跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 07:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱俊文
研究生(外文):Chun-Wen Chiu
論文名稱:藉不同方式處理提高PEDOT: PSS導電性並應用於有機發光二極體之研究
論文名稱(外文):Enhanced conductivity of PEDOT: PSS electrode by different treatment for ITO-free organic light emitting diodes
指導教授:張美濙
指導教授(外文):Mei-Ying Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:95
中文關鍵詞:導電高分子PEDOT:PSS陽極有機發光二極體導電度
外文關鍵詞:Organic light emitting diodesPEDOT:PSS anodeConductivity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:1
可撓曲為OLED最大特點之一,但是在陽極ITO的部分會面臨一個很大的問題,當ITO在大角度彎曲下有崩裂可能性,會造成阻值提升導電度下降,故本研究利用不同處理之方式提高導電高分子PEDOT:PSS薄膜的導電度,當作陽極應用於OLED,用來取代傳統陽極ITO,若搭配塑膠基板,將可發展製作成可撓式有機發光元件。
在本研究中,我們分別利用硫酸與甘油對PEDOT:PSS進行處理,在薄膜穿透率、功函數、導電度、表面粗糙度以及穩定度方面相互對照並做特性探討,進而將其作為陽極製成OLED元件,觀察其薄膜對於元件效率的影響。結果發現,經過酸處理後的PEDOT: PSS薄膜,可有效的提升其導電度從0.3(S/cm)至528(S/cm),經過醇處理後的PEDOT: PSS薄膜,可有效的提升其導電度從0.3(S/cm)至588(S/cm)亦提高了三個數量級。其表面形態、表面粗糙度及穩定度都會產生變化,但並不影響透光度。
之後利用經過處理的PEDOT:PSS薄膜當作陽極製作成元件,元件結構為PEDOT:PSS(PH1000)(170 nm)/NPB(50 nm)/Alq3(60 nm)/LiF(0.8 nm)/Al(200 nm),硫酸處理的陽極元件,其最大亮度為263.1(cd/m2) ;最大發光效率為0.73(cd/A) ;最大功率效率為0.33(lm/W) ;最大外部量子效率(External Quantum Efficiency; EQE)為0.23%,而甘油處理的陽極元件其最大亮度為387.7(cd/m2) ;最大發光效率為1.29(cd/A) ;最大功率效率為0.81(lm/W) ;最大外部量子效率(EQE)為0.42%,預期能用來取代ITO且發展出可撓式發光元件。
Flexibility is one of the biggest features of OLED. However, there is a big problem brought by the ITO anode. ITO will crack when the substrate is bent in a large angle and this might result in decreasing the conductivity. Different treatments are used to enhance the conductivity of PEDOT:PSS thin film which can be an anode in organic light emitting diodes.
In this research, the thin films of PEDOT:PSS with different treatments of H2SO4 and Glycerol were fabricated to replace the ITO layer as an anode to develop the flexible OLEDs. All different treated films were investigated and compared with each other in the difference of optical transmittance, work function, conductivity, surface roughness, surface morphology, and stability. It was found that after treatment the conductivity of PEDOT: PSS films can be effectively improved from 0.3 (S/cm) to 528 (S/cm) with H2SO4 treatment and from 0.3 (S/cm) to 588 (S/cm) with Glycerol treatment.
Then The devices were fabricated by using the treated PEDOT:PSS thin film for an anode. The device structure is PEDOT:PSS(PH1000)(170 nm)/
/NPB(50 nm)/Alq3(60 nm)/LiF(0.8 nm)/Al(200 nm),and the device area is 0.03 cm2.The result shows that Glycerol treated PEDOT:PSS anode has the better performance. It exhibits maximum luminance 387.7 cd/m2 .The maximum current and power efficiency are 1.29 cd/A and 0.81 lm/W. We expect it will replace ITO to develop flexible OLED.
中文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 顯示器的演進 1
1-2 導電高分子 3
1-2-1 發展過程 3
1-2-2 導電高分子-PEDOT:PSS 5
1-2-3 PEDOT:PSS的應用 6
1-3 研究動機 8
第二章 理論基礎與文獻回顧 9
2-1 OLED發展簡介 9
2-2 OLED元件結構 12
2-3 OLED發光原理 14
2-4 OLED元件效率定義方法 17
2-5 OLED材料介紹 18
2-5-1 陽極材料 19
2-5-2 電洞傳輸層 20
2-5-3 發光層 21
2-5-4 陰極材料 23
2-6 理論基礎 23
2-6-1 螢光與磷光 23
2-6-2 Forster與Dexter能量轉移機制 25
2-6-3 濃度淬熄效應 28
2-7 OLED的色彩鑑定 29
第三章 實驗 31
3-1 實驗架構 31
3-2 實驗藥品 33
3-3 製程設備 34
3-4 量測分析儀器與方法 38
3-4-1 紫外光/可見光光譜儀 38
3-4-2 電阻量測方式 39
3-4-3 原子力掃描探針顯微鏡 40
3-4-4 光電子光譜分析儀(PESA) 44
3-4-5 OLED光電特性量測系統 45
3-4-6 表面輪廓儀 45
3-5 藥品配製 47
3-5-1 PEDOT:PSS(PH1000)材料 47
3-5-2 酸性溶液 47
3-5-3 PEDOT:PSS(PH1000)改質 47
3-6 實驗步驟 48
3-6-1 ITO導線基板與ITO陽極基版圖化 48
3-6-2 PEDOT:PSS泡酸之陽極基版圖化 50
3-6-3 PEDOT:PSS摻雜醇類之陽極基版圖化 51
3-6-4 OLED基礎元件製程 51
3-6-5 元件量測 52
第四章 結果與討論 53
4-1 UV-vis圖譜分析 53
4-2 利用PESA量測HOMO值 54
4-3 導電度量測與機制探討 56
4-3-1 酸摻雜 56
4-3-2 醇摻雜 58
4-4 薄膜表面粗糙度及相位分析 62
4-5 薄膜導電度之穩定性探討 70
4-6 元件光電特性分析 72
第五章 總結 77
參考文獻 79
[1] G. Natta, G. Mazzanti, and P. Corradini, Atti. Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur. 25, 3 (1958).
[2] H. Shirakawa, and S. Ikeda, Polym. J. 2, 231 (1971).
[3] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc. Chem. Commun, 578 (1977).
[4] B. Wessling, Synth. Met. 4, 119 (1991).
[5] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, and R. Wehrmann, Synth. Met. 111, 139 (2000).
[6] X. Gong, D. Moses, A. J. Heeger, S. Liu, and A. K. Y. Jen, Appl. Phys. Lett. 83, 1 (2003).
[7] Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, Synth. Met. 87, 171 (1997).
[8] S. Alem, R. de Bettignies, J.-M. Nunzi, and M. Cariou, Appl. Phys. Lett. 84, 2178 (2004).
[9] M. Y. Song, K. J. Kim, and D. Y. Kim, Sol. Energy Mater. Sol. Cells 85, 31 (2005).
[10] F. Jonas, J. T. Morrison, Synth. Met. 85,1397 (1997)
[11] C. J. M. Emmott, A. Urbina, and J. Nelson, Sol. Energy Mater. Sol. Cells 97, 14 (2012).
[12] M. A. Rahman, A. Rahim, Md. Maniruzzaman, K. Yang , C. Lee, H. Nam, H. Soh, and J. Lee, Sol. Energy Mater. Sol. Cells 95, 3573 (2011).
[13] Y. S. Kim, S. B. Oh, J. H. Park, M. S. Cho, and Y. Lee, Sol. Energy Mater. Sol. Cells 94, 471 (2010).
[14] 陳柏宏,“陽極緩衝層對有機太陽能電池的影響”,中山大學碩士論文, (2013).
[15] 黃珮瑄,“雙芴環衍生物之系列新型發光材料合成及應用於有機電機發光二極體之研究”,中山大學碩士論文, (2013).
[16] 吳峯範,“高導電性 PEDOT:PSS/PANI 複合有機陽極應用於有機太陽能電池之研究”,中山大學碩士論文, (2012).
[17] S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, Adv. Mater. 20, 4061 (2008).
[18] A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, and W. R. Salaneck, Adv. Mater. 10, 859(1998).
[19] Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, Sol. Energy Mater. Sol. Cells, 95, 1339 (2011).
[20] Y-Y Choi, S J Kang, H-K Kim, W M Choi, and S-I Na, Sol. Energy Mater. Sol. Cells ,96, 281 (2012)
[21]M. W. Rowell , M. A. Topinka , M. D. McGehee , H. J. Prall , G. Dennler ,
N. S. Sariciftci , L. Hu , G. Gruner , Appl. Phys. Lett. , 88 , 233506(2009) .
[22] N. P. Sergenant, A Hadipour, B. Niesen, D Cheyns, P. Heremans, P. Peumans, and B. P. Rand, Adv. Mater. , 24, 728 (2012)
[23] 黃彥良,“陽極緩衝層 PEDOT:PSS 之特性對於有機高分子太陽能電池的影響”,中山大學碩士論文, (2007).
[24] L. A. A. Pettersson, S. Ghosh, O. Ingan€as, Org. Electron. 3,143 (2002)
[25] A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, Org. Electron. 9, 727 (2008).
[26] J. J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D. R. T. Zahnd and T. Gessner, J. Mater. Chem. A, 1,7576(2013)
[27] J. Huang, P. F. Miller , J.C. de Mello , A.J. de Mello , and D.D.C. Bradley, Synth. Met. 139 , 569 (2003).
[28] D. Alemu, H-Y Wei, K-C Ho, and C-W Chu, Energy Environ. Sci., 5, 9662 (2012).
[29] Y. Xia, K Sun, and J Ouyang, Adv. Mater. 24, 2436 (2012).
[30] M. Pope, H. P. Kallmann, Magnante, Journal of Chemical Physics , 38,2042 (1963).
[31] C. W. Tang, S. A. VanSlyke, Applied Physics Letters ,51,913, (1987).
[32] J.H. Burrououghes, D.D. C Bradley, A.R. Brown, R.N. Marks, K. MacKet, R.H. Friend, P.L. Burn, A.B. Holmes, Nature ,347,539 (1990).
[33] C.W. Tang, Appl. Phys. Lett., 48,183 (1985)
[34] C. Adachi, S. Tokito, T. Tsutsui, S. Saito,Jpn. J. Appl. Phy s. 27,L713 (1988)
[35] M. Era, C. Adachi, T. Tsutsui, S. Ssito, Chem. Phys. Lett. 178, 488 (1991)
[36] J. Kido, M. Kohda, K. Okuyama, K. Nagai, Appl. Phys. L ett., 61,761 (1992)
[37] J. Kido, M. Kimura, K. Nagai, Science 267,1332 (1995)
[38] J. Kido, H. Shionoya, K. Nagai, Appl. Phys. Lett., 67,2281 (1995)
[39]S. Miyata, H. S. Nalwa, Organic Electroluminescent Mater ials and Devices, Gordon and Breach Science Publishers, Chap 1(1997).
[40] K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, K. Seki, J. Appl. Phys. 83,4928(1998).
[41]顧鴻壽 著,光電有機電激發光顯示器,新文京開發出版社,台北,(2001).
[42] S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices ,Gordon and Breach Science Publishers, Chap 8 (1997).
[43] S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices ,Gordon and Breach Science Publishers, Chap 9 (1997).
[44] C. Giebeler , H. Antoniadis , D. D. C. Bradley , Y. Shirota, Journal of Applied Physics ,85,608 (1999).
[45]J. D. Anderson, E. M McDonald, P.A. Lee, M.L. Anderson, E.L.
Ritchie ,H.K.Hall ,T. Hopkins, E. A. Mash, J. Wang , A. B. Kippelen, N. Peyghambarian, R. M. Wightman, N.R. Armstrong, Journal of the American Society of Nephrology ,120,9646(1998).
[46] R. Murayama, US5,227,252 (1993)
[47] A. A. Shoustikov, Y. You, and M. E. Thompson, IEEE Journal on SelectedTopics in Quantum Electronics. 4, 3, (1998).
[48]鄭祐松,” 1,3,5-Tri(1-pyrenyl)benzene(TPB3)之材料發光特性探討及其應用於有機電激發光元件之研究”國立中山大學光電工程研究所碩士論文,高雄 (2009)。
[49]蔡宜展,“OLED 新穎紅光摻雜材料特性之研究 , 中山大學碩士論文, (2005).
[50] E. M. Genies, and C. Jsintavis, Electroanal. Chem. 195, 109 (1985).
[51]莊嘉琛,太陽能工程-太陽電池篇,全華,1997
[52]陳金鑫、黃孝文著,有機電激發光材料與元件,五南,2005
[53] D. Alemu, H-Y Wei, K-C Ho, and C-W Chu, Energy Environ. Sci., 5, 9662, (2012)
[54] Y. H. Kim , C. Sachse , M. L. Machala , C. May ,L. Müller-Meskamp , and K. Leo,Adv. Funct. Mater. 2011, 21, 1076–1081
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊