(3.238.240.197) 您好!臺灣時間:2021/04/12 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏孝安
研究生(外文):Siao-an Wei
論文名稱:車載延遲容忍網路中轉向預測型路由協定之研究
論文名稱(外文):A Study of Turning Prediction Routing Protocol for Vehicular Delay Tolerant Networks
指導教授:趙志峯
指導教授(外文):Chih-Feng Chao
口試委員:趙志峯
口試委員(外文):Chih-Feng Chao
口試日期:2014-07-17
學位類別:碩士
校院名稱:國立屏東商業技術學院
系所名稱:資訊工程系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:54
中文關鍵詞:路由協定車載延遲容忍網路緩衝區
外文關鍵詞:BufferRouting ProtocolVDTN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
車載延遲容忍網路 ( Vehicular Delay Tolerant Network,VDTN) 的環境中,車輛擁有移動性高的特性,造成連線不穩定,並且路由協定的封包複製數量過多而造成封包氾濫的情況下,緩衝區就會容易滿載 (overflow),緩衝區無法儲存的封包會被丟棄,被丟棄的封包可能是到達率較高的封包,上述情況會使封包到達率降低,所以VDTN中路由協定面臨挑戰。

本論文提出一個應用於VDTN的轉向預測型路由協定(TPRP),針對在路口鄰近車輛做轉向預測,使得封包可以確定是在向目的車移動,進而提升封包到達率。因為在路口中車輛行徑方向往往必須決定封包是否正確的往目的車移動,如果沒有往目的車方向移動,會造成封包與目的車距離增加,封包延遲率以及到達率降低,所以我們針對路口鄰近車輛做轉向預測,我們提出的路由協定中,當來源車攜帶著封包即將抵達路口,會先算出封包至目的車的最短路徑,然後選擇相鄰車輛中與此封包最短路徑方向相同的車輛,做為傳送的對象。

我們利用ONE ( Opportunistic Network Environment simulator )作為模擬器來進行效能分析實驗,結果顯示我們提出的路由協定在環境中有較好的封包到達率,以及很低的開銷,與不同的路由機制比較也能有較好的效能。
In Vehicular Delay Tolerant Network (VDTN) environment, the vehicle has a character of high mobility that causes the unstable network. Also the routing protocol excessively packet copy causes buffer overflow easily, therefore, the packet cannot be saved which will be discarded in the buffer that the packet arrival rate probably higher than the others. The above situation will reduce the packet delivery rate, so it is the challenge to design routing protocol in VDTN.
This thesis proposes a Turning Prediction Routing Protocol (TPRP) in VDTN. TPRP judges source which carries the packet forward to the destination by predictable vector of vehicle in the neighborhood of intersection to prove the packet delivery ratio. The predictable vector of the vehicle in the neighborhood of the intersection that decides whether the packet forward to the destination accurately. If the packet has been forwarded incorrectly to the destination that will increase the distance between the packet and the destination, additionally, latency will also reduce the delivery ratio. Therefore, from our routing protocol, we have calculated the shortest path between the packet and the destination when the source which carries the packet arrived in the intersection. We have chosen the vehicle to transfer the packet that the vector of the vehicle is similar to the shortest path.
Opportunistic Network Environment simulator (ONE) had been used for analyzing performance of the TPRP. The results are shown that the routing protocol we proposed has lower the cost, better performance in delivery ratio, and low overhead in the simulation environment with other routing protocol.
目錄
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VII
第一章緒論 1
1.1 研究背景 1
1.2 研究動機 5
1.3 研究目的 6
1.4 論文架構 6
第二章 相關研究 7
2.1 車載延遲容忍網路 7
2.2 車載延遲容忍網路的路由介紹 7
2.2-1 路由機制 7
2.2-2 路由協定 13
2.3車載延遲容忍網路的緩衝區空間管理介紹 18
2.3-1丟棄機制 18
2.3-2傳送機制 20
2.4方向性路由特性分析 21
第三章 轉向預測型路由協定(TPRP) 24
3.1路由環境說明 24
3.2緩衝區的設定 28
3.3 路由機制 30
3.3-1 TPRP機制 33
3.4演算法 35
第四章 模擬與效能評估 36
4.1模擬工具 36
4.2模擬環境設定 38
4.3 實驗項目 43
4.3-1結果分析 44
第五章 結論與展望 49
參考文獻 51
[1] H. Hartenstein and K. P. Laberteaux, “A tutorial survey on vehicular ad hoc networks,” IEEE Communications Magazine, vol. 46, no. 6, pp. 164-171, Jun. 2008.
[2] Y. Wang and F. Li, “Vehicular Ad Hoc Networks, in Guide to Wireless Ad Hoc Networks,” Computer Communications and Networks, Springer, London, pp. 503-525, 2009.
[3] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,” in Proc. Of ACM SIGCOMM Conf., pp. 27-34, Aug. 2003.
[4] ZebraNet, http://www.princeton.edu/~mrm/zebranet.html.
[5] IPNSIG, http://www.ipnsig.org/.
[6] Pentland A, Fletcher R, and Hasson A, “DakNet:Rethinking connectivity in developing nations,” Computer, 37(1), pp. 78−83, 2004.
[7] D. Mohney, “Soaring Condor Relieves Headaches,” Mobile Radio Technology , June 2004. Also at http://mrtmag.com/mag/radio_soaring_condor_relieves.
[8] Haggle, http://haggleproject.org/.
[9] S. K. Tseng, B. J. Kang, K. C. Lin, and T. H. Su, “An Introduction to IEEE 1609 for Wireless Access in Vehicular Environments,” ICL Technical Journal, vol. 130, pp. 130-135, 2009.
[10] J. Blum, A. Eskandarian, and L. Hoffmman, “Challenges of inter vehicle ad hoc networks,” IEEE Trans. Intelligent Transportations Systems, vol. 5, iss. 4, pp. 347-351, Dec. 2004.
[11] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,” in Proc. of ACM SIGCOMM Conf., pp. 27-34, Aug. 2003.
[12] S. Jain, K. Fall, and R. Patra, “Routing in a Delay Tolerant Network,” In Proc. of the ACM SIGCOMM, pp. 145-158, 2004.
[13] E. Spaho, L. Barolli, G. Mino, F. Xhafa, and V. Kolici, “VANET Simulators: A Survey on Mobility and Routing Protocols,” in Proc. of the International Conference on Broadband, Wireless Computing, Communication and Applications, pp. 1-10, Dec. 2011.
[14] H. J. Lim, and T. M. Chung, “A survey on privacy problems and solutions for VANET based on network model,” in Proc. of the 11th international conference on Algorithms and architectures for parallel processing, vol. 2, pp. 74-88, 2011.
[15] S. C. Lo, M. H. Chiang, J. H. Liou, and J. S. Gao, “Routing and Buffering Strategies in Delay-Tolerant Networks: Survey and Evaluation,” in Proc. the International Conference on Parallel Processing Workshops, pp. 91-100, Sept. 2011.
[16] M. Liu, Y. Yang, and Z. Qin, "A survey of routing protocols and simulations in delay-tolerant networks," in Proc. of the 6th international conference on Wireless algorithms, systems, and applications, pp. 243-253, 2011.
[17] E. P. C. Jones, L. Li, and P. A. S. Ward, “Practical routing in delay-tolerant networks,” in Proc. ACM SIGCOMM workshop on Delay-tolerant networking, pp. 237-243, Aug. 2005.
[18] A. Vahdat, D. Becker, “Epidemic Routing for Partially-Connected Ad Hoc Networks,” Duke University, Department of Computer Science, April 2000.
[19] T. Spyropoulos, K. Psounis, C. Raghavendra, “Spray and Wait: An Efficient Routing Scheme for Intermittently Connected Mobile Networks,” in Proc. of the ACM SIGCOMM workshop on Delay-tolerant networking, 2005.
[20] T. Spyropoulos, K. Psounis, C. Raghavendra, “Spray and Focus: Efficient Mobility-Assisted Routing for Heterogeneous and Correlated Mobility,” in Proc. of the IEEE Pervasive Computing and Communications Workshops, March 2007.
[21] A. Lindgren, A. Doria, O. Schelen, “Probabilistic Routing in Intermittently Connected Networks,” ACM SIGMOBILE Mobile Computing and Communications Review, 2003.
[22] J. Burgess, B. Gallagher, D. Jensen, B. N. Levine, “MaxProp: Routing for Vehicle-Based Disruption-Tolerant Networks,” in Proc. of the IEEE International Conference on Computer Communications, pp. 1-11, April 2006.
[23] H. Y. Huang, P. E. Luo, M. Li, D. Li, X. Li, W. Shu, M. Y. Wu, Performance Evaluation of SUVnet With Real-Time Traffic Data,” IEEE Transactions On Vehicular Technology, pp.3381-3396, November 2007.
[24] H. Kang and D. Kim, “Vector routing for delay tolerant networks,” in Proc. IEEE VTC Conf., pp. 1-5, Sep. 2008.
[25] Hyunwoo Kang and Dongkyun Kim, “HVR: History-based Vector Routing for Delay Tolerant Networks,” IEEE ICCCN 2009.
[26] L.Yin, H.Lu, Y. Cao, “Similarity Degree-based Mobile Pattern Aware Routing in DTNs*,” Chinese Journal of Electronics, January 2010.
[27] R. Sulma, A. Qaisar, M. Soperi Mohd Zahid, A. A.Hanan, “E-DROP: An Effective Drop Buffer Management Policy for DTN Routing Protocols,” International Journal of Computer Applications, January 2011.
[28] A. Lindgren and K. S. Phanse, “Evaluation of queuing policies and forwarding strategies for routing in intermittently connected networks,” in Proc. of IEEE COMSWARE, January 2006.
[29] TheOpportunisticNetworkEnvironmentsimularot, http://www.netlab.tkk.fi/tutkimus/dtn/theone/
[30] OpenStreetMap, http://www.openstreetmap.org/
[31] OpenStreetMap to wkt conversion-osm2wkt, http://www.tm.kit.edu/~mayer/osm2wkt/
[32] OpenJUMP Geographic Information System, http://www.openjump.org/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔