跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張簡靖民
研究生(外文):Chin-Min Chang Chien
論文名稱:跨介電質界面的二維頻域緊湊係數的計算方法及研究
論文名稱(外文):2D Compact Frequency-Domain Stencils for Dielectric Media with an Interface
指導教授:張弘文張弘文引用關係
指導教授(外文):Hung-wen Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:64
中文關鍵詞:有限差分不連續介質赫姆霍茲方程式相連局域場Fourier Bessel series數值方法local plane wave expansion
外文關鍵詞:numerical methodFourier Bessel seriesfinite-differencelocal plane wave expansionconnected local fieldsHelmholtz equationdielectric interfaces
相關次數:
  • 被引用被引用:2
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
對於光電元件,我們主要關注的是元件的穩態行為,或窄頻特性。因此我們使用頻域的方法,如頻域有限差分法來計算赫姆霍茲方程(Helmholtz equation)之數值解。本實驗室近年發展計算赫姆霍茲方程式的相連局域場理論 (connected local fields, CLF)。二維度的相連局域場是由互相連接、彼此重疊的田字形的局部區域場所組成。CLF為半解析的數值方法。有點類似於有限差分法,但在本質上有所不同。CLF的概念是利用赫姆霍茲方程式的解析解在緊致網格 (compact stencil)中,分別展開的局域場相互連結所組成。相連局域場將複雜的赫姆霍茲方程式離散化,再透過矩陣方程式求解。
傳統的頻域有限差分法對於不連續介質係數的處理,不是非常理想,本論文針對二維水平介面網格的問題進行CLF的開發及研究。本論文主要分為兩個部分:
1. 回顧傳統頻域有限差分法在不連續介質上的處理:
在傳統有限差分法中,在維持緊致網格的前提下,有兩種方法,最容易的方法是透過界面連續條件,電或磁場的垂直微分連續,導出界面係數;令一種則是材料平均,類似有效折射率的概念,可導出界面係數。
2. 發展CLF 對於不連續介質的處理局部平面波展開法(Local Plane Wave Expansion, LPWE):
如上所述,CLF是利用赫姆霍茲方程式的通解,展開在緊致網格中的局域場,針對二維單一界面網格中,利用多道入射的平面波,加上反射、穿透波等正解。對此網格進行局域場展開。最後將此單一介面網格的赫姆霍茲方程式轉化為離散形式,得到一組CLF-LPWE的係數。
3.利用FBS(Fourier Bessel Series),展開在二維水平界面緊致網格中的局域場,並以此方法推導的係數與CLF進行比較及驗證。
最後進行誤差分析,方法是將一平面波自任意角度入射、反射及穿透波之正解與上述幾種數值方法數值解進行比較及分析其絕對誤差。
For opto-electromagnetic passive devices, our primary concerns are in their steady-state behaviors or narrow-band characteristics. We use mainly the frequency-domain methods, like frequency- domain finite-difference (FD-FD) methods for the Helmholtz equation. In recent years, we proposed the method of Connected Local Fields (CLF) to solve Helmholtz equation problems. CLF method is the semi-analytical numerical method like FD method but with a whole new approach.
The concept of CLF method is to use analytic solutions of the Helmholtz equation for the local fields defined by a basic cell (defined inside the red perimeter) as illustrated in Figure 1 showing a basic cell with a horizontal dielectric interface. The classical FD-FD methods in handling media with dielectric interfaces are not really ideal. In this thesis, we use the concept of CLF to study how to obtain CLF-equivalent compact stencils for cells with dielectric interfaces.
This thesis is divided into two parts: First, we review methods in handling media with dielectric interfaces: To obtain a compact stencil the simplest method is the straight forward implementation of the interface condition (such as continuity of normal derivative) by finite-difference approximation of the. We could also apply “material averaging” method to modify the Helmholtz equation near a dielectric interface. In the second half of the thesis we will adopt the local plane wave expansion, (LPWE) approach to obtain CLF-worthy compact stencils. To derive compact stencils with dielectric interfaces, we use some linear combination of incident waves with their reflected and transmitted waves to expand the local fields near the interface. Finally we will also look into Fourier Bessel series (FBS) approach to construct these special compact CLF stencils.
We shall also present numerical performance comparisons of above methods. It is based on numerically exact, semi-analytical solutions of incident-reflected-transmitted plane wave triplet.
論文審定書頁 i
誌謝 ii
中文摘要 iii
英文摘要 v
目錄 vii
圖目錄 ix
第一章 導論 1
1-1研究動機 1
1-2研究方法 4
1-3 Helmholtz equation推導 6
第二章 數值方法簡介及回顧 10
2-1數值方法概念介紹 10
2-2 CLF簡介 15
2-3 回顧傳統非均勻區處理方法 18
第三章 LPWE方法及絕對誤差分析 26
3-1 LPWE方法 26
3-2 絕對誤差 28
3-3 誤差分析結果 31
第四章 FBS方法及絕對誤差分析 38
4-1 FBS方法 38
4-2 誤差分析結果 42
第五章 結論 47
參考文獻 49
[1]穆信元, “應用於計算光電磁學上的相連局域廠方法的理論發展”,國立中山大學碩士論文,2012年8月。
[2]S.-Y. Mu and H.-W. Chang, “Theoretical foundation for the method of connected local fields,” Progress In Electromagnetics Research, Vol. 114, pp. 67-88, 2011.
[3]H.-W. Chang and S.-Y. Mu, “Semi-analytical solutions of the 2-D Homogeneous Helmholtz equation by the method of connected local fields,” Progress In Electromagnetics Research, Vol. 109, pp. 399—424, 2010.
[4]Tso-Lun Wu and H.-W. “Chang, “Guiding mode expansion of a TE and TM transverse-mode integral equation for dielectric slab waveguides with an abrupt termination,”JOSA A, Vol. 18,Issue 11,2823-2832, 2001.
[5]H.-W. Chang,Y. H. Wu, S. M. Lu, W. C. Cheng, and M. H. Shen, “Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation-numerical investigation,” Progress In Electromagnetics Research, Vol. 97, 159-176, 2009.
[6]J.P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, Vol. 114, 185-200, 1994.
[7]Stephen D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Transactions on Antennas and Propagation, Vol. 44, 1630-1639, 1996.
[8]Daniel S. Katz, Eric T. Thiele, Allen Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,”IEEE Microwave and Guided Wave, Vol. 4, 268-270, 1994.
[9]E. L. Lindman, ““Free-space” boundary conditions for the time dependent wave equation,” Journal of computational physics, Vol. 18, 66-78, 1975.
[10]Bjorn Engquist, Andrew Majda, “Absorbing boundary conditions for numerical simulation of waves,” Applied Mathematical Science, Vol. 74, 1765-1766, 1977.
[11]Robert Clayton, Bjorn Engquist, “ Absorbing boundary conditions for acoustic and elastic wave equations,” Bulletin of the Seismological Society of America, Vol. 67, 1529-1540, 1977.
[12]H. W. Chang,W. C. Cheng and S. M. Lu, “Layer-mode transparent boundary condition for the hybrid FD-FD method,” Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
[13]Ronald E. Mickens, “Nonstandard finite difference models of differential equations,”Journal of Differnce Equations and Applications, Vol. 8, Issue 9, 823-847,2002
[14]Isaac Harari and Eli Turkel, “Accurate finite difference methods for time-harmonic wave propagation,”Institute for Computer Applications in Science and Engineering, NASA Langley Research center, NASA Contractor Report 194887, ICASE Report No. 94-13,March 1994.
[15]Isaac Harari and Eli Turkel, “Accurate finite difference methods for time-harmonic wave propagation,” Journal of Computational Physics, Vol. 119, Issue 2, 252-270,1995.
[16]H.-W. Chang and C.-M. Chang-Chien, “2D Compact Frequency-Domain Stencils for Dielectric Media with an Interface,” CSQRWC-2013, July 21-25, Chengdu, China, 2013.
[17]D. M. Young and J. H. Dauwalder, “Discrete representation of partial differential equations,” Errors in Digital Computers, Academic Press, New York, 1965.
[18]GD Smith, Numerical solution of partial differential equations: finite difference methods, Second Edition, Oxford university Press, 1978.
[19]Issac Fried, Numerical Solution of Differential Equations, Academic Press, New York, San Francisco, London, the United State of America, 1979.
[20]Garrett Birkhoff and Robert E. Lynch, Numerical Solution of Elliptic Problems, Society for Industrial and Applied Mathematics, 1984.
[21]Charles A. Hall and Thomas A. Porsching,Numerical Analysis of Partial Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1990.
[22]G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Applied Optics, Vol. 16, no. 1, 1977.
[23]J. Buus, “the Effective Index Method and Its Application to Semiconductor Lasers,” J. of Quantum Electronics, vol. QE-18, no. 7, 1982.
[24]M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Applied Physics Letters, vol. 81, no. 7, 2002.
[25]H.-W. Chang, Y.-H. Wu and W.-C. Cheng, “Hybrid FD-FD Analysis of Crossing Waveguides by Exploiting Both the Plus and the Cross Structural Symmetry,” Progress In Electromagnetics Research, Vol. 103, 217−240, 2010.
[26]G. Ronald Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces,” Journal of Lightwave Technology, vol. 20,Issue 7,1200-1218, 2002.
[27]G. Ronald Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners,” Journal of Lightwave Technology, vol. 20,Issue 7,1200-1218, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top