|
[1]S. Tokito, M. Suzuki, F. Sato, M. Kamachi, and K. Shirane, "High-efficiency phosphorescent polymer light-emitting devices," Organic Electronics, vol. 4, pp. 105-111. [2]R. Zhu, J.-M. Lin, W.-Z. Wang, C. Zheng, Wei, W. WeiHuang, et al., "Use of the β-Phase of Poly(9,9-dioctylfluorene) as a Probe into the Interfacial Interplay for the Mixed Bilayer Films Formed by Sequential Spin-Coating," The Journal of Physical Chemistry B, vol. 112, pp. 1611-1618. [3]S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, "Multilayer polymer light-emitting diodes by blade coating method," Applied Physics Letters, vol. 93, pp. -, 2008. [4]M. Rebarz, P. Dalasinski, W. Bala, Z. Lujasiak, M. Wojwdyla, L. Kreja, Optic Appl., 35, 407 (2005) [5]T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Applied Physics Letters, vol. 72, pp. 519-521, 1998. [6]M. Pope, and P. J. Mangante, Chem. Phys. Lett. 51, 913(1987) [7]C. W. Tang, "Two‐layer organic photovoltaic cell," Applied Physics Letters, vol. 48, pp. 183-185, 1986. [8]J. H. Burroughes, D. D. C. bradley, R. H. Friend, and A. B. Holmes, Nature 347, 539(1990) [9]D. F. O’Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Improved energy transfer in electrophosphorescent devices," Applied Physics Letters, vol. 74, pp. 442-444, 1999. [10]C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, and R. C. Kwong, "High-efficiency red electrophosphorescence devices," Applied Physics Letters, vol. 78, pp. 1622-1624, 2001. [11](a) S. Okada, H. Iwawaki, M. Furugori, J.Kamatani, S. Igawa, T. Moriyama, S. Miura, A. Tsuboyama, T. Takiguchi, H. Mizutani, Proceedings of SID''02, p.1360, June 19-24, 2002, Boston, USA. (b) A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, et al., "Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode," Journal of the American Chemical Society, vol. 125, pp. 12971-12979. [12]Y. Zheng, Y. Liang, H. Zhang, Q. Lin, G. Chuan, and S. Wang, "Red electroluminescent device with europium 1,1,1-trifluoroacetylacetonate complex as emissive center," Materials Letters, vol. 53, pp. 52-56. [13]X. Jiang, A. K.-Y. Jen, B. Carlson, and L. R. Dalton, "Red electrophosphorescence from osmium complexes," Applied Physics Letters, vol. 80, pp. 713-715, 2002. [14]M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Applied Physics Letters, vol. 75, pp. 4-6, 1999. [15]T. Watanabe, K. Nakamura, S. Kawami, Y. Fukuda, T. Tsuji, T. Wakimoto, et al., "Optimization of emitting efficiency in organic LED cells using Ir complex," Synthetic Metals, vol. 122, pp. 203-207. [16]M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, "Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer," Applied Physics Letters, vol. 79, pp. 156-158, 2001. [17]C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, et al., "Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials," Applied Physics Letters, vol. 79, pp. 2082-2084, 2001. [18]S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, "Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices," Applied Physics Letters, vol. 83, pp. 569-571, 2003. [19]T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, et al., "Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands," Inorganic Chemistry, vol. 44, pp. 7992-8003, 2005. [20]M.-H. Ho, B. Balaganesan, and C. H. Chen, "Blue Fluorescence and Bipolar Transport Materials Based on Anthracene and Their Application in OLEDs," Israel Journal of Chemistry, vol. 52, pp. 484-495, 2012. [21]M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, "Polysilicon TFT technology for active matrix OLED displays," Electron Devices, IEEE Transactions on, vol. 48, pp. 845-851, 2001. [22]黃孝文、陳金鑫,有機電激發光材料與元件 (2005) [23]G. Horowitz, "Organic Field-Effect Transistors," Advanced Materials, vol. 10, pp. 365-377, 1998. [24]C. W. Tang, S. A. VanSlyke, and C. H. Chen, "Electroluminescence of doped organic thin films," Journal of Applied Physics, vol. 65, pp. 3610-3616, 1989. [25]C. Devadoss, P. Bharathi, and J. S. Moore, "Energy Transfer in Dendritic Macromolecules: Molecular Size Effects and the Role of an Energy Gradient," Journal of the American Chemical Society, vol. 118, pp. 9635-9644, 1996. [26]E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, "Excimer-Based White Phosphorescent Organic Light-Emitting Diodes with Nearly 100 % Internal Quantum Efficiency," Advanced Materials, vol. 19, pp. 197-202, 2007. [27]G. Zhang, H.-H. Chou, X. Jiang, P. Sun, and C.-H. Cheng, "Highly efficient white organic light-emitting diodes based on broad excimer emission of iridium complex," Organic Electronics, vol. 11, pp. 1165-1171, 2010. [28]M. Stößel, J. Staudigel, F. Steuber, J. Blässing, J. Simmerer, and A. Winnacker, "Space-charge-limited electron currents in 8-hydroxyquinoline aluminum," Applied Physics Letters, vol. 76, pp. 115-117, 2000. [29]M. Stößel, J. Staudigel, F. Steuber, J. Blässing, J. Simmerer, A. Winnacker, et al., "Electron injection and transport in 8-hydroxyquinoline aluminum," Synthetic Metals, vol. 111–112, pp. 19-24, 2000. [30]M. Stössel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker, "Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting-devices," Applied Physics A, vol. 68, pp. 387-390, 1999. [31]C. Shen, I. G. Hill, and A. Kahn, "Role of Electrode Contamination in Electron Injection at Mg:Ag/Alq3 Interfaces," Advanced Materials, vol. 11, pp. 1523-1527, 1999. [32]C. Adachi, T. Tsutsui, and S. Saito, "Confinement of charge carriers and molecular excitons within 5‐nm‐thick emitter layer in organic electroluminescent devices with a double heterostructure," Applied Physics Letters, vol. 57, pp. 531-533, 1990. [33]A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, et al., "PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes," Synthetic Metals, vol. 111–112, pp. 139-143, 2000. [34]T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, "Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer," Applied Physics Letters, vol. 75, pp. 1679-1681, 1999. [35]S. A. VanSlyke, C. W. Tang, US 5,061,569 (1991) [36]T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, "Organic EL cells using alkaline metal compounds as electron injection materials," Electron Devices, IEEE Transactions on, vol. 44, pp. 1245-1248, 1997. [37]P. Campuzano-Jost, M. B. Williams, L. D''Otton, and A. J. Hynes, "Kinetics and Mechanism of the Reaction of the Hydroxyl Radical with h8-Isoprene and d8-Isoprene: Isoprene Absorption Cross Sections, Rate Coefficients, and the Mechanism of Hydroperoxyl Radical Production," The Journal of Physical Chemistry A, vol. 108, pp. 1537-1551, 2004. [38]I. Cho, S. H. Kim, J. H. Kim, S. Park, and S. Y. Park, "Highly efficient and stable deep-blue emitting anthracene-derived molecular glass for versatile types of non-doped OLED applications," Journal of Materials Chemistry, vol. 22, pp. 123-129, 2012. [39]H. Park, J. Lee, I. Kang, H. Y. Chu, J.-I. Lee, S.-K. Kwon, et al., "Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency," Journal of Materials Chemistry, vol. 22, pp. 2695-2700, 2012. [40]C.-J. Zheng, W.-M. Zhao, Z.-Q. Wang, D. Huang, J. Ye, X.-M. Ou, et al., "Highly efficient non-doped deep-blue organic light-emitting diodes based on anthracene derivatives," Journal of Materials Chemistry, vol. 20, pp. 1560-1566, 2010. [41]Y. H. Kim, H. C. Jeong, S. H. Kim, K. Yang, and S. K. Kwon, "High-Purity-Blue and High-Efficiency Electroluminescent Devices Based on Anthracene," Advanced Functional Materials, vol. 15, pp. 1799-1805, 2005. [42]H. J. Song, J. Y. Lee, I. S. Song, D. K. Moon, and J. R. Haw, "Synthesis and electroluminescence properties of fluorene–anthracene based copolymers for blue and white emitting diodes," Journal of Industrial and Engineering Chemistry, vol. 17, pp. 352-357, 2011. [43]J. Kalinowski, G. Giro, M. Cocchi, V. Fattori, and P. Di Marco, "Unusual disparity in electroluminescence and photoluminescence spectra of vacuum-evaporated films of 1,1-bis ((di-4-tolylamino) phenyl) cyclohexane," Applied Physics Letters, vol. 76, pp. 2352-2354, 2000.
|