跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/02/27 21:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪健育
研究生(外文):Jian-Yu Hong
論文名稱:EIA-Y5V多層陶瓷電容器之微觀結構與介電特性
論文名稱(外文):The Microstructure and Dielectric Properties of EIA-Y5V Multilayer Ceramic Capacitors
指導教授:盧宏陽盧宏陽引用關係
指導教授(外文):Hong-Yang Lu
學位類別:博士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:356
中文關鍵詞:穿透式電子顯微鏡強電陶瓷鈦酸鋇介電常數多層陶瓷電容器
外文關鍵詞:Dielectric PropertiesTransmission Electron MicroscopyMicrostructureMLCCsEIA-Y5V
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4455
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用穿透式電子顯微鏡鑑別技術 (影像電子繞射、化學元素分析、高解析原子影像、集束電子繞射)、X光繞射與Rietveld refinement分析、Raman散射光譜及介電特性量測去分析EIA-Y5V陶瓷的微觀結構與介電特性。

根據實驗結果,獲得以下結論:
1. 從介電量測的結果顯示,EIA-Y5V積層陶瓷電容器具有散佈式相變化,以及頻率分佈行為,因此可視其為弛緩型強電陶瓷 (Relaxor ferroelectrics)。其頻率與Tm之關係符合Vögel-Fulcher關係式,說明EIA-Y5V陶瓷可以用「偶極玻璃模型」 (Dipolar glass model) 來加以描述。
2. 經由穿透式電子顯微鏡的鑑定下,EIA-Y5V陶瓷呈現「無特徵」晶粒 (featureless grains)。經由能量分散光譜分析,溶質原子 (鋯及鈣) 呈現巨觀地均勻分佈。無特徵晶粒的擇區電子繞射圖皆顯示{100}* 漫散射強度 (diffuse scattering intensity),與早期Comés、Lambert及Guinier (1969) 在鈦酸鋇單晶中觀察到的DS相同。
3. X光繞射分析結果顯示EIA-Y5V陶瓷為具有單一 {200}PC 寬繞射峰之假立方相 (pseudo-cubic phase)。然而,從Rietveld refinement分析獲得C+T+R 多重結晶相,並且結晶相的含量從室溫到200oC都維持不變。
4. 根據高解析原子影像,觀察到鈦原子偏離八面體中心而朝向[001]及[111] 位移,分別為T-PNR及R-PNRs (極性奈米區域)存在於Y5V陶瓷的直接證據。
5. 室溫下的Raman光譜顯示EIA-Y5V陶瓷具有C-BaTiO3、T-BaTiO3及R-BaTiO3的特徵峰,這些特徵峰維持到至少200oC,意味著沒有發生巨觀的C→T相變化。
6. EIA-Y5V陶瓷經過長時間高溫退火後,在無特徵晶粒的晶界附近出現強相900 a-a T-晶域 (經由擇區電子繞射分析及X光繞射分析)。同時,介電常數從退火前的13,300下降至退火24小時後的9,000。強相900 a-a T-晶域的出現是肇因於於T- 或R-PNRs在高溫退火時的成長。晶界附近的局部隨機應變場 (local random strain field) 較小,以致於晶界附近的應變場在退火期間優先被解除而發生PNR→強電T-晶域之變化。

從上述的實驗結果,EIA-Y5V多層陶瓷電容器的高介電常數肇因於T-PNR及R-PNRs共存於C-matrix裡。一旦PNRs經由退火而被誘導成長為強電T-晶域時,PNRs的濃度下降以致介電常數隨之下降。我們還在未摻雜的鈦酸鋇陶瓷裡發現存在relaxors特性以及{100}* DS,可以證實鈦酸鋇中存在沒有發生C→T相變化的intrinsic PNRs。然而,經由ZrO2摻雜的EIA-Y5V陶瓷,其所衍生的extrinsic PNRs因為沒有發生C→T相變化而被以介穩態保留下來至室溫,因此PNRs濃度遠高於純鈦酸鋇陶瓷。
Both the microstructure of EIA-Y5V MLCCs are examined and crystalline phases determined through TEM using diffraction-contrast imaging, selected-area diffraction pattern, chemical elemental analysis, high-resolution atomic imaging, X-ray diffraction combined with Rietveld refinement analysis, and Raman scattering spectra. The corresponding dielectric measurements were also conducted at room temperature using LCR spectrometry.

The experimental results are summarized as follows:
1. From the dielectric measurement, EIA-Y5V MLCCs can be regarded as a relaxor ferroelectric, exhibiting the representative features of diffuse phase transition (DPT) and both the dielectric constant and loss tangent follow the characteristic frequency-dispersion of a relaxor. The relationship between frequency and Tm (temperature at dielectric constant maximum) obeys the Vögel-Fulcher relation, suggesting that the dielectric behavior of Y5V ceramic is consistent with the dipolar glass model proposed by Viehland and Cross (1990).
2. Under TEM analysis, featureless grains containing homogeneously distributed solute content. Further, all featureless grains show {100}* diffuse scattering (DS) intensity that is a characteristic of PNRs initially observed and a model of 1D PNRs proposed by Comés, Lambert and Guinier (1968) from X-ray diffuse scattering.
3. XRD analysis shows pseudocubic phase characterized by a singe and broadened diffraction peak of {200}PC. However, Rietveld refinement analysis suggests that it is a phase mixture consisting of C-, T- and R-phase.
4. HRTEM images suggest that Ti4+ displacing off-center toward both [001] and [111] is observed simultaneously, which is consistent with the phase mixture concluded by Rietveld refinement.
5. From Raman spectra , characteristic phonon modes from T-BaTiO3 and R-BaTiO3 are observed in EIA-Y5V MLCCs. These Raman scattering bands persist until at least 200oC, indicating the lack of macroscopic phase transitions that is in accordance with temperature-dependent XRD results.
6. After long-term annealing, Y5V grains show ferroelectric 900 a-a T-domain in the vicinity of grain boundary, confirmed by both SADP and XRD. Meanwhile, dielectric permittivity decreases from 13,300 to 9,000 with increasing annealing time. The formation of ferroelectric T-domains is attributed to the growth of T- and R-PNRs triggered by annealing. Local random strain field caused by chemical disorder (the size difference between Zr and Ti ion) is preferentially released in the vicinity of grain boundary to encourage the growth of PNRs to form the ferroelectric T-domain.

We can conclude that EIA-Y5V MLCCs high permittivity is originated from T- and R-PNRs embedded in a C-matrix. Once these PNRs grow into ferroelectric domains, the relative permittivity would drop as a result of both decreased PNRs content and probably also increased PNRs sizes. It is also found that undoped BaTiO3 at grain size ~1.0 m also exhibits DPT and frequency dispersion behavior at room temperature, it also shows {100}* DS sheets. It suggests that PNRs also exist in undoped BaTiO3 even though it undergoes the C→T phase transition. Therefore, it is suggested that a large amount of PNRs formed at the Burns temperature are retained at room temperature in EIA-Y5V MLCCs because chemical disorder creates a local random strain field to inhibit the C→T phase transition through adding ZrO2 to BaTiO3.
論文審定書 i
誌謝 ii
摘要 iii
英文摘要 v
目錄 viii
圖次 xiii
表次 xxvii
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 4
第二章 文獻回顧 6
2.1 鈣鈦礦結構 6
2.2 鈦酸鋇的晶體結構 9
2.3 鈦酸鋇陶瓷的尺寸效應 13
2.4 鈦酸鋇的固溶體 16
2.5 鈣鈦礦結構的八面體傾轉 19
2.6 強電特性 22
2.7 位移型強電相變化 26
2.8 序化-無序化型強電相變化 33
2.9 Comes-Lambert-Guinier模型 36
2.10 多層陶瓷電容器 49
2.10.1 多層陶瓷電容器的構造 49
2.10.2 多層陶瓷電容器的發展趨勢 52
2.10.3 多層陶瓷電容器的製造方法 58
2.10.4 多層陶瓷電容器的類型及微結構特徵 60
2.11 弛緩型強電陶瓷 (Relaxor Ferroelectrics) 71
2.11.1 成分不均勻理論 (Chemical Inhomogeneity) 78
2.11.2 偶極玻璃理論 (Dipolar Glasses) 83
2.11.3 超順電相理論 (Superparaelectricity) 85
2.11.4 序化-無序化理論 (Order-Disorder) 86
2.11.5 隨機電場理論 (Random Filed) 89
2.11.6 巨大壓電效應之物理源起 90
2.12 極性奈米區域 (Polar Nanoregions) 93
2.13 極性奈米區域的實驗證據 98
2.14 鋯摻雜之鈦酸鋇固溶體 109
第三章 實驗部分 109
3.1 實驗材料 117
3.2 實驗儀器 118
3.3 儀器原理 123
第四章 實驗結果 143
4.1 EIA-Y5V多層陶瓷電容器的起始粉體分析 143
4.2 EIA-Y5V多層陶瓷電容器的分析 153
4.3 EIA-Y5V多層陶瓷電容器的顯微結構分析 161
4.4 EIA-Y5V多層陶瓷電容器的電子繞射分析 172
4.5 EIA-Y5V多層陶瓷電容器的高解析原子影像 188
4.6 EIA-Y5V多層陶瓷電容器退火後的微結構分析 191
4.7 EIA-Y5V多層陶瓷電容器退火後的介電特性 203
4.8 EIA-Y5V多層陶瓷電容器的Multibeam分析 206
4.9 EIA-Y5V多層陶瓷電容器的CBED分析 210
4.10 EIA-Y5V多層陶瓷電容器的超晶格反射點 212
4.11 EIA-Y5V多層陶瓷電容器的Raman散射光譜 214
4.12 Raman散射光譜之溫度相依性 222
4.13 EIA-Y5V多層陶瓷電容器施加電壓後的Raman散射光譜 239
4.14 不同退火時間對Y5V多層電容器的Raman散射光譜之影響 241
4.15 不同Zr添加量對Raman散射光譜之影響 243
4.16 EIA-Y5V多層陶瓷電容器的X光繞射分析 249
4.17 升溫X光繞射及Rietveld Refinement分析 254
第五章 結果討論 261
5.1 EIA-Y5V多層陶瓷電容器的介電特性 261
5.2 Diffuse Scattering與極性奈米區域 266
5.3 EIA-Y5V多層陶瓷電容器的100}* DS 271
5.4 退火對Y5V多層陶瓷電容器的微結構與介電特性之影響 284
5.5 EIA-Y5V多層陶瓷電容器的Raman光譜 288
5.6 CBED與HRTEM的實驗結果比較 301
5.7 R-相奈米極性區域與T-相奈米極性區域 303
5.8 R-相奈米極性區域 307
5.9 EIA-Y5V多層陶瓷電容器-散佈式相變化之物理起源 308
5.10 動態及靜態奈米極性區域 308

第六章 結論 314
第七章 未來研究建議 316
參考文獻 317
附錄 327
論文著作 328
T. R. Amstrong, and R. C. Buchanan, “Influence of Core-Shell Grains on the Internal Stress State and Permittivity Response of ZrO2-Modified BaTiO3,” J. Am. Ceram. Soc., 73 [5] 1268-73 (1990).

G. Arlt, D. Hennings, and G. de With, J. Appl. Phys. 58 [4] 1619-25 (1985).

W. Bak, C. Kajtoch, F. Starzyk, and J. Zmija, “Evolution of Electric Polarization in Paraelectric Phase of BaTiO3,” Arch. Mater. Sci. Eng., 33 [2] 79-82 (2008).

C. Boulesteix, J. van Landuyt, and S. Amelinckx, “Identification of Rotation and Reflection Twins by Diffraction and Contrast Experiment in the Electron Microscope,” Phy. Stat. Sol. (a), 33 [1] 595-606 (1976).

R. J. Brook, “Defect Structure of Ceramic Materials”; pp. 179-267 in Electrical Conductivity in Ceramics and Glass, Part A, Edited by N. M. Tallan. Marcel-Dekker, N.Y., 1974.

G. Burns, and F. H. Dacol, “Polarization in the Cubic Phase of BaTiO3,” Solid Stat. Comm., 42 [1] 9-12 (1982).

G. Burns, and F. H. Dacol, “Crystalline Ferroelectrics with Glassy Polarization Behavior,” Phys. Rev. B, 28 [5] 2527-30 (1983).

G. Burns, and F. H. Dacol, “Glass Polarization Behavior in Ferroelectric Compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3,” Solid Stat. Comm., 48 [10] 853-56 (1983).

G. Burns and F. H. Dacol, “Ferroelectric with a Glassy Polarization Phase,”
Ferroelectrics, 104, 25–35 (1990).

W. R. Buessem, L. E. Cross, and A. K. Goswami, “Phenomenological Theory of High Permittivity in Fine-Grained BaTiO3,” J. Am. Ceram. Soc., 49 [1] 33-36 (1966).

R. W. Cahn, “Twinned Crystals,” Adv. Phys., 3 [1] 363-445 (1954).

J. F. Chou, M. H. Lin, and H. Y. Lu,”Ferroelectric Domains in Pressureless-Sintered BaTiO3,” Acta Mater., 48 [13] 3569-79 (2000).

S. Chaves, F. C. S. Barreto, R. A. Nogueira, and B. Zeks, Thermodynamics of an eight-site order-disorder model for ferroelectrics, Phys. Rev. B 13, 207 (1976)

H. Chazono, and H. Kishi, “Sintering Characteristics in the BaTiO3-Nb2O5-Co3O4 Ternary Systems, I: Stability of So-called “Core-Shell” Structure,” J. Am. Ceram. Soc., 83 [1] 101-6 (2000).

S. K. Chiang, W. E. Lee, and D. W. Ready, “Core-Shell Structure in Doped BaTiO3,” Bull. Am. Ceram. Soc., 66 [8] 1230 (1987).

S. Y. Cheng, N. J. Ho, and H. Y. Lu, “Transformation-Induced Twins: The 90o and 180o Ferroelectric Domains in BaTiO3,” J. Am. Ceram. Soc., 89 [7] 2177-87 (2006).

R. Comés, M. Lambert, and A. Guinier, Désordre linéaire dans les cristaux (cas du silicium, du quartz, et des pérovskites ferroélectriques), Acta Cryst. A 26, 244 (1970).

R. Comés, M. Lambert, and A. Guinier, The chain structure of BaTiO3 and KNbO3Solid State Commun. 6, 715 (1968).

R. Comés, M. Lambert, and A. Guinier, “Désordre Dineaire Dans les Cristaux (Cas du Silicium, du Quartz, et des Pérovskites Ferroélectriques),” Acta Cryst., A26 [2] 244-53 (1970).

L. E. Cross, “Relaxor Ferroelectrics,” Ferroelectrics, 76 [1] 241-67 (1987).

L. E. Cross, “Relaxor Ferroelectrics-An Overview,” Ferroelectrics, 151 [1] 305-20 (1994).

L. E. Cross, “Relaxor Ferroelectrics,” pp.131-155 in Piezoelectricity-Evolution and Future of a Technology. Editors, W. Heywang, K. Lubitz, and W. Wersing, Springer-Verlag, Berlin, Germany, 2008.


R. Currat, R. Com`es, B. Dorner, and E. Wiesendanger, Inelastic neutron scattering in orthorhombic KNbO3, J. Phys. C: Solid State Phys. 7, 2521 (1974).

R. Currat, H. Buhay, C. H. Perry, and A.M. Quittet, Inelastic neutron scattering study of anharmonic interactions in orthorhombic KNbO, Phys. Rev. B 40, 10741 (1989).

M. DiDomenico, Jr., S. P. S. Porto, and S. H. Wemple, “Evidence from Raman Scattering for an Over-Damped Soft Phonon Mode in BaTiO3,” Phys. Rev. Lett., 19 [15] 855-57 (1967).

M. H. Fry, and D. A. Payne, Phys. Rev. B, 54 [2] 3158-(1996).

R. Fahri, M. EL Massi, A. Simon, and J. Ravez, “A Raman and Dielectric Study of Ferroelectric Ba(Ti1-xZrx)O3 Ceramics,” Eur. J. Phys. B, 9 [3] 599-604 (1999).

M. D. Fontana, K. Laabidi, and B. Jannot, “Quasimodes and a Central Peak in BaTiO3,” J. Phys.: Condens. Matter, 6 [3] 8923-30 (1994).

J. Harada, M. Watanabe, S. Kodera, and J. Honjo, “Diffuse Streak Diffraction Pattern of Electron and X-ray due to Low Frequency Optical Modes in Tetragonal BaTiO3,” J. Phys. Soc. Japan, 20 [2] 630-31 (1965).

J. Harada, M Tanaka, G Honjo , Journal of the Physical Society of Japan, Thermal Diffuse Streak in Electron Diffraction and Low Frequency Transverse Optic Lattice Waves of Barium Titanate, J. Phys. Soc. Jpn. 21, 968-972 (1966)

J. Harada and G. Honjo, X-ray studies of the lattice vibration in tetragonal barium titanate J. Phys. Soc. Jpn. 22, 45 (1967).

J. Harada, J. D. Axe, and G. Shirane, Neutron scattering study of soft modes in cubic BaTiO3, Phys. Rev. B 4, 155 (1971).

D. Hennings, A. Schnell, and G. Simon, “Diffuse Ferroelectric Phase Transitions in Ba(Ti1-yZry)O3 Ceramics,” J. Am. Ceram. Soc., 65 [11] 539-44 (1982).


J. Hlinka, T. Ostapchuk, D. Nuzhnyy, J. Petzelt, P. Kuzel, C. Kadlec, P. Vanek, I. Ponomareva, and L. Bellaiche, Coexistence of the Phonon and Relaxation Soft Modes in the Terahertz Dielectric Response of Tetragonal BaTiO3, Phy. Rev. Let., 101, 167402 (2008)

J. Y. Hong, and H. Y. Lu, “Polar Nano-Regions and Dielectric Properties of BaTiO3-Based Y5V Multilayer Ceramic Capacitors,” unpublished results, 2013.

Y. H. Hu, H. M. Chan, X. W. Zhang, and M. P. Harmer, “SEM and TEM Studies of Ferroelectric Domains in Doped-BaTiO3,” J. Am. Ceram. Soc., 69 [8] 594-602 (1986).

G. L. Hua, T. R. Welberry, R. L. Withers, and J. G. Thompson, “An Electron Diffraction and Lattice-Dynamical Study of the Diffuse Scattering in β-Cristobalite, SiO2,” J. Appl. Crystal., 21 [5] 458-65 (1988).

Y. J. Jiang, L. Z. Zeng, R. P. Wang, Y. Zhu, and Y. L. Liu, “Fundamental and Second-Order Raman Spectra in BaTiO3,” J. Raman Spectro., 27 [1] 31-34 (1996).

F. A. Kassan-Ogly, and V. E. Naish, “The Immanent Chaoitzation of Crystal Structures ad Resulting Diffuse Scattering. II, Crystalchemical Conditions of Perosvkite Chaotization,” Acta Cryst., B42 [4] 307-13 (1986).

K. Kinoshita, and A. Yamaji, “Grain-Size Effects on Dielectric Properties in Barium Titanate Ceramics,” J. Appl. Phys., 47 [1] 371-73 (1976).

H. Kishi, Y. Mizuno, and H. Chazono, “Base Metal-Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspective,” Jap. J. Appl. Phys., 42 [Part 1, 1] 1-15 (2003).

K.Komatsu and K.Teramoto, Diffuse Streak Patterns from Various Crystals in X-Ray and Electron Diffraccion, J. Phys. Soc. Jpn. 21, 1152-1159 (1966)



J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, and A. Simon, “High-Pressure
Raman Investigation of the Pb-Free Relaxor BaTi0.65Zr0.35O3,” Phys. Rev. B, 69, 092104–1–4 (2004).

Lines, M. and A. Glass, Principles and Applications of Ferroelectrics and
Related Materials, Oxford University Press, Oxford, 1977.

M. Lambert, R. Comés, The chain structure and phase transition of BaTiO3 and KNbO3 Solid State Communications, 7, [2] 305–308 (1969)

H. W. Lee, M. S. H. Chu, and H. Y. Lu, “Phase Mixture and Reliability of BaTiO3-Based X7R Multilayer Ceramic Capacitors: X-Ray Diffractometry and Raman Spectroscopy,” J. Am. Ceram. Soc., 94 [5] 1556-62 (2011).

H. W. Lee, M. S. H, Chu, and H. Y. Lu, “Crystal Symmetry of BaTiO3 Grains in X7R Multilayer Ceramic Capacitors,” J. Am. Ceram. Soc., 94 [4] 1289-96 (2011).

Y. Liu, R. L. Withers, B. Nguyen, and K. Elliot, “Structurally Frustrated Polar Nanoregions in BaTiO3-Based Relaxor Ferroelectric Systems,” Appl. Phys. Lett., 91 [15] 152907-1-3 (2007).

Y. Liu, R. L. Withers, X. Wei, and J. D. Fitz Gerald, “Structured Diffuse Scattering and Polar Nano-regions in the Ba(Ti1-xSnx)O3 Ferroelectric Relaxor System,” J. Solid Stat. Chem., 180 [3] 858-65 (2007).

Y. Liu, and R. L. Withers,”Structural Disorder, Polarization and the Normal to Relaxor Transition in BaTiO3 Based Perovskites,” Ferroelectrics, 402 [1] 3-9 (2010).

H. Y. Lu, J. S. Bow, and W. H. Deng, “Core-Shell Structures in ZrO2-Modified BaTiO3 Ceramic,” J. Am. Ceram. Soc., 73 [12] 3562-68 (1990).

K. A. Muller and W. Berlinger, Microscopic probing of order-disorder versus displacive behavior in BaTiO3 by Fe3+ EPR, Phys. Rev. B 34, 6130 (1986).

S. Miao, J. Pokorny, U. M. Pasha, O. P. Thakur, D. C. Sinclair, and I. M. Reaney, “Polar Order and Diffuse Scatter in Ba(Ti1-xZrx)O3 Ceramics,” J. Appl. Phys., 106 [11] 114111-1-6 (2009).

D. E. McCauley, M. S. H. Chu, and M. H. Megherhi, “pO2-Dependence of the Diffuse-Phase Transition in Base Metal Capacitor Dielectrics,” J. Am. Ceram. Soc., 89 [1] 193-206 (2006).

T. Nagai, K. Iijima, H. J. Hwang, M. Sando, T. Sekino, and K. Niihara, “Effect of MgO-doping on the Transformations of BaTiO3,” J. Am. Ceram. Soc., 83 [1] 107-12 (2000).

R. Naik, J. J. Nazarko, C. S. Flattery, U. D. Venkateswaran, V. M. Naik, M. S. Mohammed, G. W. Auner, J. V. Mantese, N. W. Schubring, A. L. Micheli, and A. B. Catalan, “Temperature Dependence of the Raman Spectra of Polycrystalline Ba1-xSrxTiO3,” Phys. Rev. B, 61 [17] 11367-372 (2000).

A. C. Nunes, J. D. Axe, and G. Shirane, A Neutron Study of Diffuse Scattering in Cubic KNbO3, Ferroelectrics 2, 291 (1971).

K. Namikawa, M. Kishimoto, K. Nasu, E. Matsushita, R. Z. Tai, K. Sukegawa,H.Yamatani, H. Hasegawa, M. Nishikino, M. Tanaka, and K. Nagashima, Phys. Rev. Lett. 103, 197401 (2009).

R. Naik, J. J. Nazarko, C. S. Flattery, U. D. Venkateswaran, V. M. Naik, M. S. Mohammed, G. W. Auner, J. V. Mantese, N. W. Schubring, A. L. Micheli, and A. B. Catalan, “Temperature Dependence of the Raman Spectra of Polycrystalline Ba1-xSrxTiO3,” Phys. Rev. B, 61 [17] 11367-372 (2000).

H. D. Park, J. D. Nance, M. S. H. Chu, and Y. Avniel, ”Multilayer Ceramic Chip Capacitors with High Reliability Compatible with Nickel Electrodes,” U.S. Patent No. 6,185,087, Feb. 6, 2001.

C. H. Perry, and D. B. Hall, “Temperature-Dependence of the Raman Spectra of BaTiO3,” Phy. Rev. Lett., 15 [17] 600-2 (1965).

J. Petzelt, S. Kamba, and J. Hlinka, “Ferroelectric Soft Modes in Ceramics and Thin Films”; pp. 387-422 in Recent Developments in Advanced Functional Materials, Edited by L. Mitoseriu. Transworld Res. Network, Trivandrum, Inida, 2007.

R. Pirc, and R. Blinc, “Off-Center Ti-Model of BaTiO3,” Phys. Rev. B, 70 [13] 134107-1-8 (2004).

J. Pokorny, U. M. Pasha, L. Ben, O. P. Thakur, D. C. Sinclair, and I. M. Reaney, “Use of Raman Spectroscopy to Determine the Site Occupancy of Dopants in BaTiO3,” J. Appl. Phys., 109 [11] 114110-1-5 (2011).

A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, Phys. Rev. Lett. 108, 247601 (2012).

B. Ravel, E. A. Stern, R. I. Vedrinski, and V. Kraizman, Local structure of the lead-free relaxor ferroelectric KxNa1− x0.5Bi0.5 TiO3, Ferroelectrics 206-207, 407 (1998).

G. Shirane, B. C. Frazer, V. J. Minkiewicz, J. A. Leake, and A. Linz, Soft optic modes in barium titanate, Phys. Rev. Lett. 19, 234 (1967).

Y. Shiratori, C. Pithan, J. Dornseiffer, and R. Waser, “Raman Scattering Studies in Nanocrystalline BaTiO3, Part I: Isolated Particles and Aggregates,” J. Raman Spectro., 38 [10] 1288-99 (2007).

G. A. Smolenskii, V.A. Bokov, V.A. Isupov et al., Physics of Ferroelectric Phenomena, Gordon and Breach, New York, 1984.

G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and S. N. Popov,
”Ferroelectrics with Diffuse Phase Transitions,” Fizika Tverdogo Tela (Sankt-
Peterburg), 2, 2906–18 (1960).

G. A. Smolenskii, “Physical Phenomena in Ferroelectrics with Diffused Phase
Transition,” J. Phys. Soc. Jpn., 28, 26–37 (1969).

G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and S. N. Popov,
“Ferroelectrics with Diffuse Phase Transitions,” Sov. Phys. Solid State, 2 [11]
2584 (1961).

G. A. Smolenski, “Ferroelectrics with DPT,” Ferroelectrics, 53 [1] 129-35 (1984).

A. K. Sood, N. Chandrabhas, D. V. S. Muthu, A Jayaraman, “Phonon Interface in BaTiO3: High Pressure Raman Study,” Phys. Rev. B, 51 [14] 8892-96 (1995).

J. P. Sokoloff, L. L. Chase, and R. Rytes, “Direct Observations of Relaxation Modes in KNbO3 and BaTiO3 Using Inelastic Light Scattering,” Phys. Rev. B, 38 [1] 597-605 (1988).

K. Tsuda, R. Sano and M. Tanaka, “Nanoscale local structures of rhombohedral symmetry in the orthorhombic and tetragonal phases of BaTiO3 studied by convergent-beam electron diffraction,” Phys. Rev. B, 86, 214106-214110 (2012)

H. Takahasi, A note on the theory of barium titanate, J. Phys. Soc. Jpn. 16, 1685 (1961).

N. Takesue, M Maglione and H. Chen, “X-ray thermal-diffuse-scattering study of soft modes in paraelectric BaTiO3,” Phys. Rev. B, 51 [10] 6696-6699 (1995)

R. Z. Tai, K. Namikawa, A. Sawada, M. Kishimoto, M. Tanaka, P. Lu, K. Nagashima, H. Muruyama, and M. Ando, “Picosecond View of Microscopic-Scale Polarization Clusters in Paraelectric BaTiO3,” Phys. Rev. Lett., 93 [8] 087601-1-4 (2004).

D. A. Tenne, and X. Xi, ”Raman Spectroscopy of Ferroelectric Thin Films and Superlattice,” J. Am. Ceram. Soc., 91 [6] 1820-34 (2008).

G. R. Thomas, “Application Space Influence Electronic Ceramic Materials,” Bull. Am. Ceram. Soc., 80 [10] 29-33 (2001).

K. Uchino, and S. Nomura, “Critical Exponents of the Dielectric Constants in Diffuse-Phase-Transition Crystals,” Ferroelectrics Lett., 44 [1] 55-61 (1982).

G. Volkel and K. A. Muller, Order-disorder phenomena in the low-temperature phase of BaTiO3, Phys. Rev. B 76, 094105 (2007).



D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, “Freezing of the Polarization Fluctuations in Lead Magnesium Niobate Relaxors,” J. Appl. Phys., 68, 2916–21 (1990).

D. Viehland, J. F. Li, S. J. Jang, and L. E. Cross, “Dipolar—Glass Model for
Lead Magnesium Niobate,” Phys. Rev. B, 43 [10] 8316–20 (1991).

V. Westphal, W. Kleemann, and M. D. Glinchuk, “Diffuse Phase Transitions
and Random—Field—Induced Domain States of the Relaxor Ferroelectric
Pb(Mg1/3Nb2/3)O3,” Phys. Rev. Lett., 68, 847–50 (1992).

Y. C. Wu, D. E. McCauley, M. S. H. Chu, and H. Y. Lu, “The {111} Modulated Domains in Tetragonal BaTiO3,” J. Am. Ceram. Soc., 89 [9] 2702-09 (2006).

Y. C. Wu, J. S. Lee, H. Y. Lu, and C. L. Hu, “Microstructure Analysis of the Y5V Multilayer Ceramic Capacitors Based on BaTiO3,” J. Electroceram., 18 [1] 13-24 (2007).

Y. C. Wu, D. E. McCauley, M. S. H. Chu, and H. Y. Lu, “Dielectric Behavior and Second Phase in X7R-Formulated BaTiO3 Sintered in Low-Oxygen Partial Pressures,” J. Am. Ceram. Soc., 90 [9] 2926-34 (2007).

G. Xu, Z. Zhong, Y. Bing, Z. G. Ye, and G. Shirane, “Electric-Field induced Redistribution of Polar Nano-region in a Ferroelectric Relaxor,” Nature Mater., 5 [2] 134-40 (2012).

B. Zalar, V. V. Laguta, and R. Blinc, NMR evidence for the coexistence of order-disorder and displacive components in barium titanate, Phys. Rev. Lett. 90, 037601 (2003).

B. Zalar, A. Lebar, J. Seliger, R. Blinc, V. V. Laguta, and M. Itoh, NMR study of disorder in BaTiO3 and SrTiO3, Phys. Rev. B 71, 064107 (2005).

W. Zhong, D. Vanderbilt, and K.M. Rabe, Phase Transitions in BaTiO3 from First Principles, Phys. Rev. Lett. 73, 1861 (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊