跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 07:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韋霓
研究生(外文):Wei-ni Chen
論文名稱:泥漿進樣結合流動注入化學蒸氣生成技術感應耦合電漿質譜儀於乳液及唇膏樣品中鍺、砷、鎘、銻、汞、鉍及鉛之應用
論文名稱(外文):Determination of Ge、As、Cd、Sb、Hg、Bi and Pb in cosmetics using FIA-CVG-ICP-MS with slurry sample
指導教授:江旭禎江旭禎引用關係
指導教授(外文):Shiuh-jen Jiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:119
中文關鍵詞:唇膏化學蒸氣生成法同位素稀釋法感應耦合電漿質譜儀乳液
外文關鍵詞:Isotope dilutionICP-MSCVGLipsticksCreams
相關次數:
  • 被引用被引用:0
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
化學蒸氣生成法最早在1973年由Braman等人所發展出的樣品輸入技術,其利用分析物於酸性環境下與NaBH4試劑反應形成氫化物,氫化物之熔點與沸點相較於原分析物下降許多,因此產物會以氣態的形式存在於混合液中,再藉由氣液分離裝置將氫化物從液體分離並送入偵測器。由於氫化物為氣態,相對於傳統氣動式霧化器可得到較高之樣品傳輸效率(Sample transport efficiency),因此可提升靈敏度、降低偵測極限,另外氣液分離裝置(Gas-liquid separator,GLS)能將分析物與基質分離,而降低光譜及非光譜性干擾。
相較於其他文獻報導化粧品樣品需要經強酸或強鹼消化再進行分析,本研究利用泥漿進樣配合流動注入與氣液分離裝置注入樣品,可以簡化樣品前處理的繁雜程序,避免樣品前處理過程中導入汙染物及降低樣品損失等優點。
研究分為兩部份,第一部份利用泥漿進樣結合流動注入化學蒸氣生成技術感應耦合電漿質譜儀分析乳液中鍺、砷、鎘、銻、汞及鉍的含量。研究中添加界面活性劑Triton X-100製備乳液泥漿溶液,並以此作為樣品基質探討蒸氣生成變數,包含NaBH4濃度、樣品及載體溶液中Thiourea、L-cysteine及Co(II)的濃度,尋求蒸氣生成及感應耦合電漿質譜儀最適化操作條件。將分析條件最適化後,在乳液基質中添加適量的元素標準溶液,分析物訊號波峰面積及高度相對標準偏差(RSD)均在5%以內(n = 5)。實驗中比較水溶液校正法(External calibration)及標準添加法(Standard addition)之斜率,證明基質會影響蒸氣生成表現,故選擇以標準添加法及同位素稀釋法進行定量,以標準添加法估計得到鍺、砷、鎘、銻、汞及鉍之方法偵測極限可小至0.02、0.03、0.20、0.02、0.35、0.03 ng g-1。元素之物種形態會影響化學蒸氣生成效果,可能導致定量上的偏差,因此比較As(III)、As(V)及Sb(III)、Sb(V)在經過泥漿製備法後化學蒸氣生成效率,結果證實泥漿樣品之預還原效果已達完全。最後以探討完之最適化條件分析標準參考樣品GBW09305(Cream)霜類化粧品及三種不同品牌之市售乳液來證實方法準確性及適用性。
第二部分研究利用泥漿進樣結合流動注入化學蒸氣生成技術感應耦合電漿質譜儀分析唇膏中鉛的含量。相較於傳統應用於化學蒸氣生成之元素,鉛之氫化物(PbH4,Plumbane)生成不易,需要合適的氧化劑及螯合劑搭配才能有效的形成。Pb(IV)之氫化物生成效率較Pb(II)高,樣品中之Pb(II)需被轉化為Pb(IV)才能有效形成氫化物。文獻指出亞鐵氰化鉀(K3Fe(CN)6)藉由與NaBH4作用形成較具反應性的中間產物(hydroborane),進而促進PbH4之生成效率。實驗中將以泥漿方式進樣並尋求系統最適化,包含酸及增益試劑選擇、K3Fe(CN)6濃度、HNO3濃度、NaBH4濃度及反應試劑流速等。探討完最適化條件,以標準添加法估計所得鉛偵測極限可小至0.11 ng g-1。鉛之訊號再現性以相對標準偏差(RSD)表示皆小於3%,顯示本研究方法具有高重複性;而同位素比的RSD均在1.2%以內,證實同位素比的測量有很好的訊號重複性,因此同位素稀釋法是很理想的定量方式。最後,以所開發之分析方法偵測標準參考樣品GBW09305及七種不同種類之市售唇膏中鉛含量來驗證方法準確性及適用性。


關鍵詞:化學蒸氣生成法、感應耦合電漿質譜儀、同位素稀釋法、乳液、唇膏
Abstract
Chemical vapor generation(CVG)is a powerful sample introduction technique, which is used for inductively coupled plasma mass spectrometry(ICP-MS)to improve sensitivity and to eliminate matrix effect. Analytes can be transformed to hydride or elemental vapor through chemical reaction. The gaseous analytes have higher transport efficiency than pneumatic nebulizer, therefore it has the better sensitivity and lower detection limit. CVG system can separate analytes from matrix by a gas-liquid separator, so it can avoid spectral and non-spectral interferences caused by matrix elements.
First research is using slurry sampling as pretreatment, and to determine Ge, As, Cd, Sb, Hg and Bi in creams by FIA-CVG-ICP-MS. The cream slurry containing 2% m/v cream, 2% m/v Thiourea, 0.05% m/v L-cysteine, 0.5 μg L-1 Co(II) and 1.2% v/v HCl. The quantifications have been carried out using standard addition and isotope dilution methods. The influences of vapor generation conditions on the analyte signals were reported. This method has been applied for the determination of Ge, As, Cd, Sb, Hg and Bi in cream samples obtained from the local markets. The analytical results of cream cosmetics certified reference material(GBW09305)determined by standard addition and isotope dilution methods were in a good agreement with ETV-ICP-MS and those of digested samples analysed by pneumatic nebulization ICP-MS. Under the optimum operating conditions, the detection limit obtained from the standard addition curve was in the range of 0.02-0.45 ng g-1 for Ge, As, Cd, Sb, Hg and Bi, respectively, in the cream samples.
Second research is using slurry sampling as pretreatment, and to determine Pb in lipsticks by FIA-CVG-ICP-MS. The lipstick slurry containing 1% m/v cream, 0.5 m/v K3Fe(CN)6 and 0.5% v/v HNO3. The quantifications have been carried out using standard addition and isotope dilution methods. The influences of vapor generation conditions on the Pb signal were reported. This method has been applied for the determination of Pb in lipstick samples obtained from the local markets. The analytical results of cream cosmetics certified reference material(GBW09305)determined by standard addition and isotope dilution methods were in a good agreement with those of digested samples analysed by pneumatic nebulization ICP-MS. The method provided good reproducibility and the best detection limit was found to be 0.11 ng g-1 in the cream sample.
Key word: CVG, ICP-MS, Isotope dilution, Creams, Lipsticks
目錄
謝誌+i
摘要+ii
目錄+v
圖表目錄+viii

第一章 泥漿進樣結合流動注入化學蒸氣生成技術感應耦合電漿質譜儀於乳液中鍺、砷、鎘、銻、汞及鉍之應用
壹、 前言
一、 研究背景+1
二、 金屬的毒性及對人體的危害+4
三、 流動注入法+5
四、 化學蒸氣生成法+6
五、 同位素稀釋法+7
貳、 實驗部分
一、 儀器裝置+8
二、 試劑藥品及溶液配製+11
參、 實驗過程
一、 化學蒸氣生成系統各參數之探討+13
二、 ICP-MS系統操作條件之探討+17
三、 樣品稀釋倍數探討+18
四、 分析訊號之再現性+18
五、 光譜干擾探討+19
六、 校正曲線及偵測極限估計+19
七、 樣品的前處理與分析+21
肆、 結果與討論
一、 化學蒸氣生成系統各參數之探討+24
二、 ICP-MS系統操作條件之探討+32
三、 樣品稀釋倍數探討+36
四、 分析訊號之再現性+36
五、 光譜干擾探討+41
六、 校正曲線及偵測極限估計+41
七、 樣品的前處理與分析+44
伍、 結論+54
陸、 參考文獻+55

第二章 泥漿進樣結合流動注入化學蒸氣生成技術感應耦合電漿質譜儀於唇膏中鉛之應用
壹、 前言
一、 研究背景+61
二、 金屬的毒性及對人體的危害+63
貳、 實驗部份
一、 儀器裝置+64
二、 試劑藥品及溶液配製+64
參、 實驗過程
一、 化學蒸氣生成系統各參數之探討+67
二、 ICP-MS系統操作條件之探討+69
三、 樣品稀釋倍數探討+70
四、 分析訊號之再現性+70
五、 校正曲線及偵測極限估計+70
六、 樣品的前處理與分析+71
肆、 結果與討論
一、 化學蒸氣生成系統各參數之探討+74
二、 ICP-MS系統操作條件之探討+86
三、 樣品稀釋倍數探討+86
四、 分析訊號之再現性+90
五、 校正曲線及偵測極限估計+90
六、 真實樣品的分析+95
伍、 結論+102
陸、 參考文獻+103
圖表目錄
第一章 泥漿進樣結合流動注入化學蒸氣生成技術感應耦合電漿質譜儀於乳液中鍺、砷、鎘、銻、汞及鉍之應用
圖1-1 流動注入化學蒸氣生成系統裝置圖+10
圖1-2 乳液泥漿樣品製備流程+22
圖1-3 樣品及載體溶液中Thiourea濃度對鍺、砷、鎘、銻、汞及鉍(a)波峰面積及(b)波峰高度S/B的影響+26
圖1-4 樣品及載體溶液中L-cysteine濃度對鍺、砷、鎘、銻、汞及鉍(a)波峰面積及(b)波峰高度S/B的影響+28
圖1-5 樣品及載體溶液中Co(II)濃度對鍺、砷、鎘、銻、汞及鉍(a)波峰面積及(b)波峰高度S/B的影響+29
圖1-6 樣品及載體溶液中HCl濃度對鍺、砷、鎘、銻、汞及鉍(a)(b)波峰面積及(c)波峰高度S/B的影響+30
圖1-7 NaBH4濃度對鍺、砷、鎘、銻、汞及鉍(a)(b)波峰面積及(c)波峰高度S/B的影響+31
圖1-8 試劑流速對鍺、砷、鎘、銻、汞及鉍(a)波峰面積及(b)波峰高度S/B的影響+33
圖1-9 混合線圈體積對鍺、砷、鎘、銻、汞及鉍(a)波峰面積及(b)波峰高度S/B的影響+34
圖1-10 電漿功率對鍺、砷、鎘、銻、汞及鉍波峰面積的影響+35
圖1-11 載流氣體流速對鍺、砷、鎘、銻、汞及鉍波峰面積的影響+37
圖1-12 比較(a) Cross-flow nebulizer with scott-type spray chamber氣動式霧化器以及(b) Flow injection chemical vapor generation 流動式注入化學蒸氣生成系統,觀察基質中濃度為100 μg L-1 Cl、Co、Mo及W對濃度為1 μg L-1 Ge、As、Cd及Hg之干擾程度+42
圖1-13 比較泥漿製備法對不同物種之預還原效果(a)經過泥漿處理之As(III)及As(V)之訊號大小(b)經過泥漿處理之Sb(III)及Sb(V)之訊號大小+47
圖1-14 標準參考樣品GBW09305之蒸氣生成訊號圖+50
圖1-15 同位素稀釋法定量標準參考樣品GBW09305之蒸氣生成訊號圖+51
圖1-16 市售乳液樣品(3)之分析元素蒸氣生成訊號圖+53

表1-1 可形成氫化物元素的ㄧ些物理特性+3
表1-2 元素鍺、鎘、銻及汞同位素之豐度+14
表1-3 乳液模擬基質製備方法+15
表1-4 鍺、砷、鎘及汞各偵測同位素之自然界含量與質量干擾+20
表1-5 微波消化的設定條件+23
表1-6 不同增益試劑對鍺、砷、鎘、銻、汞及鉍訊號之比較+25
表1-7乳液基質中濃度對分析物訊號的比較+38
表1-8 鍺、砷、鎘、銻、汞及鉍分析訊號之再現性+39
表1-9 FI-CVG-ICP-MS最適化條件+40
表1-10 水溶液校正法與標準添加法之比較+43
表1-11 Standard mode及DRC mode偵測極限之比較+45
表1-12 標準添加法估計之偵測極限+46
表1-13 霜類化粧品標準參考樣品中鍺、砷、鎘、銻、汞及鉍之定量結果+49
表1-14 以標準添加法及同位素稀釋法對市售乳液樣品進行定量+52

第二章 泥漿進樣結合流動注入化學蒸氣生成技術感應耦合電漿質譜儀於唇膏中鉛之應用
圖2-1 唇膏泥漿樣品製備流程+72
圖2-2 樣品及載體溶液中HNO3濃度對鉛(a)波峰面積(b)波峰高度及(c)波峰高度S/B的影響+78
圖2-3 樣品及載體溶液中K3Fe(CN)6濃度對鉛(a)波峰面積(b)波峰高度及(c)波峰高度 S/B的影響+79
圖2-4 NaBH4濃度對鉛(a)波峰面積(b)波峰高度及(c)波峰高度S/B的影響+80
圖2-5 試劑流速對鉛(a)波峰面積(b)波峰高度及(c)波峰高度S/B的影響+81
圖2-6 混合線圈體積對鉛(a)波峰面積(b)波峰高度及(c)波峰高度S/B的影響+83
圖2-7 氣液分離裝置液面高度對分析物訊號的影響+84
圖2-8 氣液分離裝置中tubing擺放位置對分析物訊號的影響+85
圖2-9 電漿功率對鉛(a)波峰面積(b)波峰高度及(c)波峰高度S/B及背景之波峰高度訊號(Red, dash line)的影響+87
圖2-10 載流氣體流速對鉛(a)波峰面積(b)波峰高度及(c)波峰高度S/B及背景之波峰高度訊號(Red, dash line)的影響+88
圖2-11 GBW09305之分析元素蒸氣生成訊號圖+97
圖2-12 同位素稀釋法定量標準參考樣品GBW09305之蒸氣生成訊號圖+98
圖2-13 市售唇膏(3)之分析元素蒸氣生成訊號圖+100
圖2-14 同位素稀釋法定量市售唇膏(3)之蒸氣生成訊號圖+101

表2-1 元素鉛同位素之豐度+66
表2-2 微波消化的設定條件+73
表2-3 不同有機酸對鉛訊號之比較+75
表2-4 不同酸及增益試劑對鉛蒸氣生成訊號之影響+76
表2-5 唇膏基質濃度對鉛訊號的影響+89
表2-6 鉛分析訊號之再現性+91
表2-7 FI-CVG-ICP-MS最適化條件+92
表2-8 水溶液校正法與標準添加法之比較+93
表2-9 標準添加法估計之偵測極限+94
表2-10 霜類化粧品標準參考樣品中鉛之定量結果+96
表2-11 FI-CVG-IC-PMS測定市售唇膏樣品中鉛之定量結果+99
第一章泥漿進樣結合流動注入化學蒸氣生成技術感應耦合電漿質譜儀於乳液中鍺、砷、鎘、銻、汞及鉍之應用

1.Ying, G.; Rui, L.; Lu, Y., Application of chemical vapor generation in ICP-MS. Chin. Sci. Bull., 2013, 58, 1980-1991
2.Yan, X. P.; Ni, Z. M., Vapor generation atomic absorption spectrometry. Anal. Chim. Acta., 1994, 291, 89-105
3.Chen, Z. C.; Jiang, S. J., Determination of Ge, As and Se in nickel-based alloys by flow injection hydride generation dynamic reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2006, 21, 566-573
4.Wu, P.; He, L. A.; Zheng, C. B. et al., Applications of chemical vapor generation in non-tetrahydroborate media to analytical atomic spectrometry. J. Anal. At. Spectrom., 2010, 25, 1217-1246
5.Madrid, Y.; Camara, C., Lead hydride generation atomic absorption spectrometry: an alternative to electrothermal atomic absorption spectrometry. Analyst, 1994, 119, 1647-1658
6.Infante, H. G.; Sanchez, M. L. F.; Sanzmedel, A., Cadmium-bound species in human urine using high-performance liquid chromatography-vesicular hydride generation -inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 1999, 14, 1343-1348
7.Cacho, J.; Beltran, I.; Nerin, C., Generation of a volatile cadmium species in an organic medium. J. Anal. At. Spectrom., 1989, 4, 661-663
8.Welz, B.; Sucmanova, M., L-Cysteine as a reducing and releasing agent for the determination of antimony and arsenic using flow injection hydride generation atomic absorption spectrometry-Part 1. Optimization of the analytical parameters. Analyst, 1993, 118, 1417-1423
9.Kumar, A. R.; Riyazuddin, P., Chemical interferences in hydride generation atomic spectrometry. TrAC, Trends Anal. Chem., 2010, 29, 166-176
10.Schmidt, C.; Bahadir, M., Determination of arsenic in the presence of high copper concentrations using flow-injection analysis-hydride atomic absorption spectrometry. Fresenius J. Anal. Chem., 1993, 346, 683-685
11.Benzo, Z.; Marcano, E.; Gomez, C.; Quintal, M.; Salas, J.; Maldonado, D.; Murillo, M.; Romero, J.J., A Lab‐Built Hydride Generation Nebulizer for AAS. Instrum. Sci. Technol., 2007, 35, 125-140
12.Brindle, I.D.; Le, X.-N., Reduction of interferences in the determination of germanium by hydride generation and atomic emission spectrometry. Anal. Chim. Acta., 1990, 229, 239-247
13.Soares, A. R.; Nascentes, C. C., Development of a simple method for the determination of lead in lipstick using alkaline solubilization and graphite furnace atomic absorption spectrometry. Talanta, 2013, 105, 272-277
14.Chauhan, A. S.; Bhadauria, R.; Singh, A. K.; Lodhi, S. S.; Chaturvedi, D. K.; Tomar, V. S., Determination of Lead and Cadmium in cosmetic products. J. Chem. Pharm. Res., 2010, 2, 92-97
15.Bocca, B.; Forte, G.; Petrucci, F.; Cristaudo, A., Levels of nickel and other potentially allergenic metals in Ni-tested commercial body creams. J. Pharm. Biomed. Anal., 2007, 44, 1197-1202
16.Jia, X.; Han, Y.; Wei, C.; Duan, T.; Chen, H., Speciation of mercury in liquid cosmetic samples by ionic liquid based dispersive liquid–liquid microextraction combined with high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2011, 26, 1380-1386
17.Santos, E. J.; Herrmann, A. B.; Frescura, V. A. L.; Curtius, A., Simultaneous determination of As, Hg, Sb, Se and Sn in sediments by slurry sampling axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation with internal standardization. J. Anal. At. Spectrom., 2005, 20, 538-543
18.Segade, S. R.; Tyson, J. F., Evaluation of two flow injection systems for mercury speciation analysis in fish tissue samples by slurry sampling cold vapor atomic absorption spectrometry. J. Anal. At. Spectrom., 2003, 18, 268-273
19.Santos, E. J.; Herrmann, A. B.; Frescura, V. L. A.; Welz, B.; Curtius, A. J., Determination of lead in sediments and sewage sludge by on-line hydride-generation axial-view inductively-coupled plasma optical-emission spectrometry using slurry sampling. Anal. Biochem., 2007, 388, 863-868
20.Hepp, N. M.; Mindak, W. R.; Cheng, J., Determination of total lead in lipstick: development and validation of a microwave-assisted digestion, inductively coupled plasma-mass spectrometric method. J. Cosmet. Sci., 2009, 60, 405-414.
21.Volpe, M. G.; Nazzaro, M.; Coppola, R.; Rapuano, F.; Aquino, R. P., Determination and assessments of selected heavy metals in eye shadow cosmetics from China, Italy, and USA. Microchem. J., 2012, 101, 65-69.
22.Yokoi, K.; Kawaai, T.; Konomi, A.; Uchida, Y., Dermal absorption of inorganic germanium in rats. Regul. Toxicol. Pharm., 2008, 52, 169-173
23.Guy, R.; Hostynek, J.J.; Hinz, R.S.; Lorence, C.R., Metals and the Skin: Topical Effects and Systemic Absorption, third ed. CRC Press, New York., 1999
24.Nico, P.S.; Ruby, M.V.; Lowney, Y.W.; Holm, S.E., Chemical speciation and bioaccessibility of arsenic and chromium in chromated copper arsenate-treated wood and soils. Environ. Sci. Technol., 2006, 40, 402-408.
25.Bocca, .B.; Pino, A.; Alimonti, A.; Forte, G., Toxic metals contained in cosmetics: A status report. Regul. Toxicol. Pharm., 2014, 68, 447-467
26.Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Gronenberg, D.A., The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol., 2006, 1, 1-6.
27.Lavilla, I.; Cabaleiro, N.; Costas, M.; Calle, I.; Bendicho, C., Ultrasoundassisted emulsification of cosmetic samples prior to elemental analysis by different atomic spectrometric techniques. Talanta, 2009, 80, 109-116.
28.Lansdown, A.B.; Sampson, B., Dermal toxicity and percutaneous absorption of cadmium in rats and mice. Lab. Anim. Sci., 1996, 46, 549-554.
29.van der Krogt, P., Triumphal Chariot of Antimony. A monograph on Antimony Basilius Valentinus, 2003, 1604, 1565-1624
30.Roper, S.C.; Stupart, L., The in vitro percutaneous absorption of antimony trioxide through human skin. Charles River Laboratories Report. 2006 , No. 25985
31.ATSDR, 1992. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Antimony. U.S. Department of Health and Human Services, Public Health Service, Atlanta, USA.
32.Gao, Y.; Shi, Z.; Zong, Q.; Wu, P.; Su, J.; Liu, R., Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry afterdissolution with formic acid. Anal. Chim. Acta., 2014, 812, 6-11
33.Ruzicka, J.; Hansen, E. H., “Flow Injection Analysis”, 2nd ed., Wiley, New York, 1998
34.Pohl, P., Recent advances in chemical vapor generation via reaction with sodium tetrahydroborate. TrAC, Trends Anal. Chem., 2004, 23, 21-27
35.D’Ulivo, A., Chemical vapor generation by tetrahydroborate(III) and other borane complexes in aqueous media. A critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochim. Acta Part B, 2004, 59, 793-825
36.Silva, M. M. D.; Jesus, A. D.; Zmozinski, A. V.; Vieira, M. A.; Ribeiro, A. S., Determination of mercury in naphtha and petroleum condensate by photochemical vapor generation atomic absorption spectrometry. Microchem. J., 2013, 110, 227-232
37.Liao, P. H.; Jiang, S.J.; Sahayam, A. C., Cloud point extraction combined with flow injection vapor generation inductively coupled plasma mass spectrometry for preconcentration and determination of Ultra trace Cd, Sb and Hg in water samples. J. Anal. At. Spectrom., 2012, 27, 1518-1524
38.Hwang, T. J.; Jiang, S. J., Determination of copper, cadmium and lead in biological samples by isotope dilution inductively coupled plasma mass spectrometry after on-line pre-treatment by anodic stripping voltammetry. J. Anal. At. Spectrom., 1996, 11, 353-357
39.黃覃君,”流動注入冷蒸氣生成裝置結合同位素稀釋感應耦合電漿質譜儀分析法定量真實樣品中微量鎘之研究”,中山大學碩士論文,民國八十八年七月。
40.高雄醫學大學,香粧品系,陳彥伶老師
41.Matusiewicz, H.; Mikołajczak,M., Determination of As, Sb, Se, Sn and Hg in beer and wort by direct hydride generation sample introduction-Electrothermal AAS. J. Anal. At. Spectrom., 2001, 16, 652-657.
42.Matusiewicz, H.; Slachci´nski, M., Simultaneous determination of hydride forming elements (As, Sb, Se, Sn) and Hg in sonicate slurries of biological and environmental reference materials by hydride generation microwave induced plasma optical emission spectrometry (SSHG-MIP-OES). Microchem. J., 2006, 82 78-85.
43.Mierzwa, J.; Dobrowolski, R., Slurry sampling hydride generation atomic absorption spectrometry for the determination of extractable/soluble As in sediment samples. Spectrochim. Acta B, 1998, 53, 117-122.
44.Matusiewicz, H.; Kopras, M.; Sturgeon, R. E., Determination of cadmium in environmental samples by hydride generation with in situ concentration and atomic absorption detection. Analyst, 1997, 122,331-336
45.Chuachuad, W.; Tyson, J. F., Determination of cadmium by electrothermal atomic absorption spectrometry with flow injection chemical vapor generation from a tetrahydroborate form anion-exchanger and in-atomizer trapping. Can. J. Anal. Sci. Spectrosc., 2004, 49, 362-373
46.Matusiewicz, H.; Mroczkowska, M., Hydride generation from slurry samples after ultrasonication and ozonation for the direct determination of trace amounts of As(III) and total inorganic arsenic by their in situ trapping followed by graphite
furnace atomic absorption spectrometry. J. Anal. At. Spectrom., 2003, 18, 751-761
47.Feng, Y. L.; Narasaki, H.; Tian, L. C.; Chen, H. Y., Speciation of Sb(III) and Sb(V) by Hydride Generation High-Resolution ICP-MS Combined With Prereduction of Sb(V) With L-cysteine. At. Spectrosc., 2000, 21, 30-36
48.Guo, X.; Guo, .X., Studies on the reaction between cadmium and potassium tetrahydroborate in aqueous solution and its application in atomic fluorescence spectrometry. Anal. Chim. Acta., 1995, 310, 377-385
49.Le, X. C.; Gullen, W. R.; Riemer, K. J., Effect of cysteine on the speciation of arsenic by using hydride generation atomic absorption spectrometry. Anal. Chim. Acta., 1994, 285, 277-285
50.Welz, B.; Sucmanova, M., L-Cysteine as a reducing and releasing agent for the determination of antimony and arsenic using flow injection hydride generation atomic absorption spectrometry-Part 2. Interference studies and the analysis of copper and steel. Analyst, 1993, 118, 1425-1432
51.Souza, S.; Campiglia, A. D.; Jr, F. B., A simple method for methylmercury, inorganic mercury and ethylmercury determination in plasma samples by high performance liquid chromatography–cold-vapor-inductively coupled plasma mass spectrometry. Anal. Chim. Acta., 2013, 761, 11-17
52.Li, J.; Lu, F.; Umemura, T. Tsunoda, K., Determination of lead by hydride generation inductively coupled plasma mass spectrometry. Anal. Chim. Acta., 2000, 419, 65-72
53.Frank, J.; Krachler, M.; Shotyk, W., Direct determination of arsenic in acid digests of plant and peat samples using HG-AAS and ICP-SF-MS. Anal. Chim. Acta., 2005, 530, 307-316
54.Suo, R.; Sun, H. W., Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry. Anal. Chim. Acta., 2004, 509, 71-76
55.Raber, G.; Raml, R.; Goessler, W.; Francesconi, K. A., Quantitative speciation of arsenic compounds when using organic solvent gradients in HPLC-ICPMS. J. Anal. At. Spectrom., 2010, 25, 570-576
56.Larsen, E. H.; Sturup, S., Carbon-enhanced inductively-coupled plasma-mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. J. Anal. At. Spectrom., 1994, 9, 1099-1105

第二章泥漿進樣結合流動注入化學蒸氣生成技術感應耦合電漿質譜儀於唇膏中鉛之應用


1.Wang, C. C.; Masi, A.N.; Fernnadez, L., On-line micellar-enhanced spectrofluorimetric determination of rhodamine dye in cosmetics. Talanta, 2008, 75, 135-140
2.Soares, A. R.; Nascentes, C. C., Development of a simple method for the determination of lead in lipstick using alkaline solubilization and graphite furnace atomic absorption spectrometry. Talanta, 2013, 105, 272-277
3.Campaign for Safe Cosmetics, A Poison Kiss:The Problem of Lead in Lipstick, 2007.
4.Bocca, B.; Pino, A.; Alimonti, A.; Forte, G., Toxic metals contained in cosmetics: A status report. Regul. Toxicol. Pharm., 2014, 68, 447-467
5.Ullah, H.; Noreen, S.; Fozia; Rehman, A.; Waseem, A.; Zubair, S.; Adnan, M.; Ahmad, I., Comparative study of heavy metals content in cosmetic products of different countries marketed in Khyber Pakhtunkhwa, Pakistan. Arab. J. of Chem., 2013
6.Besecker, K.D.; Rhoades, C.B.; Jones, B.T., A simple closed-vessel nitric acid digestion method for cosmetic samples. At. Spectrosc., 1998, 19, 48-54
7.Hepp, N. M.; N.; Mindak, W. R.; CHENG, J., Determination of total lead in lipstick: Development and validation of a microwave-assisted digestion, inductively coupled plasma–mass spectrometric method. J. Cosmet. Sci., 2009, 60, 405-414
8.Feng, X.; Wu, S.; Wharmby, A.; Wittmeier, A., Microwave digestion of plant and grain standard reference materials in nitric and hydrofluoric acids for multi-element determination by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 1999, 14, 939-946
9.Gondala, M.A.; Seddigi, Z.S.; Nasrc, M.M.; Gondal, B., Spectroscopic detection of health hazardous contaminants in lipstick using Laser Induced Breakdown Spectroscopy. J. Hazard. Mater., 2010, 175, 726-732
10.Gunduz, S.; Akman, S., Investigation of lead contents in lipsticks by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry. Regul. Toxicol. Pharm., 2013, 65, 34-37
11.Santos, E. J.; Herrmann, A. B.; Frescura, V. L. A.; Curtius, A. J., Simultaneous determination of As, Hg, Sb, Se and Sn in sediments by slurry sampling axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation with internal standardization. J. Anal. At. Spectrom., 2005, 20, 538-543
12.Santos, E. J.; Herrmann, A. B.; Frescura, V. L. A.; Curtius, A. J., Evaluation of slurry preparation procedures for the simultaneous determination of Hg and Se in biological samples by axial view ICPOES using on-line chemical vapor generation. Anal. Chim. Acta., 2005, 548, 166-173
13.Ying, G.; Rui, L.; Lu, Y., Application of chemical vapor generation in ICP-MS. Chin. Sci. Bull., 2013, 58, 1980-1991
14.Hwang, T. J.; Jiang, S. J., Determination of cadmium by flow injection isotope dilution inductively coupled plasma mass spectrometry with vapour generation sample introduction. J. Anal. At. Spectrom., 1997, 12, 579-584
15.Chen, Y. L.; Jiang, S. J., Determination of tellurium in a nickel-based alloy by flow injection vapor generation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2000, 15, 1578-1582
16.Wei, M. T.; Jiang, S. J., Determination of thallium in sea-water by flow injection hydride generation isotope dilution inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 1999, 14, 1177-1181
17.Long, S. E.; Kelly, W. R., Determination of mercury in coal by isotope dilution cold-vapor generation inductively coupled plasma mass spectrometry. Anal. Chem., 2002, 74, 1477-1483
18.Chang, Y. T.; Jiang, S. J., Determination of As, Cd and Hg in emulsified vegetable oil by flow injection chemical vapour generation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2008, 23, 140-144
19.Gao, Y.; Shi, Z.; Zong, Q.; Wu, P.; Su, J.; Liu, R., Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry afterdissolution with formic acid. Anal. Chim. Acta., 2014, 812, 6-11
20.Larese, F. F.; Boeniger, M.; Maina, G.; Adami, G.; Spinelli, P.; Damian, A., Skin absorption of inorganic lead (PbO) and the effect of skin cleansers. J. Occup. Environ. Med., 2006, 48, 692-699.
21.Gulson, B.L.; Mahaffey, K.R.; Jameson, C.W.; Mizon, K.J.; Korsch, M.J.; Cameron, M.A.; Eisman, J.A., Mobilization of lead from the skeleton during the postnatal period is larger than during pregnancy. J. Lab. Clin. Med., 1998, 131, 324-329
22.Vahter, M.; Berglund, M.; Akesson, A., Toxic metals and the menopause. J. Brit. Menopause. Soc.. 2004, 10, 60-64
23.Ettinger, A.S.; Hu, H.; Hernandez-Avila, M., Dietary calcium supplementation to lower blood lead levels in pregnancy and lactation. J. Nutr. Biochem., 2007, 18, 172-178.
24.Papanikolaou, N.C.; Hatzidaki, E.G.; Belivanis, S.; Tzanakakis, G.N.; Tsatsakis, A.M., Lead toxicity update. A brief review. Med. Sci. Monit., 2005, 11, 329-336
25.陳鳳儀,”流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀分析乳化油品中鉛及汞之應用”,中山大學碩士論文,民國九十七年六月。
26.Santos, E. J.; Herrmann, A. B.; Frescura, V. L. A.; Welz, B.; Curtius, A. J., Determination of lead in sediments and sewage sludge by on-line hydride-generation axial-view inductively-coupled plasma optical-emission spectrometry using slurry sampling. Anal. Biochem., 2007, 388, 863-868
27.Cabrera, C.; Madrid, Y.; Camara, C., Determination of lead in wine, other beverages and fruit slurries by flow injection hydride generation atomic absorption spectrometry with on-line microwave digestion. J. Anal. At. Spectrom.,1994, 9, 1423-1426
28.D’Ulivo, A., Chemical vapor generation by tetrahydroborate(III) and other borane complexes in aqueous media. A critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochim. Acta Part B., 2004, 59, 793-825
29.D''Ulivo, A.; Onor, M.; Spiniello, R.; Pitzalis, E., Mechanisms involved in chemical vapor generation by aqueous tetrahydroborate(III) derivatization Role of hexacyanoferrate(III) in plumbane generation. Spectrochim. Acta Part B., 2008, 63, 835-842
30.Al-Saleh, I.; Al-Enazi, S.; Shinwari, N., Assessment of lead in cosmetic products. Regul. Toxicol. Pharm., 2009, 54, 105-113
31.Yilmaza, V.; Arslana, Z.; Rosea, L. K., Determination of lead by hydride generation inductively coupled plasma mass spectrometry (HG-ICP-MS): On-line generation of plumbane using potassium hexacyanomanganate(III). Anal. Chim. Acta., 2013, 761, 18- 26
32.Rock, P.A.; Powell, R.E., Free energies of some heavy-metal ferrocyanides. Inorg. Chem., 1964, 3, 1593-1597.
33.Piccinini, P.; Piecha, M.; Fortaner Torrent, S., European survey on the content of lead in lip products. J. Pharm. Biomed. Anal., 2013, 76, 225-233.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀以直接分析燃油與穀物樣品中鉛、鎘、汞及砷之應用
2. 流動注入化學蒸氣技術結合感應耦合電漿質譜儀於茶葉中鈷、鎳及指甲油樣品中砷、鎘、銻、汞及鉛之分析應用
3. 液相層析結合感應耦合電漿質譜儀於環境水樣與食米樣品中砷物種分析及酒品中含鉻化合物之分析應用
4. 一、 泥漿進樣結合流動注入化學蒸氣生成感應耦合電漿質譜儀於粉末食品中鎘、銻及汞之分析二、 液相層析結合化學蒸氣生成感應耦合電漿質譜儀於水樣中砷物種之分析
5. 一、霧點萃取法結合化學蒸氣生成感應耦合電漿質譜儀於水樣中微量鎘、銻及汞分析之應用 二、化學蒸氣生成技術及薄膜去溶劑系統結合感應耦合電漿質譜儀於酒中微量元素分析之應用
6. 氫化物生成技術結合感應偶合電漿質譜儀於碲元素分析及銻物種分析之應用
7. 利用電熱式揮發配合感應偶合電漿質譜法(ETV-ICP-MS)進行生物和環境樣
8. 一、液相層析結合感應耦合電漿質譜儀於菸草中微量毒性元素分析及鉈物種分析之應用二、流動式注入化學蒸氣技術結合感應耦合電漿質譜儀於眼影中微量元素分析之應用
9. 液相層析結合化學蒸氣生成感應偶合電漿質譜儀於海藻及食用米中無機砷物種之分析應用
10. 流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀於土壤中銅、鋅、鎘及中草藥中砷、汞、鉛分析之應用
11. 以感應耦合電漿質譜法進行半導體材料中微量元素之固體直測分析及濃度縱深分佈之研究
12. 電熱式揮發法感應偶合電漿質譜儀在環境及生物體樣品中微量元素之分析應用
 
無相關期刊