跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/26 04:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊君寶
研究生(外文):Jyun-bao Yang
論文名稱:銦鎵氧化物電阻式記憶體之機制研究
論文名稱(外文):The resistive switching mechanisms of the InxGayO1-x-y based resistance random access memory
指導教授:朱安國
指導教授(外文):An-Kuo Chu
學位類別:博士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:166
中文關鍵詞:氧化銦鎵銦鎵鋅氧化物薄膜電晶體非揮發性記憶體氧化鎵電阻式記憶體氧化銦
外文關鍵詞:resistive random access memorygallium oxideindium oxideamorphous indium-gallium-zinc-oxide thin film transistorsindium gallium oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著科技的發展與進步,電子產品中非揮發性記憶體的需求增加,為了增加記憶體的容量與密度,元件尺寸必須持續的微縮。然而,當元件持續微縮,元件會面臨到可靠度與物理上的極限。因此,有許多新型態的非揮發性記憶體被開發出來。其中,電阻式記憶體具有結構上的優勢及優越的操作性能,可望能取代傳統浮動閘極記憶體,成為次世代最具有發展潛力的非揮發性記憶體。在本研究中,銦鎵氧化物為主要的研究材料,分別針對不同氧化物材料的電阻式元件結構特性與操作機制加以分析討論。前三部分的實驗將分別針對氧化鎵、氧化銦、氧化銦鎵作為電阻式性記憶體之研究,第四部分是研究銦鎵鋅氧化物薄膜電晶體的電阻切換特性與機制。
第一部分,我們製作氧化鎵薄膜為主要電阻切換層的電阻式記憶體元件,發現其電阻切換特性與氧原子的移動有關,並且藉由薄膜製程中改變電阻切換層的氧濃度,觀察到電阻切換特性的差異並計算出反應層之間的變化。第二部分,製作氧化銦薄膜為主要電阻切換層之元件,發現由於傳導路徑之截面積的改變,造成元件在一開始電阻切換時呈現不穩定的狀態,經操作多次後達到最後的穩定態,並且由於氧化銦材料本身的特性,發現元件在操作過程中會在薄膜內形成內部串聯電阻,使得元件有自我限流的特性,此自我限流的特性在改變氧化銦薄膜的氧濃度後更加明顯,並且可以有效的降低整體的操作電流,藉由電性與材料分析,我們觀察到在不同氧含量下,內部串聯電阻的阻值變化進而影響到整體電流。
第三部分,我們利用氧化銦鎵作為主要電阻切換層,發現此元件藉由不同的操作方式,可以同時擁有兩種不同的電阻切換方式,並利用材料與電性分析得知,兩者切換方式是由不同的機制所主導。最後,我們利用特殊的操作方式,使得銦鎵鋅氧化物薄膜電晶體同時具有電晶體與電阻式記憶體之電阻切換特性。
Recently, with the advancement of portable electronic products, nonvolatile memories have attracted much attention. In order to increase the capacity and density of nonvolatile memory, the device must be continuously miniaturized. However, with their scaling-down, conventional nonvolatile floating gate memory has reached it physical limits. Hence, the new generations of nonvolatile memories are developed to solve this problem. Resistive random access memory (RRAM) is considered to replace conventional flash memory become a great potential candidates for nest generation nonvolatile memories due to its advantageous properties of simple structure and excellent operation property. We will investigate the resistive switching mechanisms of the InxGayO1-x-y based RRAM and amorphous indium-gallium-zine- oxide thin film transistors (a-IGZO TFTs).
In the first part, we investigated the gallium oxide based RRAM with different oxygen concentrations since the resistance switching characteristics is related to oxygen ions migration. Moreover, the different resistance switching property is observed and the effective thickness can be estimated. In the second part, we proposed indium oxide based RRAM devices and investigate the different resistance switching behavior between transient mode and steady mode due to the cross-section area of the conduction path. The indium oxide based RRAM device exhibit a self-compliance behavior in the material itself due to the variable series resistor. Moreover, we investigated indium oxide with oxygen concentrations since the resistivity and electrical property of indium film related to oxygen concentration. The lower self-compliance current can be attributed to larger variable series resistor and the operation current can be reduced effectively from the additional oxygen ions.
In the third part, we design the indium gallium oxide based RRAM and observed the two kinds of resistance switching behavior by different operation conditions. The different resistance switching mechanism proportions are demonstrated the oxygen vacancies and metallic filaments by electric property and material analysis. Finally, the a-IGZO TFTs can be operated either as transistors or RRAM device. These resistance switching characteristics are dominated by oxygen vacancies and the formation of an oxygen-rich layer.
Contents
Acknowledgements ii
Abstract (Chinese).. v
Abstract (English).. vii
Contents...... x
Figure &; Table Captions xiii
Chapter 1 Introduction 1
1.1 Overview of Nonvolatile Memory Device 1
1.2 Resistance switching memory 3
1.3 Organization of the Dissertation 3
Chapter 2 Basic Principle of Resistive Random Access Memory 7
2.1 Introduction of Memory Device 7
2.2 Advanced Non-volatile Memories 8
2.2.1 FeRAM (Ferroelectric Random Access Memory) 8
2.2.2 MRAM (Magnetic Random Access Memory) 8
2.2.3 PCRAM (Phase Change Random Access Memory) 9
2.2.4 RRAM (Resistance Random Access Memory) 10
2.3 The Materials of RRAM 11
2.3.1 Perovskite 11
2.3.2 Transition Metal Oxides 12
2.3.3 Organic Materials 13
2.4 The resistive switching mechanism of RRAM 13
2.4.1 Filamentary model 14
2.4.1.1 Joule Heating Effect 14
2.4.1.2 Redox Reaction by Cation Migration 15
2.4.1.3 Redox Reaction by Anion Migration 16
2.4.2 Charge-Trap in Small Domain 16
2.4.3 Schottky Barrier Model 17
2.5 The Mechanism of Current Conduction 17
2.5.1 Ohmic Conduction Mechanism 18
2.5.2 Schottky Emission Mechanism 18
2.5.3 Poole-Frenkel Emission Mechanism 19
2.5.4 Space Charge Limited Current Mechanism 20
2.5.5 Tunneling Conduction Mechanism 20
Chapter 3 Resistance switching characteristics of gallium oxide for nonvolatile memory application 31
3.1 Abstract 31
3.2 Introduction 31
3.3 Experiment 32
3.4 Results and Discussions 33
3.5 Conclusion 38
Chapter 4 Investigation on the resistive switching characteristics of indium oxide 48
4.1 Low power consumption resistance random access memory with Pt/InOx/TiN structure 48
4.1.1 Abstract 48
4.1.2 Introduction 48
4.1.3 Experiment 49
4.1.4 Results and Discussion 50
4.1.5 Conclusion 54
4.2 Influence of oxygen concentration on self-compliance RRAM in indium oxide film 55
4.2.1Abstract 55
4.2.2 Introduction 55
4.2.3 Experiment 56
4.2.4 Results and Discussion 57
4.2.5 Conclusion 62
Chapter 5 Role of InGaOx resistive switching characteristics on the performances of resistance random access memory of Pt/IGO/TiN device 75
5.1 Abstract 75
5.2 Introduction 76
5.3 Experiment 77
5.4 Results and Discussions 78
5.5 Conclusion 83
Chapter 6 Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors 94
6.1 Abstract 94
6.2 Introduction 94
6.3 Experiment 96
6.4 Results and Discussions 97
6.5 Conclusion 101
Chapter 7 Conclusion 110
References.. 110
Publication List... 110
Chapter 1
[1.1] S. Aritome, “Advanced flash memory technology and trends for file storage application,” IEDM Tech. Dig., 763 (2000).
[1.2] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., 46, 1288 (1967).
[1.3] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, D. Buchanan, “Volatile and non-volatile memories in silicon with nano crystal storage,” IEDM Tech. Dig., 521 (1995).
[1.4] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-An overview,” Proc. IEEE, 85, 1248 (1997).
[1.5] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, p. 504 (1981).
[1.6] J. D. Blauwe, “Nanocrystal nonvolatile memory devices,” IEEE Transaction on Nanotechnology, 1, 72 (2002).
[1.7] “International Technology Roadmap for Semiconductors,” 2009 update at http://www.itrs.net/Links/2009ITRS/Home2009.htm
[1.8] S. Sakai and R. Ilangovan, “Metal Ferroelectric Insulator Semiconductor Memory FET With Long Retentionand High Endurance,” IEEE Electron Device Lett., 25, 369 (2004).
[1.9] T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A.Y. Du, and C. H. Tung, “Phase change random access memory cell with super lattice-like structure,” Appl. Phys. Lett., 88, 122114 (2006).
[1.10] A. Ney and J.S. Harris Jr., “Reconfigurable magnetologic computing using the spin flop switching of a magnetic random access memory cell,” Appl. Phys. Lett., 86, 013502 (2005).
[1.11] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, F. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, M. J. Tsai, and C. Lien, “HfOxBipolar Resistive Memory With Robust Endurance Using AlCu as Buffer Electrode,” IEEE Electron Device Lett., 30, 703 (2009).
[1.12] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Materials, 6, 833 (2007).
[1.13] C. Y. Liu, P. H. Wu, A. Wang, W.Y. Jang, H. C. Young, K. Y. Chiu, and T. T. Yuen, “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film,” IEEE Electron Device Lett., 26, 351 (2005).
[1.14] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett., 80, 2997 (2002).
[1.15] H.Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M. J. Tsai, and C. Lien “Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory,” Appl. Phys. Lett., 92, 142911 (2008).

Chapter 2
[2.1] G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, “Status and outlook of emerging non-volatile memory technologies,” IEDM Tech. Dig., 567 (2004).
[2.2] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,“先進記憶體簡介,國研科技創刊號,2004年
[2.3] C. H. Sie, PhD dissertation, “Memory Devices Using Bistable Resistivity in Amorphous As-Te-Ge Films,” Iowa State University, Proquest/UMI publication,69-20670 (1969).
[2.4] 葉林秀、李佳謀、徐明豐、吳德和,“磁阻式隨機存取記憶體技術的發展-現在與未來”,物理雙月刊廿六期四卷,2004年
[2.5] A Sawa, “Resistive switching in transition metal oxides”, Materials today, 11, 28, (2008).
[2.6] http://theeestory.com/topics/4141
[2.7] C. Y. Liu, P. H. Wu, A. Wang, W.Y. Jang, H. C. Young, K. Y. Chiu, and T. T. Yuen, “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film,” IEEE Electron Device Lett., 26, 351 (2005).
[2.8] C. C. Lin, B. C. Tu, Chao-Cheng Lin, Chen-Hsi Lin, “Resistive switching mechanisms of V-doped SrZrO3 memory film,” IEEE Electron Device Lett., 27, 725 (2006).
[2.9] D. Hsu, J. G. Lin, and W. F. Wu, “Resistive switching effects in Nd0.7Ca0.3MnO3 manganite,” Journal of Magnetism and Magnetic Materials, 310, 978 (2007).
[2.10] B. P. Andreasson, M. Janousch, U. Staub, G. I. Meijer, B. Delley, “Resistive switching in Cr-doped SrTiO3: An X-ray absorption spectroscopy study,” Materials Science and Engineering B, 144, 60, (2007).
[2.11] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett., 77, 139 (2000).
[2.12] C. C. Lin, J. S. Yu, C. Y. Lin, C. H. Lin, and T. Y. Tseng, “Stable resistive switching behaviors of sputter deposited V-doped SrZrO3 thin films,” Thin solid films, 516, 402 (2007).
[2.13] S. Seo, M. J. Lee D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films”, Appl. Phys. Lett., 85, 5655 (2004).
[2.14] B. Gao, S. Yu, N. Xu, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, and Y. Y. Wang, “Oxide-Based RRAM Switching Mechanism: A New Ion-Transport-Recombination Model,” IEDM Tech. Dig., 1 (2008).
[2.15] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett., 80, 2997 (2002).
[2.16] Y. Sato, K. Kinoshita, M. Aoki, and Y. Sugiyama “Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model,” Appl. Phys. Lett., 90, 033503 (2007).
[2.17] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “Fully Room Temperature Fabricated Nonvolatile Resistive Memory for Ultrafast and High Density Memory Application,” Nano Lett., 9, 1636 (2009)
[2.18] M. Fujimoto, H. Koyam, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Aways, “TiO2 anatase nanolayer on TiN thin film exhibiting high speed bipolar resistive switching,” Appl. Phys. Lett., 89, 223509 (2006).
[2.19] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, “Nonvolatile memory with Multilevel Switching: A Basic Model,” Phys. Rev. Lett., 92, 178302 (2004).
[2.20] 施敏、伍國珏,“半導體元件物理學”,2008年

Chapter 3
[3.1] T. C. Chang, F. Y. Jian, S. C. Chen, Y. T. Tsai, “Developments in nanocrystal memory,” Mater. Today, 14, 608 (2011).
[3.2] F. M. Yang, T. C. Chang, P. T. Liu, U. S. Chen, P. H. Yeh, Y. C. Tu, J. Y. Lin, S. M. Sze, and J. C. Lou, “Nickel nanocrystals with HfO2 blocking oxide for nonvolatile memory application,” Appl. Phys. Lett., 90, 222104 (2007).
[3.3] F. M. Yang, T. C. Chang, P. T. Liu, P. H. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze, and J. C. Lou, “Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide,” Appl. Phys. Lett., 90, 132102 (2007).
[3.4] W. R. Chen, T. C. Chang, P. T. Liu, J. L. Yeh, C. H. Tu, J. C. Lou, C. F. Yeh, and C. Y. Chang, “Nonvolatile memory characteristics of nickel-silicon-nitride nanocrystal,” Appl. Phys. Lett., 91, 082103 (2007).
[3.5] T. C. Chen, T. C. Chang, F. Y. Jian, S. C. Chen, C. S. Lin, M. H. Lee, J. S. Chen, C. C. Shih, “Improvement of Memory State Misidentification Caused by Trap-Assisted GIDL Current in a SONOS-TFT Memory Device,” IEEE Electron Device Lett., 30, 834 (2009).
[3.6] G. Asano, H. Morioka, and H. Funakubo, “Fatigue-free RuO2/Pb(Zr, Ti)O3 /RuO2 capacitor prepared by metalorganic chemical vapor deposition at 395°C,” Appl. Phys. Lett., 83, 5506 (2003).
[3.7] A. Ney and J. S. Harris, Jr., “Reconfigurable magnetologic computing using the spin flop switching of a magnetic random access memory cell,” Appl. Phys. Lett., 86, 013502 (2004).
[3.8] T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, and X. S. Miao, A. Y. Du and C. H. Tung, “Phase change random access memory cell with superlattice like structure,” Appl. Phys. Lett., 88, 122114 (2006).
[3.9] Y. T. Tsai, T. C. Chang, W. L. Huang, C. W. Huang, Y. E. Syu, S. C. Chen, S. M. Sze, M. J. Tsai, and T. Y. Tseng, “Investigation for coexistence of dual resistive switching characteristics in DyMn2O5 memory devices,” Appl. Phys. Lett., 99, 092106 (2011).
[3.10] L. W. Feng, C. Y. Chang, Y. F. Chang, W. R. Chen, S. Y. Wang, P. W. Chiang, and T. C. Chang, “A study of resistive switching effects on a thin FeOx transition layer produced at the oxide/iron interface of TiN/SiO2/Fe-contented electrode structures,” Appl. Phys. Lett., 96, 052111 (2010).
[3.11] S. C. Chen, T. C. Chang, S. Y. Chen, C. W. Chen, S. C. Chen, S. M. Sze, M. J. Tsai, M. J. Kao, and F. S. Yeh, “Bipolar resistive switching of chromium oxide for resistive random access memory,” Solid-State electron., 62, 40 (2011).
[3.12] H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin F. Chen, M. J. Tsai, and C. Lien, “Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory,” Appl. Phys. Lett., 92, 142911 (2008).
[3.13] P. C. Yang, T. C. Chang, S. C. Chen, Y. S. Lin, H. C. Huang, and D. S. Gan, “Influence of Bias-Induced Copper Diffusion on the Resistive Switching Characteristics of a SiON Thin Film,” Electrochem. Solid-State Lett., 14, H93 (2011).
[3.14] K. C. Chang, T. M. Tsai, T. C. Chang, Y. E. Syu, C. C. Wang, S. L. Chuang, C. H. Li, D. S. Gan, and S. M. Sze, “Reducing operation current of Ni doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment,” Appl. Phys. Lett., 99, 263501(2011).
[3.15] K. M. Kim, B. J. Choi, B. W. Koo, S. Choi, D. S. Jeong, and C. S. Hwang, “Resistive Switching in Pt/Al2O3/TiO2/Ru Stacked Structures,” Electrochem. Solid-State Lett., 9, G34 (2006).
[3.16] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett., 80, 2997 (2002).
[3.17] Y. E. Syu, T. C. Chang, T. M. Tsai, Y. C. Hung, K. C. Chang, M. J. Tsai, M. J. Kao, S. M. Sze, “Redox Reaction Switching Mechanism in RRAM Device With Structure,” IEEE Electron Device Lett., 32, 545 (2011).
[3.18] L. W. Feng, Y. F. Chang, C. Y. Chang, T. C. Chang, S. Y. Wang, P. W. Chiang, C. C. Lin, S. C. Chen and S. C. Chen, “Reproducible resistance switching of a relatively thin FeOx layer produced by oxidizing the surface of a FePt electrode in a metal oxide metal structure,” Thin Solid Films, 519,1536 (2010).
[3.19] H. Shima, F. Takano, H. Muramatsu, H. Akinaga, I. H. Inoue, H. Takagi, “Control of resistance switching voltages in rectifying Pt/TiOx/Pt trilayer,” Appl. Phys. Lett., 92, 043510 (2008).
[3.20] K. M. Kim, B. J. Choi, and C. S. Hwang, “Localized switching mechanism in resistive switching of atomic-layer deposited TiO2 thin films,” Appl. Phys. Lett., 90, 242906 (2007).
[3.21] K. Jung, J. Choi, Y. Kim, H. Lm, S. Seo, R. Jung, D. C. Kim, J. S. Kim, B. H. Park, J. P. Hong, “Resistance switching characteristics in Li-doped NiO,” J. Appl. Phys., 103, 034504 (2008).
[3.22] M. Liu, Z. Abid, W. Wang, X. He, Q. Liu, and W. Guan, “Multilevel resistive switching with ionic and metallic filaments,” Appl. Phys. Lett., 94, 233106 (2009).
[3.23] X. Gao, Y. Xia, J. Ji, H. Xu, Y. Sum H. Li, C. Yang, H. Guo, J. Yin, and Z. Liu, “Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films,” Appl. Phys. Lett., 97, 193501 (2010).
[3.24] J. Massies and J. P. Contour, “Substrate chemical etching prior to molecularbeam epitaxy: An xray photoelectron spectroscopy study of GaAs {001} surfaces etched by the H2SO4-H2O2-H2O solution,” J. Appl. Phys., 58, 806 (1985).

Chapter 4
[4.1] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, D. Buchanan, “Volatile and Non-Volatile Memories in Silicon with Nano-Crystal Storage,” in: IEEE International Electron Devices Meeting, p.521 (1995).
[4.2] T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, “Developments in nanocrystal memory,” Mater. Today 14, 608 (2011).
[4.3] J. Lu, T. C. Chang, Y. T. Chen, J. J. Huang, P. C. Yang, S. C. Chen, H. C. Huang, D. S. Gan, N. J. Ho, Y. Shi, and A. K. Chu, “Enhanced retention characteristic of NiSi2/SiNx compound nanocrystal memory,” Appl. Phys. Lett., 96, 262107 (2010).
[4.4] K. M. Kim, B. J. Choi, S. J. Song, G. H. Kim, and C. S. Hwang, “Filamentary Resistive Switching Localized at Cathode Interface in NiO Thin Films,” J. Electrochem. Soc., 156, G213 (2009).
[4.5] J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, S. M. Sze, A. K. Chu, and M. J. Tsai, “Influence of Oxygen Concentration on Resistance Switching Characteristics of Gallium Oxide,” IEEE Electron Device Lett., 33, 1387 (2012).
[4.6] Y. E. Syu, T. C. Chang, T. M. Tsai, Y. C. Hung, K. C. Chang, M. J. Tsai, M. J. Kao, and S. M. Sze, “Redox Reaction Switching Mechanism in RRAM Device With Pt/CoSiOX/TiN Structure,” IEEE Electron Device Lett., 32, 545 (2011).
[4.7] H. Shima, F. Takano, H. Muramatsu, H. Akinaga, I. H. Inoue, and H. Takagi, “Control of resistance switching voltages in rectifying Pt/TiOx/Pt trilayer,” Appl. Phys. Lett., 92, 043510 (2008).
[4.8] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett., 80, 2997 (2002).
[4.9] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, “Hysteretic current voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3,” Appl. Phys. Lett., 86, 012107 (2005).
[4.10] Y. T. Chen, T. C. Chang, J. J. Huang, H. C. Tseng, P. C. Yang, A. K. Chu, J. B. Yang, H. C. Huang, D. S. Gan, M. J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett., 102, 043508 (2013).
[4.11] L. W. Feng, C. Y. Chang, Y. F. Chang, W. R. Chen, S. Y. Wang, P. W. Chiang, and T. C. Chang, “A study of resistive switching effects on a thin FeOx transition layer produced at the oxide/iron interface of TiN/SiO2/Fe-contented electrode structures,” Appl. Phys. Lett., 96, 052111(2010).
[4.12] L. W. Feng, C. Y. Chang, Y. F. Chang, T. C. Chang, S. Y. Wang, S. C. Chen, C. C. Lin, S. C. Chen, and P. W. Chiang, “Improvement of resistance switching characteristics in a thin FeOx transition layer of TiN/SiO2/FeOx/FePt structure by rapid annealing,” Appl. Phys. Lett., 96, 222108 (2010).
[4.13] A. Sawa, “Resistive switching in transition metal oxides Mater,” Today, 116, 28 (2008).
[4.14] H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M. J. Tsai, and C. Lien, “Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory,” Appl. Phys. Lett., 92, 142911 (2008).
[4.15] G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “High Mobility a-IGO Films Produced at Room Temperature and Their Application in TFTs,” Electrochem. Solid-State Lett., 13, H20 (2010).
[4.16] T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, “Behaviors of InGaZnO thin film transistor under illuminated positive gate bias stress,” Appl. Phys. Lett., 97, 112104 (2010).
[4.17] C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, “Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor,” Appl. Phys. Lett., 96, 242105 (2010).
[4.18] M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, “Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films,” Appl. Phys. Lett., 96, 262110 (2010).
[4.19] C. B. Lee, D. S. Lee, A. Benayad, S. R. Lee, M. Chang, M. J. Lee, J. Hur, Y. B. Kim, C. J. Kim, and U. I. “Chung, Highly Uniform Switching of Tantalum Embedded Amorphous Oxide Using Self-Compliance Bipolar Resistive Switching,” IEEE Electron Device Lett., 32, 399 (2011)
[4.20] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, third ed. Wiley-Interscience (2006).
[4.21] H. C. Tseng, T. C. Chang. J. J. Huang, P. C. Yang, Y. T. Chen, F. Y. Jian, S. M. Sze, and M. J. Tsai, “Investigating the improvement of resistive switching trends after post forming negative bias stress treatment,” Appl. Phys. Lett., 99, 132104 (2011).
[4.22] W. Banerjee, S. Maikap, C. S. Lai, Y. Y. Chen, T. C. Tien, H. Y. Lee, W. S. Chen, F. T. Chen, M. J. Kao, M. J. Tsai, and J. R. Yang, “Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots,” Nanoscale Research Lett., 7, 194 (2012).
[4.23] C. Y. Lin, C. Y. Wu. C. Y. Wu, C. Hu, and T. Y. Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films,” J. Electrochem. Soc., 154, G189 (2007).
[4.24] X. Gao, Y. Xia, J. Ji, H. Xu, Y. Su, H. Li, C. Yang, H. Guo, J. Yin, and Z. Liu, “Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films,” Appl. Phys. Lett., 97, 193501 (2010).
[4.25] A. Campera and G. Iannaccone, “Modelling and simulation of charging and discharging processes in nanocrystal flash memories during program and erase operations,” Solid-State Electron., 49, 1745 (2005).
[4.26] T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, “Developments in nanocrystal memory,” Mater. Today, 14, 608 (2011).
[4.27] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, 116, 28 (2008).
[4.28] Y. E. Syu, T. C. Chang, T. M. Tsai, Y. C. Hung, K. C. Chang, M. J. Tsai, M. J. Kao, and S. M. Sze, “Redox Reaction Switching Mechanism in RRAM Device With Pt/CoSiOX/TiN Structure,” IEEE Electron Device Lett., 32, 545 (2011).
[4.29] M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, “Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films,” Appl. Phys. Lett., 96, 262110 (2011).
[4.30] L. Goux, P. Czarnecki, Y. Y. Chen, L. Pantisano, X. P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D. J. Wouters, and L. Altimime, “Evidences of oxygen mediated resistive-switching mechanism in TiN/HfO2/Pt cells”, Appl. Phys. Lett., 97, 243509 (2010).
[4.31] Y. S. Chen, H. Y. Lee, P. S. Chen, W. S. Chen, K. H. Tsai, P. Y. Gu, T. Y. Wu, C. H. Tsai, S. Z. Rahaman, Y. D. Lin, F. Chen, M. J. Tsai, and T. K. Ku, “Novel defects trapping TaOx/HfPx RRAM with reliable self-compliance, high nonlinearity, and ultra-low current,” IEEE Electron Device Lett., 35, 202 (2014).
[4.32] M. Predanocy, I. Fasaki, M. Wilke, I. Hotovy, I. Kosc, and L. Spiess, “Study of optical and electrical properties of sputtered indium oxide films,” Advanced Semiconductor Devices &; Microsystems (ASDAM), 2010 8th International Conference on. IEEE, 297 (2010).
[4.33] W. Banerjee, S. Maikap, C. S. Lai, Y. Y. Chen, T. C. Tien, H. Y. Lee, W. S. Chen, F. T. Chen, M. J. Kao, M. J. Tsai, and J. R. Yang, “Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots,” Nanoscale Research Lett., 7, 194 (2012).
[4.34] C. B. Lee, D. S. Lee, A. Benayad, S. R. Lee, M. Chang, M. J. Lee, J. Hur, Y. B. Kim, C. J. Kim, and U. I. Chung, “Highly Uniform Switching of Tantalum Embedded Amorphous Oxide Using Self-Compliance Bipolar Resistive Switching,” IEEE Electron Device Lett., 32, 399 (2011).
[4.35] A. Younis, D. Chu, and S. Li, “Tuneable resistive switching characteristics of In2O3 nanorods array via Co doping,” RSC Adv., 3, 13422 (2013).

Chapter 5
[5.1] T. C. Chang, F. Y. Jian, S. C. Chen, Y. T. Tsai, “Developments in nanocrystal memory,” Mater. Today 14, 608 (2011).
[5.2] F. M. Yang, T. C. Chang, P. T. Liu, U. S. Chen, P. H. Yeh, Y. C. Tu, J. Y. Lin, S. M. Sze, and J. C. Lou, “Nickel nanocrystals with HfO2 blocking oxide for nonvolatile memory Application,” Appl. Phys. Lett., 90, 222104 (2007).
[5.3] F. M. Yang, T. C. Chang, P. T. Liu, P. H. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze, and J. C. Lou, “Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide,” Appl. Phys. Lett., 90, 132102 (2007).
[5.4] E. M. Likovich, K. J. Russell, V. Narayanamurti, H. Lu, and A. C. gossard, “Direct injection tunnel spectroscopy of a p-n junction,” Appl. Phys. Lett., 95, 022106 (2009).
[5.5] L. W. Feng, C. Y. Chang, Y. F. Chang, W. R. Chen, S. Y. Wang, P. W. Chiang, and T. C. Chang, “A study of resistive switching effects on a thin FeOx transition layer produced at the oxide/iron interface of TiN/SiO2/Fe-contented electrode structures,” Appl. Phys. Lett., 96, 05211 (2010).
[5.6] M. N. Kozicki, M. Park, and M. Mitkova, “Nanoscale Memory Elements Based on Solid-State Electrolytes,” IEEE Trans, Nanotechnol., 4, 311 (2005).
[5.7] D. Hsu, J. G. Lin, and W. F. Wu, “Resistive switching effects in Nd0.7Ca0.3MnO3 manganite,” J. Magn. Magn. Mater., 310, 978 (2007).
[5.8] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, “Hysteretic current voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3,” Appl. Phys. Lett., 86, 012107 (2005).
[5.9] M. K. Tang, Jae-Wan Park, T. K. Ko, and J. K. Lee, “Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices,” Appl. Phys. Lett., 95, 042105 (2009).
[5.10] L. W. Feng, C. Y. Chang, Y. F. Chang, W. R. Chen, S. Y. Wang, P. W. Chiang, and T. C. Chang, “A study of resistive switching effects on a thin FeOx transition layer produced at the oxide/iron interface of TiN/SiO2/Fe-contented electrode structures,” Appl. Phys. Lett., 96, 052111 (2010).
[5.11] S. C. Chen, T. C. Chang, S. Y. Chen, C. W. Chen, S. C. Chen, S. M. Sze, M. J. Tsai, M. J. Kao, and F. S. Yeh, “Bipolar resistive switching of chromium oxide for resistive random access memory,” Solid-State electron., 62, 40 (2011).
[5.12] H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin F. Chen, M. J. Tsai, and C. Lien, “Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory,” Appl. Phys. Lett., 92, 142911 (2008).
[5.13] P. C. Yang, T. C. Chang, S. C. Chen, Y. S. Lin, H. C. Huang, and D. S. Gan, “Influence of Bias-Induced Copper Diffusion on the Resistive Switching Characteristics of a SiON Thin Film,” Electrochem. Solid-State Lett., 14, H93 (2011).
[5.14] K. C. Chang, T. M. Tsai, T. C. Chang, Y. E. Syu, C. C. Wang, S. L. Chuang, C. H. Li, D. S. Gan, and S. M. Sze, “Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment,” Appl. Phys. Lett., 99, 263501(2011).
[5.15] Y. T. Tsai, T. C. Chang, C. C. Lin, S. C. Chen, C. W. Chen, S. M. Sze, F. S. Yeh, and T. Y. Tseng, “Influence of Nanocrystals on Resistive Switching Characteristic in Binary Metal Oxides Memory Devices,” Electrochem. Solid-State Lett., 14, H135 (2011).
[5.16] L.P. Ma, J.Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett., 80, 2997 (2002).
[5.17] Y. E. Syu, T. C. Chang, T. M. Tsai, Y. C. Hung, K. C. Chang, M. J. Tsai, M. J. Kao, and S. M. Sze, “Redox Reaction Switching Mechanism in RRAM Device With Pt/CoSiOX/TiN Structure,” IEEE Electron Device Lett., 32, 545 (2011).
[5.18] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya, “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching,” Appl. Phys. Lett., 89, 223509 (2006).
[5.19] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, 116, 28 (2008).
[5.20] K. M. Kim, B. J. Choi, and C. S. Hwang, “Localized switching mechanism in resistive switching of atomic-layer deposited TiO2 thin films,” Appl. Phys. Lett., 90, 242906 (2007).
[5.21] R. Waser and M. Anon, “Nanoionics-based resistive switching Memories,” Nat. Mater., 6, 833 (2007).
[5.22] M. Liu, Z. Abid, W. Wang, X. He, Q. Liu, and W. Guan, “Multilevel resistive switching with ionic and metallic filaments,” Appl. Phys. Lett., 94, 233106 (2009).
[5.23] X. Gao, Y. Xia, J. Ji, H. Xu, Y. Sum H. Li, C. Yang, H. Guo, J. Yin, and Z. Liu, “Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films,” Appl. Phys. Lett., 97, 193501 (2010).
[5.24] P. Liska, K. R. Thampi, M. Gratzel, D. Bremaud, D. Rudmann, H. M. Upadhyaya, and A. N. Tiwari, “Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency,” Appl. Phys. Lett., 88, 203103 (2006).
[5.25] G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “High Mobility a-IGO Films Produced at Room Temperature and Their Application in TFTs,” Electrochem. Solid-State Lett., 13, H20 (2010).
[5.26] J. Massies and J. P. Contour, “Substrate chemical etching prior to molecularbeam epitaxy: An xray photoelectron spectroscopy study of GaAs {001} surfaces etched by the H2SO4-H2O2-H2O solution,” J. Appl. Phys., 58, 806 (1985).
[5.27] R. W. Hewitt and N. Winograd, “Oxidation of polycrystalline indium studied by xray photoelectron spectroscopy and static secondary ion mass spectroscopy,” J. Appl. Phys., 51, 2620 (1980).

Chapter 6
[6.1] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids 352, 851 (2006).
[6.2] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martines, “Fully transparent ZnO thin film transistor produced at room temperature,” Adv. Mater (Weinheim Ger) 17, 590 (2005).
[6.3] P. Gorrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, “The influence of visible light on transparent zinc tin oxide thin film transistors,” Appl. Phys. Lett., 91, 193504 (2007).
[6.4] C. T. Tsai, T. C. Chang, S. C. Chen, L. Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, “Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor,” Appl. Phys. Lett., 96, 242105 (2010).
[6.5] T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, “Behaviors of InGaZnO thin film transistor under illuminated positive gate bias Stress,” Appl. Phys. Lett., 97, 112104 (2010).
[6.6] J. B. Kim, C. F. Hernandez, W. J. Potscavage, Jr., X. H. Zhang, and B. Kippelen, “Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition,” Appl. Phys. Lett., 94, 142107 (2009).
[6.7] T. C. Chen, T. C. Chang, T. Y. Hsieh, W. S. Lu, F. Y. Jian, C. T. Tsai, S. Y. Huang, and C. S. Lin, “Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor,” Appl. Phys. Lett., 99, 022104 (2011).
[6.8] D. K. Seo, S. Shin, H. H. Cho, B. H. Kong, D. M. Whang, H. K. Cho, “Drastic improvement of oxide thermoelectric performance using thermal and plasma treatments of the InGaZnO thin films grown by sputtering,” Acta Mater. 59, 6743 (2011).
[6.9] T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, “Developments in nanocrystal memory,” Mater. Today, 14, 608 (2011).
[6.10] Y. E. Syu, T. C. Chang, T. M. Tsai, Y. C. Hung, K. C. Chang, M. J. Tsai, M. J. Kao, and S. M. Sze, “Redox Reaction Switching Mechanism in RRAM Device With Pt/CoSiOX/TiN Structure,” IEEE Electron Device Lett., 32, 545 (2011).
[6.11] H. Y. Lee, P. S. Chen T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M. J. Tsai, and C. Lien, “Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory,” Appl. Phys. Lett., 92, 142911 (2008).
[6.12] C.Y. Lin, C. Y. Wu. C.Y. Wu, C. Hu, and T. Y. Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films,” J. Electrochem. Soc., 154, G189 (2007).
[6.13]Y. T. Chen, T. C. Chang, J. J. Huang, H. C. Tseng, P. C. Yang, A. K. Chu, J. B. Yang, H. C. Huang, D. S. Gan, M. J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett., 102, 043508 (2013).
[6.14] S. K. Kim, B. J. Choi, K. J. Yoon, Y. W. Yoo, and C. S. Hwang, “Control of conducting filaments in TiO2 films by a thin interfacial conducting oxide layer at the cathode,” Appl. Phys. Lett., 102, 082903 (2013).
[6.15] F. Kurnia, C. Liu. C. U. Jung, and B. W. Lee, “The evolution of conducting filaments in forming-free resistive switching Pt/TaOx/Pt structures,” Appl. Phys. Lett., 102, 152902 (2013).
[6.16] M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, “Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films,” Appl. Phys. Lett., 96, 262110 (2010).
[6.17] C. H. Hsu, Y. S. Fan, and P. T. Liu, “Multilevel resistive switching memory with amorphous InGaZnO-based thin Film,” Appl. Phys. Lett., 102, 062905 (2013).
[6.18] J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, S. M. Sez, A. K. Chu, and M. J. Tsai, “Influence of Oxygen Concentration on Resistance Switching Characteristics of Gallium Oxide,” IEEE Electron Device Lett., 33, 1387 (2012).
[6.19] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, 116, 28 (2008).
[6.20] Y. Wang. X. Qian, K. Chen, Z. Fang, W. Li, and J. Xu, “Resistive switching mechanism in silicon highly rich SiOx (x<0.75) films based on silicon dangling bonds percolation model,” Appl. Phys. Lett., 102, 042103 (2013).
[6.21] W. Banerjee, S. Maikap, C. S. Lai, Y. Y. Chen, T. C. Tien, H. Y. Lee, W. S. Chen, F. T. Chen, M. J. Kao, M. J. Tsai, and J. R. Yang, “Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots,” Nanoscale Research Lett., 7, 194 (2012).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top