure captions

Figure 1-1 The iSuppli’s forecast for GaN power management revenue for 2008 through 2013.
Figure 1-2 The development of semiconductor suppliers for GaN devices in recent years.
Figure 2-1 Comparison of conduction bands near the AlGaN/GaN and AlGaN/AlN/GaN heterojunctions.
Figure 2-2 The electron concentration at AlGaN/GaN and AlGaN/AlN/GaN heterojunctions. Without AlN structure, the 2DEG concentration is about 3×1019 cm-3, while the 2DEG concentration of AlN structure is higher than 1×1020 cm-3.
Figure 2-3 Schematic diagram of the cross section and top view of the studied AlGaN/AlN/GaN HEMT.
Figure 2-4 Corresponding energy-band diagrams at equilibrium of the studied AlGaN/AlN/GaN HEMT.
Figure 2-5 Corresponding conduction-band diagrams at difference gate forward bias of the AlGaN/AlN/GaN HEMT.
Figure 2-6 Corresponding conduction-band diagrams at difference gate reverse bias of the AlGaN/AlN/GaN HEMT.
Figure 2-7 Measurement of drain-to-source current-voltage characteristics of the AlGaN/AlN/GaN HEMT. The controlled gate voltage is applied by -1 V/step.
Figure 2-8 Measurement of drain-to-source saturation current and transconductance versus the gate bias of the AlGaN/AlN/GaN HEMT.
Figure 2-9 Measurement of gate-to-drain current-voltage forward characteristic of the AlGaN/AlN/GaN HEMT.
Figure 3-1 Comparison of simulated (solid line) and experimental (dashed line) I-V characteristics. The controlled gate voltage is applied by -1 V/step.
Figure 3-2 Comparison of simulated (solid line) and experimental (dashed line) drain-to-source saturation current and transconductance versus the gate bias characteristics.
Figure 3-3 Comparison of simulated (solid line) and experimental (dashed line) gate-to-drain current versus gate-to-drain voltage under inverted operation.
Figure 3-4 (a) Schematic cross section of device A with experimental structure.
(b) Schematic cross section of device B with gate recess.
(c) The schematic cross section of device C without i-AlN interfacial layer.
(d) The schematic cross section of device D with gate recess and without i-AlN interfacial layer.
Figure 3-5 (a) Corresponding energy-band diagram from the middle of gate to buffer layer of the device A at equilibrium.
(b) Corresponding energy-band diagram from the middle of gate to buffer layer of the device B at equilibrium.
(d) Corresponding energy-band diagram from the middle of gate to buffer layer of the device D at equilibrium.
Figure 3-6 The electron concentrations at AlGaN/GaN and AlGaN/AlN/GaN heterojunctions. The 2DEG concentrations of the devices A and B are higher than the devices C and D.
Figure 3-7 (a) Electric field distribution of the device A at equilibrium. The maximum electric field is 5.51 × 106 V/cm at AlGaN/AlN heterojunction.
(b) Electric field distribution of the device B at equilibrium. The maximum electric field is 5.44 × 106 V/cm at AlGaN/AlN heterojunction.
(c) Electric field distribution of the device C at equilibrium. The maximum electric field is 1.06 × 106 V/cm at n+-GaN/i-AlGaN heterojunction.
(d) Electric field distribution of the device D at equilibrium. The maximum electric field is 0.91 × 106 V/cm at AlGaN/GaN heterojunction.
Figure 3-8 (a) Simulated I-V characteristics of the device A. The controlled gate voltage is applied by -0.5 V/step.
(b) Simulated I-V characteristics of the device B. The controlled gate voltage is applied by -0.5 V/step.
(c) Simulated I-V characteristics of the device C. The controlled gate voltage is applied by -0.5 V/step. As the gate voltage is operated up to +1.5 V , the leakage current will happen.
(d) Simulated I-V characteristics of the device D. The controlled gate voltage is applied by -0.5 V/step. As the gate voltage is operated up to +1.5 V, the leakage current will happen.
Figure 3-9 Relation between drain current and gate-to-source voltage of the devices A, B, C, and D.
Figure 3-10 (a), (b) Drain-to-source saturation current and transconductance versus gate bias of devices A and B.
(c), (d) Drain-to-source saturation current and transconductance versus the gate bias of devices C, and D.
Figure 3-11 The detail compared to drain-to-source saturation current and transconductance versus gate bias of the devices A, B, C, and D.
Figure 3-12 (a), (b) Microwave performance of the devices A and B.
(c), (d) Microwave performance of the devices C and D.
Figure 3-13 (a), (b) Drain-to-source saturation current and transconductance versus the gate bias of the devices A and B.
(c), (d) Drain-to-source saturation current and transconductance versus the gate bias of the devices C and D.
Figure 3-14 Comparsion of drain-to-source saturation current and transconductance versus the gate bias of devices A, B, C, and D.
Figure 3-15 (a), (b) Microwave performance of the devices A and B.
(c), (d) Microwave performance of the devices C and D.
Figure 3-16 The inverted gate-to-drain current-voltage characteristics of the devices A, B, C, and D.
Figure 4-1 (a) Schematic cross section of device E with a 50Å i-GaN channel layer.
(b) Schematic cross section of device F with a 50Å i-In0.05Ga0.95GaN channel layer.
(c) Schematic cross section of device G with a 50Å i-In0.1Ga0.9GaN channel layer.
(d) Schematic cross section of device H with a 50Å i-In0.15Ga0.85GaN channel layer.
Figure 4-2 Corresponding energy-band diagrams from the middle of gate to buffer layer of the devices E, F, G, and H at equilibrium.
Figure 4-3 The electron concentrations at AlN/InGaN heterojunctions. The 2DEG concentrations of the device H is higher than the devices E, F and G.
Figure 4-4 (a) Electric field distribution of the device E at equilibrium. The maximum electric field is 5.44 × 106 V/cm at AlGaN/AlN heterojunction.
(b) Electric field distribution of the device F at equilibrium. The maximum electric field is 5.39 × 106 V/cm at AlGaN/AlN heterojunction.
(c) Electric field distribution of the device G at equilibrium. The maximum electric field is 5.34 × 106 V/cm at AlGaN/AlN heterojunction.
(d) Electric field distribution of the device H at equilibrium. The maximum electric field is 5.30 × 106 V/cm at AlGaN/AlN heterojunction.
Figure 4-5 (a) Simulated I-V characteristics of the device E. The controlled gate voltage is applied by -0.5 V/step.
(b) Simulated I-V characteristics of the device F. The controlled gate voltage is applied by -0.5 V/step.
(c) Simulated I-V characteristics of the device G. The controlled gate voltage is applied by -0.5 V/step.
(d) Simulated I-V characteristics of the device H. The controlled gate voltage is applied by -0.5 V/step.
Figure 4-6 Relation between drain current and gate-to-source voltage of the devices E, F, G, and H.
Figure 4-7 (a), (b) Drain-to-source saturation current and transconductance versus gate bias of devices E and F.
(c), (d) Drain-to-source saturation current and transconductance versus gate bias of devices G and H.
Figure 4-8 The detail compared to drain-to-source saturation current and transconductance versus gate bias of the devices E, F, G, and H.
Figure 4-9 (a), (b) Microwave performance of the devices E and F.
(c), (d) Microwave performance of the devices G and H.

References

[1] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Applied Physics Letters, vol. 48, no. 5, pp. 353-356, 1986.

[2] S. Nakamura, T. Mukai, and M. Senoh, “High power GaN P-N junction blue-light-emitting diodes,” Jpn. J. Appl. Phys., vol. 30, no. 2, pp. 1998-2001, 1991.

[3] J. Bern, P. Javorka, A. Fox, M. Marso, H. Luth, and P. Kordo, “Effect of surface passivation on performance of AlGaN/GaN/Si HEMTs,” Solid-State Electronics, vol. 47, no. 11, pp. 2097-2103, 2003.

[4] W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and T. Ogura, “High breakdown voltage undoped AlGaN–GaN power HEMT on sapphire substrate and its demonstration for DC–DC converter application,” IEEE Trans. Electron Devices, vol. 51, no. 11, pp. 1913-1917, 2004.

[5] F. Medjdoub, M. Zegaoui, D. Ducatteau, N. Rolland, and P. A. Rolland, “High-performance low-leakage-lurrent AlN/GaN HEMTs grown on silicon substrate,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 874-876, 2011.

[6] I. B. Rowena, S. L. Selvaraj, and T. Egawa, “Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1534-1536, 2011.

[7] S. L. Selvaraj, A. Watanabe, A. Wakejima, and T. Egawa, “1.4-kV breakdown voltage for AlGaN/GaN high-electron-mobility transistors on silicon substrate,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1375-1377, 2012.

[8] J. C. Gerbedoen, A. Soltani, S. Joblot, J. C. D. Jaeger, C. Gaquière, Y. Cordier, and F. Semond, “AlGaN/GaN HEMTs on (001) silicon substrate with power density performance of 2.9 W/mm at 10 GHz,” IEEE Electron Device Lett., vol. 57, no. 7, pp. 1497-1503, 2010.

[9] Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, K. L. Teo, S. C. Foo, and S. Vicknesh, “Temperature-dependent microwave noise characteristics in ALD Al2O3/AlGaN/GaN MISHEMTs on silicon substrate,” IEEE Electron Device Lett., vol. 32, no. 3, pp. 318-320, 2011.

[10] S. Haffouz, F. Semond1, J. A. Bardwell, T. Lester, and H. Tang, “Selectively grown AlGaN/GaN HEMTs on Si(111) substrates for integration with silicon microelectronics,” Journal of Crystal Growth, vol. 311, no. 7, pp. 2087-2090, 2009.

[11] S. Khandelwal, and T. A. Fjeldly, “A physics based compact model of I-V and C-V characteristics in AlGaN/GaN HEMT devices,” Solid-State Electronics, vol. 76, no.1, pp. 60-66, 2012.

[12] X. D. Wang, W. D. Hu, X. S. Chen, and W. Lu, “The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs,” IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1393-1401, 2012.

[13] S. Chowdhury, M. H. Wong, B. L. Swenson, and U. K. Mishra, “CAVET on bulk GaN Substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 41-43, 2012.

[14] T. Nanjo, A. Imai, Y. Suzuki, Y. Abe, T. Oishi, M. Suita, E. Yagyu, and Y. Tokuda, “AlGaN channel HEMT with extremely high breakdown voltage,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1046-1053, 2013.

[15] K. Shinohara, D. C. Regan, Y. Tang, A. L. Corrion, D. F. Brown, J. C. Wong, J. F. Robinson, H. H. Fung, A. Schmitz, T. C. Oh, S. J. Kim, P. S. Chen, R. G. Nagele, A. D. Margomenos, and M. Micovic, “Scaling of GaN HEMTs and Schottky diodes for submillimeter-wave MMIC applications,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 2982-2996, 2013.

[16] S. Chowdhury, M. H. Wong, B. L. Swenson, and U. K. Mishra, “Elimination of gate leakage in GaN FETs by placing oxide spacers on the mesa sidewalls,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 1032-1034, 2013.

[17] B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, , M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, and M.Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp. 334-344, 1999.

[18] S. H. shin, T. W. Kim, J. I. Song, and J. H. Jang, “Buried-pt gate InP/In0.52Al0.48As/In0.7Ga0.3As pseudomorphic HEMTs,” Solid-State Electronics, vol. 62, no. 1, pp. 106-109, 2011.

[19] K. C. Sahoo, C. I. Kuo, and Y. Li, “Novel metamorphic HEMTs with highly doped InGaAs source/drain regions for high frequency applications,” IEEE Trans. Electron Devices., vol. 57, no. 10, pp. 2594-2598, 2010.

[20] J. H. Tsai, “InGaP/GaAs camel-gate field effect transistor with double δ-doping channel profile,” Materials Chemistry and Physics, Vol. 73, No. 2-3, pp. 170-173, 2002.

[21] J. H. Tsai and K. P. Zhu, “Electrical properties of single delta-doped InGaP/InGaAs/GaAs pseudomorphic HEMT with camel-like gate structure,” Materials Chemistry and Physics, Vol. 82, No. 3, pp. 501-504, 2003.

[22] J. H. Tsai and C. M. Li, “Characteristics of InGaP/InGaAs complementary pseudomorphic doped-channel HFETs,” Solid-State Electron., Vol. 52, No. 1, pp. 146-149 ,2008.

[23] J. H. Tsai, “High-performance AlInAs/GaInAs δ-doped HEMT with negative differential resistance switch for logic application,” Solid-State Electron., Vol. 48, No. 1, pp. 81-85, 2004.

[24] J. H. Tsai, “A novel InGaP/InGaAs/GaAs double δ-doped pHEMT with camel-like gate structure,” IEEE Electron Device Lett., Vol. 24, No. 1, pp. 1-3, 2003.

[25] W. Chen, K. Y. Wong, and K. J. Chen, “Monolithic integration of lateral field-effect rectifier with normally-off HEMT for GaN-on-Si switch-mode power supply converters,” IEDM, pp. 1-4, 2008.

[26] H. Y. Liu, C. S. Lee, W. C. Hsu, L. Y. Tseng, B. Y. Chou, C. S. Ho, and C. L. Wu, “Investigations of AlGaN/AlN/GaN MOS-HEMTs on Si substrate by ozone water oxidation method,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2231-2237, 2013.

[27] W. K. Wang, P. C. Lin, C. H. Lin, C. K. Lin, Y. J. Chan, G. T. Chen, and J. I. Chyi, “Performance enhancement by using the n+-GaN cap layer and gate recess technology on the AlGaN-GaN HEMT fabrication,” IEEE Electron Device Lett., vol. 60, no. 7, pp. 2231-2237, 2013.

[28] H. S. Lee, D. Piedra, S. Min. Lin, X. Gao, S. Guo, and T. Palaciosp, “3000-V InAlN/GaN MOSHEMTs with AlGaN back barrier,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 982-984, 2012.

[29] Y. L. Chiou, L.H. Huang, and C. T. Lee, “Photoelectrochemical function in gate-recessed AlGaN/GaN Metal oxide semiconductor high electron mobility transistors,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 183-185, 2010.

[30] Y. H. Choi, J. Lim, and Y. S. Kim, O. Seok, M. K. Kim, and M. K. Han, “High voltage AlGaN/GaN high-electron-mobility transistors (HEMTs) employing oxygen annealing,” Power Semiconductor Devices &; IC's, vol. 6, pp. 233-236, 2010.

[31] H. Yue, L. Yang, X. Ma, J. Ma, M. Cao, C. Pan, C. Wang, and Z. J. Cheng, “High-performance microwave gate-recessed AlGaN/AlN/GaN MOS-HEMT with 73% power-added efficiency,” IEEE Electron Device Lett., vol. 32, no. 5, pp. 626-628, 2011.

[32] K. H. Lee, P. C. Chang, and S. J. Chang, “AlGaN/GaN high electron mobility transistors based on InGaN/GaN multi-quantum-well structures with photo-chemical vapor deposition of SiO2 dielectrics,” Microelectronic Engineering, vol. 104, pp. 105-109, 2013.

[33] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, J. K. Sheu, and C. S. Ho, “Enhanced AlGaN/GaN MOS-HEMT performance by using hydrogen peroxide oxidation technique,” IEEE Trans. Electron Devices., vol. 60, no. 1, pp. 213-220, 2012.

[34] D. Bouguenna, A. B. Stambouli, N. M. Maaza, A. Zado, and D. J. As, “Comparative study on performance of cubic AlxGa1−xN/GaN nanostructures MODFETs and MOS-MODFETs,” Superlattices and Microstructures, vol. 62, pp. 260-268, 2013.

[35] Z. Xu, J. Wang, Y. Cai, J. Liu, Z. Yang, X. Li, M. Wang, M. Yu, B. Xie, W. Wu, X. Ma, J. Zhang, and Y. Hao, “High temperature characteristics of GaN-based inverter integrated with enhancement-mode (e-mode) MOSFET and depletion-mode (d-mode) HEMT,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 33-35, 2013.

[36] S. Imanaga, and H. Kawai, “One-dimensional simulation of charge control in a novel AlN/GaN insulated gate heterostructure field effect transistor with modulation doping,” Journal of Crystal Growth, vol. 189, pp. 742-748, 1998.

[37] J. Kuzmik, “Power electronics on InAlN/(In)GaN: prospect for a record performance,” IEEE Electron Device Lett., vol. 22, no. 11, pp. 510-512, 2001.

[38] L. Shen, S. Heikman, B. Moran, R. Coffie, N. Zhang, D. Buttari, I. P. Smorchkova, and S. Keller, “AlGaN/AlN/GaN high-power microwave HEMT,” IEEE Electron Device Lett., vol. 22, no. 10, pp. 457-459, 2001.

[39] M. Miyoshi, T. Egawa, and H. Ishikawa, “Study on mobility enhancement in MOVPE-grown AlGaN/AlN/GaN HEMT structures using a thin AlN interfacial layer,” Solid-State Electronics, vol. 50, no. 9-10, pp. 1515-1521, 2006.

[40] L. Guo, X. Wang, C. Wang, H. Xiao, J. Ran, W. Luo, X. Wang, B. Wang, C. Fang, and G. Hu, “The influence of 1 nm AlN interlayer on properties of the Al0.3Ga0.7N/AlN/GaN HEMT structure,” Microelectronics Journal, vol. 39, no. 5, pp. 771-781, 2008.

[41] A. Kalavagunta, A. Touboul, L. Shen, R. D. Scrhrimpf, R. A. Reed, D. M. Fleetwood, R. K. Jain, and U. K. Mishra, “Electrostatic mechanisms responsible for device degradation in AlGaN/AlN/GaN HEMTs,” IEEE Trans. Nuclear Science, vol. 55, no. 4, pp. 1-7, 2008.

[42] A. Minj, D. Cavalcoli, S. Pandey, B. Fraboni, A. Cavallini, T. Brazzini, and F. Calle, “Nanocrack-induced leakage current in AlInN/AlN/GaN,” Scripta Materialia, vol. 66, pp. 327-330, 2012.

[43] M. Jurkovic, D. Gregusova, V. Palankovski, S. Hascik, M. Blaho, K. Cico, K. Frohlich, J. Carlin, N. Grandjean, and J. Kuzmik, “Schottky-barrier normally off GaN/InAlN/AlN/GaN HEMT with selectively etched access region,” IEEE Electron Device Lett., vol. 34, no. 3, pp. 432-434, 2013.

[44] A. Engin, T. Sevil, G. Sibel, T. Ali, and O. Ekmel, “Current-transport mechanisms in the AlInN/AlN/GaN single-channel and AlInN/AlN/GaN/AlN/GaN double-channel heterostructures,” Thin Solid Films, vol. 548, no.8, pp. 411-418, 2013.

[45] W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos, “Electron mobility in modulation-doped heterostructures,” Phys. Rev. B, vol. 30, no. 8, pp. 4571-4582, 1984.

[46] D. C. Look and R. J. Molnar, “Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements,” Appl. Phys. Lett., vol. 70, no. 25, pp. 3377-3379, 2013.

[47] J. S. Lee, J. W. Kim, J. Lee, C. C. Kim, J. E. Oh, M. W. Shin, and J. H. Lee, “Reduction of current collapse in AlGaN/GaN HFETs using AlN interfacial layer,” IEEE Electron Device Lett., vol. 39, no. 9, pp. 750-752, 2003.

[48] L. Hsu, and W. Walukiewicz, “Electron mobility in AlxGa1-xN/GaN heterostructures,” American Physical Society, vol. 56, no. 3, pp. 1520-1528, 1999.

[49] Y. Cordier, M. Azize, N. Baron, Z. Bougrioua, S. Chenot, O. Tottereau, J. Massies, and P. Gibart, “Subsurface Fe-doped semi-insulating GaN templates for inhibition of regrowth interface pollution in AlGaN/GaN HEMT structures,” Journal of Crystal Growth, vol. 310, no. 5, pp. 948-954, 2008.

[50] N. C. Chen, C. Y. Tseng, and H. T. Lin, “Effect of annealing on sheet carrier density of AlGaN/GaN HEMT structure,” Journal of Crystal Growth, vol. 311, no. 3, pp. 859-862, 2009.

[51] B. Lu, E. L. Piner, and T. Palacios, “Schottky-drain technology for AlGaN/GaN high-electron mobility transistors,” IEEE Electron Device Lett., vol. 31, no. 4, pp. 302-304, 2010.

[52] B. J. Kim, H . Y. Kim, J. Kim, and S. Jang, “Neutron irradiation on AlGaN/GaN high electron mobility transistors on SiC substrates,” Journal of Crystal Growth, vol. 326, no. 1, pp. 205-207, 2011.

[53] H. C. Chiu, H. C. Wang, C. W. Yang, F. H. Huang, H. L. Kao, and H. K. Lin, “A novel micromachined AlGaN/GaN power HEMT with air-bridged matrix heat redistribution layer design,” IEEE Electron Device Lett., vol. 35, no. 2, pp. 163-165, 2014.

[54] B. Jogai, “Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors,” J. Appl. Phys., vol. 93, no. 3, pp. 1631-1635, 2003.

[55] P. Kordos, J. Bernat, and M. Marso, “Impact of layer structure on performance of unpassivated AlGaN/GaN HEMT,” Microelectronics Journal, vol. 36, no. 3-6, pp. 438-441, 2005.

[56] H. K. Lin, F. H. Huang, and H. L. Yu, “DC and RF characterization of AlGaN/GaN HEMTs with different gate recess depths,” Solid-State Electronics., vol. 54, no. 5, pp. 582-585, 2010.

[57] S. Vitanov, V. Palankovski, S. Murad, and T. Rodle, “Predictive simulation of AlGaN/GaN HEMTs,” Compound Semiconductor Integrated Circuit Symposium, pp. 1-4, 2007.

[58] D. L. john, F. Allerstam, T. Rodle, and S. K. Murad, “A surface-potential based model for GaN HEMTs in RF power amplifier applications,” IEDM., vol. 10, pp. 8.3.1-8.3.4, 2010.

[59] H. F. Huq, and B. Polash, “Physics-based numerical simulation and device characterizations of AlGaN/GaN HEMTs with temperature effects,” Microelectronics Journal, vol. 42, no. 6, pp. 923-928, 2011.

[60] V. Palankovski, S. Maroldt, R. Quay, S. Murad, T. Rodle, and S. Selberherr, “Physics-based modeling of GaN HEMTs,” IEEE Trans. Electron Devices, vol. 59, no. 3, pp. 685-693, 2012.

[61] A. Goswami, R. J. Trew, and G. L. Bilbro, “Physics based modeling of gate leakage current due to traps in AlGaN/GaN HFETs,” Solid-State Electronics, vol. 80, pp. 23-27, 2013.

[62] W. Fua, Y. Xua, B. Yana, B. Zhangb, and R. Xu, “Numerical simulation of local doped barrier layer AlGaN/GaN HEMTs,” Superlattices and Microstructures, vol. 60, pp. 443-452, 2013.

[63] B. Padmanabhan, D. Vasileska, and S. M. Goodnick, “Current degradation due to electromechanical coupling in GaN HEMT's,” Microelectronics Journal, vol. 44, pp. 592-597, 2013.

[64] Y. Zhang, M. Sun, Z. Liu , D. Piedra, H. S. Lee, F. Gao ; T. Fujishima, and T. Palacios, “Electrothermal simulation and thermal performance study of GaN vertical and lateral power transistors,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2224-2030, 2013.

[65] D. Godwinraj, H. Pardeshi, S. K. Pati, N. Mohankumar, and C. K. Sarkar “Polarization based charge density drain current and small-signal model for nano-scale AlInGaN/AlN/GaN HEMT devices,” Superlattices and Microstructures, vol. 54, pp. 188-203, 2013.

[66] Z. Wang, B. Zhang, W. Chen, and Z. Li, “A closed-form charge control model for the threshold voltage of depletion- and enhancement-mode AlGaN/GaN devices,” IEEE Trans. Electron Devices, vol. 60, no. 5, pp. 1607-1612, 2013.

[67] N. Okamoto, K. Hoshinoa, N. Hara, M. Takikawa, and Y. Arakawa, “MOCVD-grown InGaN-channel HEMT structures with electron mobility of over 1000 cm2/Vs,” Journal of Crystal Growth, vol. 272, no. 1-4, pp. 278-284, 2004.

[68] R. L. Wang, Y. K. Su, and K. Y. Chen, “Influence of InGaN channel thickness on electrical characteristics of AlGaN/InGaN/GaN HFETs,” IEEE Electron Device Lett., vol. 42, no. 12, pp. 718-719, 2006.

[69] J. Liu, Y. Zhou, J. Zhu, Y. Cai, K. M. Lau, and K. J. Chen, “DC and RF characteristics of AlGaN/GaN/InGaN/GaN double-heterojunction HEMTs,” IEEE Trans. Electron Devices, vol. 54, no. 1, pp. 2-10, 2007.

[70] J. Liu, Y. Zhou, J. Zhu, K. M. Lau, and K. J. Chen, “AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement,” IEEE Electron Device Lett., vol. 27, no. 1, pp. 10-12, 2006.

[71] T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “AlGaN/GaN high electron mobility transistors with InGaN back-barriers,” IEEE Electron Device Lett., vol. 27, no. 1, pp. 13-15, 2006.

[72] O. Kekekci, S. B. Lisesivdin, S. Ozcelik, and E. Ozbay, “Numerical optimization of In-mole fractions and layer thicknesses in AlxGa1−xN/AlN/GaN high electron mobility transistors with InGaN back barriers,” Physica B: Condensed Matter, vol. 406, no. 8, pp. 1513-1518, 2011.

[73] J. Li, K. B. Nam, K. H. Kim, J. Y. Lin, and H. X. Jiang, “Growth and optical properties of InxAlyGa1-x-yN quaternary alloys,” Appl. Phys. Lett., vol. 78, no. 1, pp. 61-63, 2001.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔