跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 19:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱致穎
研究生(外文):Chih-Ying Chu
論文名稱:含高折射率物質之全像儲存材料的製備與光學性質量測
論文名稱(外文):Fabrication and Optical Property of Holographic Storage Materials with Refractive Index Species
指導教授:許子建許子建引用關係
指導教授(外文):Tzu-Chien Hsu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:101
中文關鍵詞:有機-無機基材丙烯醯胺繞射效率體積全像溶膠凝膠法
外文關鍵詞:Diffraction efficiencySol-gelOrganic-inorganic substrateAcrylamideVolume hologram
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用有機無機基材之丙烯醯胺感光高分子,以綠光(532 nm)進行光學干涉,形成光柵,應用於光學全像儲存材料。以四乙氧基矽烷(TEOS)及矽烷偶合劑(γ-GPTMS)作為前驅物,加入單體丙烯醯胺及光起始劑(Irgacure 784),並添加不同比例之四丁氧基鈦(Ti(OBu)4)進行溶膠凝膠反應。以單體添加量、高折射率物質(Ti(OBu)4)為實驗參數對繞射效率的影響,當單體(AA)添加30 wt%時,有最佳的繞射效率,再加入Ti(OBu)4使繞射效率由54.33±2.79%增加至64.08±3.34%。改變光強度探討繞射點散射之現象,並以光聚合反應及高階繞射探討光柵成因與衰退。試片照光干涉後,單體成功進行鏈聚合反應,由傅立葉轉換紅外線光譜儀分析雙鍵轉換率。當試片照光達最大繞射效率,雙鍵轉換率為40~50%,持續照光後轉換率達70%,藉此探討雙鍵轉換率對光柵的影響。以AFM掃描光柵週期及深度,而光柵深度與繞射效率呈現正相關。
利用Kogelnik波動理論計算體積全像片的Δn值,並透過理論計算求得薄全像試片的Δn值分布,未來可藉由薄全像結論推算出體積全像的Δn值分布,進而了解試片中單體聚合程度。
In this study, the holographic storage materials are prepared with organic-inorganic substrate and acrylamide-based photopolymer. Holographic grating is recorded by green light (532 nm). The photopolymeric composite used in this work is based on acrylamide (AA) as monomer , precursor such as tetraethyl orthosilicate (TEOS) and 3-Glycidoxypropyltrimethoxy silane (γ-GPTMS), and Bis(η5-2,4-cylcopentadien-1-yl)-bis[2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl]titanium (Irgacure 784) as photoinitiator.The photopolymer film incorporates Titanium(IV) butoxide (Ti(OBu)4) as high refractive index species (HRIS). A diffraction efficiency of 54.33±2.79 % with acrylamide concentration of 30 wt% and a film thickness of 0.88 mm are obtained. The diffraction efficiency is up to 64.08±3.34 % by adding Ti(OBu)4.The diffraction point scattering is investigated by varying the intensity of light exposure. The grating growth and decay are influenced by the photopolymerization and high-order diffraction. Holographic recording is attempted by photopolymerization of the monomers, and the C=C conversion rate is explored by FTIR spectroscopies. The period and depth of grating is investigated by AFM. The depth of grating is related to diffraction efficiency.
It is calculated the Δn of volume hologram by Kogelnik coupled wave theory and the distribution of Δn in thin hologram by theory of computation. In the future, the distribution of Δn in volume hologram can be calculated by the result of thin hologram to realize the photopolymerization rate.
論文審定書 i
誌謝 ii
摘要 iii
目錄 v
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 理論基礎與文獻回顧 3
2.1 全像術簡介 3
2.2 全像儲存材料 4
2.2.1 鹵化銀感光材料 4
2.2.2 重鉻酸鹽明膠 4
2.2.3 光折變材料 4
2.2.4 光致變色材料 5
2.2.5 感光高分子 5
2.3 有機-無機基材 6
2.3.1 有機-無機混合基材 6
2.3.2 有機金屬基材 7
2.3.3 有機-無機網狀基材 8
2.4 單體丙烯醯胺 9
2.5 高折射率物質 9
2.6 光起始劑 12
2.7 光柵 13
2.7.1 相位光柵及振幅光柵的形成 13
2.7.2 光柵形成原理 13
2.7.3 體積全像光柵 14
2.8 溶膠-凝膠法 16
2.8.1 溶膠-凝膠法簡介 16
2.8.2 影響溶膠凝膠法的主要因素 17
2.9 材料體積收縮因素 20
2.9.1 毛細現象 20
2.9.2 排斥力 21
2.9.3 濕度位能(壓力) 21
2.9.4 滲透壓 22
2.9.5 化學反應 22
2.10 防止材料龜裂 23
2.10.1 時效處理 23
2.10.2 加入化學添加劑 23
2.10.3 製造較大的孔洞 23
2.10.4 超臨界乾燥 23
第三章 研究方法 24
3.1 實驗藥品 24
3.2 實驗流程 25
3.3 光學裝置 27
3.4 試片檢測流程 28
3.5 實驗儀器 29
3.5.1 光學顯微鏡 29
3.5.2 原子力顯微鏡 29
3.5.3 掃描式電子顯微鏡 29
3.5.4 薄膜特性分析儀 29
3.5.5 傅立葉轉換紅外線光譜儀 30
3.5.6 拉曼光譜儀 30
3.5.7 熱重量損失分析儀 30
3.5.8 比表面積分析儀 30
3.5.9 X光繞射儀 31
3.6 試片代碼 31
第四章 結果與討論 33
4.1 改變光學架構 33
4.2 改變藥品添加量 34
4.2.1 單體丙烯醯胺(AA)對光學性質影響 34
4.2.2 高折射率材料Ti(OBu)4對光學性質影響 36
4.2.3 高階繞射對於最大繞射效率影響 38
4.3 繞射點產生散射現象 41
4.4 傅立葉轉換紅外線光譜圖之分析 43
4.5 拉曼光譜圖之分析 52
4.6 熱重分析 53
4.7 光學顯微鏡之觀測 56
4.8 掃描式電子顯微鏡之觀測 60
4.9 原子力顯微鏡之觀測及分析 61
4.10 Δn值之分析 68
4.10.1 薄膜特性分析儀之分析 68
4.10.2 Δn值之計算 69
4.11 理論計算 70
第五章 結論 73
第六章 建議未來工作 74
6.1 提升繞射效率: 74
6.2 減緩繞射效率衰退 74
參考文獻 75
附錄 79
A . 傅立葉紅外線光譜儀 79
B . X光繞射儀 80
C . 比表面積分析儀 81
D . 薄全像 83
E . 理論計算 85
[1] A.T. Friberg, R. Dändliker, Advances in information optics and photonics, SPIE Press, 2008.
[2] M.W. Daniels, J. Sefcik, L.F. Francis, A.V. McCormick, Journal of colloid and interface science, 219 (1999) 351-356.
[3] C.Y. Kuo, T.C. Hsu, W.H. Su, J. Non-Cryst. Solids, 358 (2012) 735-740.
[4] O.V. Sakhno, L.M. Goldenberg, J. Stumpe, T.N. Smirnova, Nanotechnology, 18 (2007) 7.
[5] D. Gabor, Nature, (1948) 777-778.
[6] P.J. Vanheerden, Appl. Optics, 2 (1963) 387-392.
[7] N. Phillips, D. Porter, Journal of Physics E: Scientific Instruments, 9 (1976) 631.
[8] J.W. Goodman, S.C. Gustafson, Optical Engineering, 35 (1996) 1513-1513.
[9] W.R. Graver, J.W. Gladden, J.W. Eastes, Appl. Optics, 19 (1980) 1529-1536.
[10] D.K. Angell, Appl. Optics, 26 (1987) 4692-4702.
[11] T.A. Shankoff, Appl. Optics, 7 (1968) 2101-&;.
[12] R. Changkakoti, S.V. Pappu, Appl. Optics, 25 (1986) 798-801.
[13] F.S. Chen, Lamacchi.Jt, D.B. Fraser, Appl. Phys. Lett., 13 (1968) 223-225.
[14] P. Gunter, Journal De Physique, 44 (1983) 141-147.
[15] J.O. White, M. Croningolomb, B. Fischer, A. Yariv, Appl. Phys. Lett., 40 (1982) 450-452.
[16] M. Irie, Chem. Rev., 100 (2000) 1683-1683.
[17] M. Serwadczak, S. Kucharski, Journal of sol-gel science and technology, 37 (2006) 57-62.
[18] H. Dürr, H. Bouas-Laurent, Photochromism: Molecules and Systems: Molecules and Systems, Access Online via Elsevier, 2003.
[19] A. Murciano, S. Blaya, L. Carretero, M. Ulibarrena, A. Fimia, Appl. Phys. B-Lasers Opt., 81 (2005) 167-169.
[20] M.L. Calvo, P. Cheben, J. Opt. A-Pure Appl. Opt., 11 (2009) 11.
[21] A. Fimia, P. Acebal, S. Blaya, L. Carretero, A. Murciano, R. Madrigal, SPIE Europe Optics+ Optoelectronics, International Society for Optics and Photonics, 2009, pp. 735802-735801-735815.
[22] S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R.F. Madrigal, M. Ulibarrena, D. Levy, Appl. Optics, 37 (1998) 7604-7610.
[23] L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, A. Fimia, Opt. Express, 12 (2004) 1780-1787.
[24] A. Murciano, L. Carretero, S. Blaya, R.F. Madrigal, A. Fimia, Appl. Phys. B-Lasers Opt., 83 (2006) 619-622.
[25] S. Blaya, L. Carretero, R. Madrigal, M. Ulibarrena, A. Fimia, Applied Physics B, 74 (2002) 603-605.
[26] K. Curtis, D. Psaltis, Appl. Optics, 33 (1994) 5396-5399.
[27] N. Suzuki, Y. Tomita, Appl. Optics, 46 (2007) 6809-6814.
[28] N. Suzuki, Y. Tomita, Appl. Optics, 43 (2004) 2125-2129.
[29] Y. Tomita, N. Suzuki, K. Chikama, Optics letters, 30 (2005) 839-841.
[30] N. Hayashida, A. Kosuda, J. Yoshinari, Jpn. J. Appl. Phys., 47 (2008) 5895-5899.
[31] Y.M. Chang, S.C. Yoon, M. Han, Opt. Mater., 30 (2007) 662-668.
[32] M. Feuillade, C. Croutxe-Barghorn, L. Mager, C. Carre, A. Fort, Chem. Phys. Lett., 398 (2004) 151-156.
[33] S. Lee, Y.-C. Jeong, Y. Heo, S.I. Kim, Y.-S. Choi, J.-K. Park, J. Mater. Chem., 19 (2009) 1105-1114.
[34] S. Calixto, Appl. Optics, 26 (1987) 3904-3910.
[35] Y.B. Boiko, V.S. Solovjev, S. Calixto, D.-J. Lougnot, Appl. Optics, 33 (1994) 787-793.
[36] W.S. Kim, Y.C. Jeong, J.K. Park, Opt. Express, 14 (2006) 8967-8973.
[37] M. Moothanchery, I. Naydenova, V. Toal, Opt. Express, 19 (2011) 13395-13404.
[38] S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, A. Fimia, Appl. Phys. Lett., 84 (2004) 4765-4767.
[39] N. Suzuki, Y. Tomita, T. Kojima, Appl. Phys. Lett., 81 (2002) 4121-4123.
[40] C. Sanchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, R. Nussbaumer, Adv. Funct. Mater., 15 (2005) 1623-1629.
[41] A.B. Samui, Recent patents on materials science, 1 (2008) 74-94.
[42] S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. Madrigal, R. Sastre, F. Amat-Guerri, Journal of Modern Optics, 45 (1998) 2573-2584.
[43] S. Blaya, L. Carretero, R. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, Applied Physics B, 77 (2003) 639-662.
[44] P. Cheben, M.L. Calvo, Appl. Phys. Lett., 78 (2001) 1490-1492.
[45] C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Access Online via Elsevier, 1990.
[46] R.K. Iler, Wiley (New York), 1979.
[47] H. Cogan, C. Setterstrom, Industrial &; Engineering Chemistry, 39 (1947) 1364-1368.
[48] A. Soleimani Dorcheh, M. Abbasi, Journal of materials processing technology, 199 (2008) 10-26.
[49] J.N. Israelachvili, Chemica Scripta, 25 (1985) 7-14.
[50] M. Nouri-Khezrabad, M. Braulio, V. Pandolfelli, F. Golestani-Fard, H. Rezaie, Ceramics International, (2012).
[51] K. Omura, Y. Tomita, Journal of Applied Physics, 107 (2010) 023107.
[52] P. Innocenzi, J. Non-Cryst. Solids, 316 (2003) 309-319.
[53] K. Balachandaran, R. Venckatesh, R. Sivaraj, International Journal of Engineering Science and Technology, 2 (2010) 3695-3700.
[54] L. Vasconcelos, D. Cordeiro, V.C. Costa, E.H. Martins Nunes, A.C. Soares Sabioni, M. Gasparon, W.L. Vasconcelos, Materials Sciences &; Applications, 2 (2011).
[55] M. Aizawa, Y. Nosaka, N. Fujii, J. Non-Cryst. Solids, 128 (1991) 77-85.
[56] S. Jeong, J. Moon, J. Non-Cryst. Solids, 351 (2005) 3530-3535.
[57] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The handbook of infrared and Raman characteristic frequencies of organic molecules, Elsevier, 1991.
[58] M. Ivanda, R. Clasen, M. Hornfeck, W. Kiefer, J. Non-Cryst. Solids, 322 (2003) 46-52.
[59] P.F. McMillan, R.L. Remmele Jr, The American mineralogist, 71 (1986) 772-778.
[60] G. S. Tienderson, M.E. Fleet, Structure, 33 (1995) 399-408.
[61] P. Xu, H. Wang, R. Lv, Q. Du, W. Zhong, Y. Yang, Journal of Polymer Science Part A: Polymer Chemistry, 44 (2006) 3911-3920.
[62] C.M. Whang, C.S. Yeo, Y.H. Kim, BULLETIN-KOREAN CHEMICAL SOCIETY, 22 (2001) 1366-1370.
[63] B. Richards, E. Wolf, Proceedings of the Physical Society. Section B, 69 (1956) 854.
[64] S.M. Teng, Master Thesis, (2012).
[65] R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem., 57 (1985) 603-619.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊