跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 11:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐宜君
研究生(外文):Yi-Jiun Shiu
論文名稱:新穎含蒽之藍光小分子與高分子材料之合成與元件特性研究
論文名稱(外文):Synthesis and device application of blue-emitting anthracene-based small molecules and polymer
指導教授:陳俐吟陳俐吟引用關係
指導教授(外文):Li-Yin Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:125
中文關鍵詞:白光元件黑體輻射線螢光發光材料雙極性傳輸材料寬頻藍光
外文關鍵詞:bipolar transport materialfluorescence materialbroad bule-emittingwhite OLEDsPlank LocusAnthracene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
近年來有機電激發光二極體議題常被開發研究,欲得到不同光色可藉由許多方式達成,然而最根本的做法是直接由分子結構著手,可藉由設計不同分子結構達成不同光色的需求,也可透過分子的設計或元件結構的改變達到高效率的要求。另外在三原色的材料當中,藍光材料仍有很大的發展空間,雖然磷光材料三重態放光比例非常高,但因本身含有重金屬成分所以在元件的壽命上因電化學特性不穩定的影響而大打折扣。
Anthracene為近年來常廣泛使用之藍色螢光發光材料,除了材料本身是雙極性傳輸材料,且具有很好的熱穩定性及高的量子效率,因此本研究設計出新穎之以Anthracene為主體的衍生物分別合成出小分子及高分子之藍光材料,小分子材料以不對稱結構提升其立體障礙,以減少因堆疊造成之淬熄現象,高分子材料因製程方式簡單且適合使用在大尺寸面積上,根據這些優點希望能以小分子材料結構為基礎,合成出一款高分子材料,因高分子本身即具有較大之立體障礙性,預期能達到與小分子相同特性。本論文將以這些開發出的新穎含蒽之小分子及高分子材料進行各種材料特性基礎分析,並製作OLED元件及PLED元件,進行元件優化並探討各材料之元件光電特性,最後利用具寬EL頻譜的藍光小分子製作白光元件,其白光元件能隨操作電壓改變其CIE座標,且CIE座標能沿著黑體輻射線移動,符合Energy star規範之白光照明色度,CRI也高達80以上,具有很好的演色性。
In recent years, many researches in organic light-emitting-diodes (OLEDs) are proposed. Developing of high-quality blue-emitting materials are the most significant for the requirement of both display and lightings. Many phosphorescent blue-emitting materials with high efficiency have been synthesized and studied, but their molecular structure usually contain heavy atoms, which limit the lifetime of the device due to their unstable electric-chemical characteristics.
Anthracene is widely used as blue-emitting fluorescence material, which exhibits bipolar transport property, great thermal stability and high PL quantum yield. In this thesis, we design novel anthracene-based materials including two small molecules and one polymer with the concept of asymmetric structure to increase molecular steric hindrance. Thermal and photophysical characteristics of these materials are also analyzed. OLED and PLED device utilizing these materials are also fabricated and studied. Finally, white OLEDs with high color rendering index (>80) have been realized by employing the broad blue-emitting material developed in this thesis. The CIE coordinates can be changed with varying of operating voltages and located on the Plank Locus.
中文論文審定書 i
英文論文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1前言 1
1-2有機材料文獻回顧 3
1-3研究動機與目的 8
第二章 基礎理論 10
2-1有機電激發光元件發光原理及機制 10
2-2有機電激發光元件結構 17
2-3有機電激發光元件常用材料 19
第三章 實驗裝置與元件製作 22
3-1實驗設備介紹 22
3-1-1基質輔助雷射脫附游離飛行質譜儀(MALDI/TOF-TOF) 22
3-1-2核磁共振質譜儀(unclear magnetic resonance,NMR) 22
3-1-3紫外光/可見光光譜儀(UV-Vis spectrometer,UV-vis) 22
3-1-4螢光光譜儀(Photoluminescence spectrometer,PL) 23
3-1-5熱重量分析儀(thermogravimetric analyzer,TGA) 23
3-1-6熱示差掃描卡量計(Differential scanning calorimetry,DSC) 24
3-1-7 Photoelectron Spectrometer (AC-2) 24
3-3-8飛行時間法 (Time of flight method,TOF) 24
3-1-9凝膠滲透層析儀(Gel Permeation Chromatography,GPC) 25
3-1-10超音波震盪機 26
3-1-11紫外光臭氧清洗機(UV-Ozone) 26
3-3-12純化系統-管式高溫爐(tube-Furnace) 27
3-1-13低水氧手套箱(glove box) 27
3-1-14高真空蒸鍍系統 28
3-1-15元件量測儀器 29
3-2材料合成 30
3-2-1 S1材料製備流程 30
3-2-2 S2、P1材料製備流程 32
3-2-3材料合成方法及實驗步驟 34
3-2-4 (1-1)9-bromo-10-(4-fluoro-3-(trifluoromethyl)phenyl)anthracene 35
3-2-5 (1-2)9-bromo-10-(4-fluoro-3-(trifluoromethyl)phenyl)anthracene 37
3-2-6 (1-3)9-(4-fluoro-3-(trifluoromethyl)phenyl)-10-(naphthalen-2-yl)ant-
hracene,(S1) 39
3-2-7 (1-4)9-(4-fluoro-3-(trifluoromethyl)phenyl)-10-(6-methoxynaphthal-
en-2-yl)ant-hracene,(S2) 41
3-2-8 (1-5)6-(10-(4-fluoro-3-(trifluoromethyl)phenyl)anthracen-9-yl)naph-
thalen-2-ol 43
3-2-9 (1-6)高分子聚合 45
3-3材料製作流程 47
3-4元件製作流程及步驟 50
3-4-1 ITO電極黃光顯影蝕刻(封裝型元件) 52
3-4-2 ITO基板清洗與表面處理 53
3-4-3發光元件製程 53
第四章 結果與討論 55
4-1 S1物理/光物理 特性分析 55
4-2 S2物理/光物理 特性分析 59
4-3 P1物理/光物理 特性分析 62
4-4 OLED元件製作 68
4-4-1多層元件結構製作並探討EL元件特性及光譜變化 68
4-4-2以單層元件結構討論EL光譜變化 72
4-4-3主客體系統摻雜元件探討EL特性及光譜變化 74
4-5 PLED元件製作 81
4-5-1 PLED元件結構能階搭配及電特性探討 81
4-6寬頻藍光有機小分子於白光元件之應用 85
第五章 總結 94
參考文獻 95
附錄 99
[1]S. Tokito, M. Suzuki, F. Sato, M. Kamachi, and K. Shirane, "High-efficiency phosphorescent polymer light-emitting devices," Organic Electronics, vol. 4, pp. 105-111.
[2]R. Zhu, J.-M. Lin, W.-Z. Wang, C. Zheng, Wei, W. WeiHuang, et al., "Use of the β-Phase of Poly(9,9-dioctylfluorene) as a Probe into the Interfacial Interplay for the Mixed Bilayer Films Formed by Sequential Spin-Coating," The Journal of Physical Chemistry B, vol. 112, pp. 1611-1618.
[3]S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, "Multilayer polymer light-emitting diodes by blade coating method," Applied Physics Letters, vol. 93, pp. -, 2008.
[4]M. Rebarz, P. Dalasinski, W. Bala, Z. Lujasiak, M. Wojwdyla, L. Kreja, Optic Appl., 35, 407 (2005)
[5]T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Applied Physics Letters, vol. 72, pp. 519-521, 1998.
[6]M. Pope, and P. J. Mangante, Chem. Phys. Lett. 51, 913(1987)
[7]C. W. Tang, "Two‐layer organic photovoltaic cell," Applied Physics Letters, vol. 48, pp. 183-185, 1986.
[8]J. H. Burroughes, D. D. C. bradley, R. H. Friend, and A. B. Holmes, Nature 347, 539(1990)
[9]D. F. O’Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Improved energy transfer in electrophosphorescent devices," Applied Physics Letters, vol. 74, pp. 442-444, 1999.
[10]C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, and R. C. Kwong, "High-efficiency red electrophosphorescence devices," Applied Physics Letters, vol. 78, pp. 1622-1624, 2001.
[11](a) S. Okada, H. Iwawaki, M. Furugori, J.Kamatani, S. Igawa, T. Moriyama, S. Miura, A. Tsuboyama, T. Takiguchi, H. Mizutani, Proceedings of SID''02, p.1360, June 19-24, 2002, Boston, USA. (b) A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, et al., "Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode," Journal of the American Chemical Society, vol. 125, pp. 12971-12979.
[12]Y. Zheng, Y. Liang, H. Zhang, Q. Lin, G. Chuan, and S. Wang, "Red electroluminescent device with europium 1,1,1-trifluoroacetylacetonate complex as emissive center," Materials Letters, vol. 53, pp. 52-56.
[13]X. Jiang, A. K.-Y. Jen, B. Carlson, and L. R. Dalton, "Red electrophosphorescence from osmium complexes," Applied Physics Letters, vol. 80, pp. 713-715, 2002.
[14]M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Applied Physics Letters, vol. 75, pp. 4-6, 1999.
[15]T. Watanabe, K. Nakamura, S. Kawami, Y. Fukuda, T. Tsuji, T. Wakimoto, et al., "Optimization of emitting efficiency in organic LED cells using Ir complex," Synthetic Metals, vol. 122, pp. 203-207.
[16]M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, "Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer," Applied Physics Letters, vol. 79, pp. 156-158, 2001.
[17]C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, et al., "Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials," Applied Physics Letters, vol. 79, pp. 2082-2084, 2001.
[18]S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, "Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices," Applied Physics Letters, vol. 83, pp. 569-571, 2003.
[19]T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, et al., "Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands," Inorganic Chemistry, vol. 44, pp. 7992-8003, 2005.
[20]M.-H. Ho, B. Balaganesan, and C. H. Chen, "Blue Fluorescence and Bipolar Transport Materials Based on Anthracene and Their Application in OLEDs," Israel Journal of Chemistry, vol. 52, pp. 484-495, 2012.
[21]M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, "Polysilicon TFT technology for active matrix OLED displays," Electron Devices, IEEE Transactions on, vol. 48, pp. 845-851, 2001.
[22]黃孝文、陳金鑫,有機電激發光材料與元件 (2005)
[23]G. Horowitz, "Organic Field-Effect Transistors," Advanced Materials, vol. 10, pp. 365-377, 1998.
[24]C. W. Tang, S. A. VanSlyke, and C. H. Chen, "Electroluminescence of doped organic thin films," Journal of Applied Physics, vol. 65, pp. 3610-3616, 1989.
[25]C. Devadoss, P. Bharathi, and J. S. Moore, "Energy Transfer in Dendritic Macromolecules:  Molecular Size Effects and the Role of an Energy Gradient," Journal of the American Chemical Society, vol. 118, pp. 9635-9644, 1996.
[26]E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, "Excimer-Based White Phosphorescent Organic Light-Emitting Diodes with Nearly 100 % Internal Quantum Efficiency," Advanced Materials, vol. 19, pp. 197-202, 2007.
[27]G. Zhang, H.-H. Chou, X. Jiang, P. Sun, and C.-H. Cheng, "Highly efficient white organic light-emitting diodes based on broad excimer emission of iridium complex," Organic Electronics, vol. 11, pp. 1165-1171, 2010.
[28]M. Stößel, J. Staudigel, F. Steuber, J. Blässing, J. Simmerer, and A. Winnacker, "Space-charge-limited electron currents in 8-hydroxyquinoline aluminum," Applied Physics Letters, vol. 76, pp. 115-117, 2000.
[29]M. Stößel, J. Staudigel, F. Steuber, J. Blässing, J. Simmerer, A. Winnacker, et al., "Electron injection and transport in 8-hydroxyquinoline aluminum," Synthetic Metals, vol. 111–112, pp. 19-24, 2000.
[30]M. Stössel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker, "Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting-devices," Applied Physics A, vol. 68, pp. 387-390, 1999.
[31]C. Shen, I. G. Hill, and A. Kahn, "Role of Electrode Contamination in Electron Injection at Mg:Ag/Alq3 Interfaces," Advanced Materials, vol. 11, pp. 1523-1527, 1999.
[32]C. Adachi, T. Tsutsui, and S. Saito, "Confinement of charge carriers and molecular excitons within 5‐nm‐thick emitter layer in organic electroluminescent devices with a double heterostructure," Applied Physics Letters, vol. 57, pp. 531-533, 1990.
[33]A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, et al., "PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes," Synthetic Metals, vol. 111–112, pp. 139-143, 2000.
[34]T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, "Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer," Applied Physics Letters, vol. 75, pp. 1679-1681, 1999.
[35]S. A. VanSlyke, C. W. Tang, US 5,061,569 (1991)
[36]T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, "Organic EL cells using alkaline metal compounds as electron injection materials," Electron Devices, IEEE Transactions on, vol. 44, pp. 1245-1248, 1997.
[37]P. Campuzano-Jost, M. B. Williams, L. D''Otton, and A. J. Hynes, "Kinetics and Mechanism of the Reaction of the Hydroxyl Radical with h8-Isoprene and d8-Isoprene:  Isoprene Absorption Cross Sections, Rate Coefficients, and the Mechanism of Hydroperoxyl Radical Production," The Journal of Physical Chemistry A, vol. 108, pp. 1537-1551, 2004.
[38]I. Cho, S. H. Kim, J. H. Kim, S. Park, and S. Y. Park, "Highly efficient and stable deep-blue emitting anthracene-derived molecular glass for versatile types of non-doped OLED applications," Journal of Materials Chemistry, vol. 22, pp. 123-129, 2012.
[39]H. Park, J. Lee, I. Kang, H. Y. Chu, J.-I. Lee, S.-K. Kwon, et al., "Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency," Journal of Materials Chemistry, vol. 22, pp. 2695-2700, 2012.
[40]C.-J. Zheng, W.-M. Zhao, Z.-Q. Wang, D. Huang, J. Ye, X.-M. Ou, et al., "Highly efficient non-doped deep-blue organic light-emitting diodes based on anthracene derivatives," Journal of Materials Chemistry, vol. 20, pp. 1560-1566, 2010.
[41]Y. H. Kim, H. C. Jeong, S. H. Kim, K. Yang, and S. K. Kwon, "High-Purity-Blue and High-Efficiency Electroluminescent Devices Based on Anthracene," Advanced Functional Materials, vol. 15, pp. 1799-1805, 2005.
[42]H. J. Song, J. Y. Lee, I. S. Song, D. K. Moon, and J. R. Haw, "Synthesis and electroluminescence properties of fluorene–anthracene based copolymers for blue and white emitting diodes," Journal of Industrial and Engineering Chemistry, vol. 17, pp. 352-357, 2011.
[43]J. Kalinowski, G. Giro, M. Cocchi, V. Fattori, and P. Di Marco, "Unusual disparity in electroluminescence and photoluminescence spectra of vacuum-evaporated films of 1,1-bis ((di-4-tolylamino) phenyl) cyclohexane," Applied Physics Letters, vol. 76, pp. 2352-2354, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top