跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯瀚翔
研究生(外文):Han-hsiang Ko
論文名稱:射頻濺鍍成長之非極化a-面氧化鋅的結構與光學特性
論文名稱(外文):Structural and optical properties of nonpolar a-ZnO grown by Rf-sputtering
指導教授:陳永松陳永松引用關係
指導教授(外文):Quark Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:55
中文關鍵詞:氧化鋅a面射頻濺鍍非極化面光激螢光光譜氧含量
外文關鍵詞:photoluminescenceZnOoxygen contentrf sputteringnonpolara-plane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討蒸鍍在r-Al2O3基板上之非極化面a-ZnO薄膜(a-ZnO/r-Al2O3)的結構與光學特性分析。以射頻濺鍍機成長a-ZnO薄膜在r-Al2O3基板上,並分別藉由XRD(θ-2θ、φ-scan、rocking curve以及GIXRD)、SEM與PL分析探討不同參數下a-ZnO薄膜的晶相、薄膜厚度、表面形貌變化以及薄膜的光學特性。
首先我們嘗試變化長晶溫度以得到單晶的a-ZnO薄膜,並從φ scan得知a-ZnO薄膜與r-Al2O3基板之磊晶關係為:[0002]ZnO || [¯1 011]Al2O3且[1¯1 00]ZnO || [1¯2 10]Al2O3。成長溫度越高a-ZnO薄膜rocking curve的FWHM就越低。SEM發現表面的長條島狀物的長軸為[0002]ZnO。
接著變化PAr:PO2分壓比,觀察氧對a-ZnO薄膜的影響,從θ-2θ和rocking curve發現PAr:PO2=2.8:1為較好的長晶分壓比,從SEM發現,氧分壓越高,會因為c方向的成長速率降低的關係,使構成樣品表面形貌之島狀物的長軸會縮短。從室溫PL光譜得知,薄膜的晶相與鋅空缺與氧含量有關,從變溫PL光譜觀察到,在100 K以前,代表FX、DAP以及VZn能量之峰值位置不變,因此推測推測其電子結構是在降到100 K以下時有三維轉二維的現象。
This thesis focuses on studying the structural and optical properties of nonpolar a-ZnO thin films grown on r-Al2O3 substrates (a-ZnO/r-Al2O3). The crystallographic qualities and orientations of a-ZnO thin films grown by rf-sputtering are analyzed by X-ray diffractometry (XRD) through θ-2θ scan, φ-scan, rocking curve and GIXRD. The morphology and cross section of the thin films grown by different parameters were analyzed by SEM. From PL measurement, we knew the properties of carries.
The growth of a-ZnO epitaxial thin films was attempted at different substrate temperatures. The epitaxial relations between the thin films and substrates have been determined by the φ-scans to be [0002]ZnO || [¯1 011]Al2O3 and [1¯1 00]ZnO || [1¯2 10]Al2O3. The full width at half maximum (FWHM) of rocking curve for each sample decreases with increasing substrate temperature. From SEM observations, the surface morphology demonstrates elongated granular structures along the c-axis.
The properties of the a-ZnO thin films depend on the PAr:PO2 ratios and 2.8:1 gives the best results byθ-2θand rocking curve . When the flux of oxygen was increased, the aspect ratio of the elongated grains would decrease. From room-temperature photoluminescence (RT-PL) spectroscopy, the zinc vacancy and oxygen content determine much of the observed material properties of the a-ZnO thin films. According to variable-temperature dependent PL spectroscopy, the energy positions of FX, DAP and VZn peaks do not shift as a result of temperature change, which we contemplate as a 3D to 2D transition of the electronic behaviors as the temperature decreases.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
圖目錄 vii
表目錄 x
第一章 序論 1
1-1 前言 1
1-2 氧化鋅 2
第二章 實驗儀器與理論 3
2-1濺鍍機 3
2-2 X-ray繞射儀 5
2-2-1 θ-2θ scan 6
2-2-2 φ scan 7
2-2-3 Rocking curve 7
2-2-4 GIXRD 8
2-2-5 Pole figure 8
2-3 光激螢光光譜 9
2-4掃描式電子顯微鏡 11
第三章 實驗設計 13
第四章 結果與討論 14
4-1 Temperature Dependence of r-Al2O3 substrate 14
4-1-1 a-ZnO成長參數 14
4-1-2 XRD 15
4-1-3 SEM 21
4-2 Flux-ratio Dependence 22
4-2-1 a-ZnO成長參數 22
4-2-2 XRD 23
4-2-3 SEM 28
4-2-4 RT and Hall effect 29
4-2-5 PL 33
第五章 結論 41
文獻探討 42
[1]J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, "UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering," Advanced Materials, vol. 18, pp. 2720-2724, 2006.
[2]S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, et al., "ZnO p-n junction light-emitting diodes fabricated on sapphire substrates," Applied Physics Letters, vol. 88, pp. 031911, 2006.
[3]K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, and A. Hagfeldt, "A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes," Solar Energy Materials and Solar Cells, vol. 73, pp. 51-58, 2002.
[4]K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, et al., "Nanostructured ZnO electrodes for dye-sensitized solar cell applications," Journal of Photochemistry and Photobiology A: Chemistry, vol. 148, pp. 57-64, 2002.
[5]V. Bhosle, A. Tiwari, and J. Narayan, "Electrical properties of transparent and conducting Ga doped ZnO," Journal of Applied Physics, vol. 100, pp. 033713, 2006.
[6]X.-l. Chen, F. Wang, X.-h. Geng, D.-k. Zhang, C.-c. Wei, X.-d. Zhang, et al., "New natively textured surface Al-doped ZnO-TCOs for thin film solar cells via magnetron sputtering," Materials Research Bulletin, vol. 47, pp. 2008-2011, 2012.
[7]J.-B. Lee, M.-H. Lee, C.-K. Park, and J.-S. Park, "Effects of lattice mismatches in ZnO/substrate structures on the orientations of ZnO films and characteristics of SAW devices," Thin Solid Films, vol. 447–448, pp. 296-301, 2004.
[8]N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. Chen, and Y. Lu, "Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire," Applied Physics Letters, vol. 85, pp. 3702-3704, 2004.
[9]G. Z. Xing, B. Yao, C. X. Cong, T. Yang, Y. P. Xie, B. H. Li, et al., "Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering," Journal of Alloys and Compounds, vol. 457, pp. 36-41, 2008.
[10]T. Shimomura, D. Kim, and M. Nakayama, "Optical properties of high-quality ZnO thin films grown by a sputtering method," Journal of Luminescence, vol. 112, pp. 191-195, 2005.
[11]T. L. Yang, D. H. Zhang, J. Ma, H. L. Ma, and Y. Chen, "Transparent conducting ZnO:Al films deposited on organic substrates deposited by r.f. magnetron-sputtering," Thin Solid Films, vol. 326, pp. 60-62, 1998.
[12]K. Y. Cheong, N. Muti, and S. R. Ramanan, "Electrical and optical studies of ZnO:Ga thin films fabricated via the sol–gel technique," Thin Solid Films, vol. 410, pp. 142-146, 2002.
[13]J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang, "p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations," Materials Letters, vol. 57, pp. 3311-3314, 2003.
[14]D.-K. Hwang, H.-S. Kim, J.-H. Lim, J.-Y. Oh, J.-H. Yang, S.-J. Park, et al., "Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering," Applied Physics Letters, vol. 86, pp. 151917, 2005.
[15]A. Onodera and M. Takesada, Electronic Ferroelectricity in II-VI Semiconductor ZnO, 2012.
[16]T. Hanada, "Basic Properties of ZnO, GaN, and Related Materials," in Oxide and Nitride Semiconductors. vol. 12, T. Yao and S.-K. Hong, Eds., ed: Springer Berlin Heidelberg, pp. 3, 2009.
[17]P. Vennéguès, J. M. Chauveau, M. Korytov, C. Deparis, J. Zuniga-Perez, and C. Morhain, "Interfacial structure and defect analysis of nonpolar ZnO films grown on R-plane sapphire by molecular beam epitaxy," Journal of Applied Physics, vol. 103, pp. 083525 - 083525-7, 2008.
[18]S. K. Han, S. K. Hong, J. W. Lee, J. Y. Lee, J. H. Song, Y. S. Nam, et al., "Structural and optical properties of non-polar A-plane ZnO films grown on R-plane sapphire substrates by plasma-assisted molecular-beam epitaxy," Journal of Crystal Growth, vol. 309, pp. 121-127, 2007.
[19]D.-K. Hwang, K.-P. Kim, and D.-H. Kim, "High-quality nonpolar ZnO thin films grown on r-plane sapphire by radio frequency-magnetron sputtering," Thin Solid Films, vol. 546, pp. 18-21, 2013.
[20]D.-R. Hang, S. E. Islam, K. H. Sharma, C. Chen, C.-T. Liang, and M. M. C. Chou, "Optical characteristics of nonpolar a -plane ZnO thin film on (010) LiGaO 2 substrate," Semiconductor Science and Technology, vol. 29, pp. 085004, 2014.
[21]Y.-T. Ho, W.-L. Wang, C.-Y. Peng, M.-H. Liang, J.-S. Tian, C.-W. Lin, et al., "Growth of nonpolar ( 11 2 ¯ 0 ) ZnO films on LaAlO 3 (001) substrates," Applied Physics Letters, vol. 93, pp. 121911-121911-3, 2008.
[22]M. Birkholz, "1.Principles of X ray diffraction," in Thin Film Analysis by X-Ray Scattering, ed: Wiley-VCH Verlag GmbH &; Co. KGaA, pp. 34, 2006.
[23]P. Pant, J. D. Budai, and J. Narayan, "Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation," Acta Materialia, vol. 58, pp. 1097-1103, 2010.
[24]S. S. Kim, J. H. Je, and J. H. Kim, "Substrate effects on the heteroepitaxial growth of ZnO thin films by pulsed laser deposition," physica status solidi (c), vol. 1, pp. 2541-2544, 2004.
[25]C. C. Kuo, B. H. Lin, S. Yang, W. R. Liu, W. F. Hsieh, and C.-H. Hsu, "Surface-bound-exciton emission associated with domain interfaces in m-plane ZnO films," Applied Physics Letters, vol. 101, pp. 011901, 2012.
[26]L. Fengjuan, Z. Rui, H. Zuofu, S. Jian, H. Haiqin, L. Zhenjun, et al., "Structural and Optical Properties of Nonpolar(11-20)ZnO Films Grown by Plasma-Assisted Molecular-Beam Epitaxy," Plasma Science, IEEE Transactions on, vol. 39, pp. 700-703, 2011.
[27]T. Moriyama and S. Fujita, "Epitaxial growth of nonpolar ZnO by MOVPE," physica status solidi (c), vol. 3, pp. 726-729, 2006.
[28]X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang, and C. Yang, "Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2," Physica B: Condensed Matter, vol. 388, pp. 145-152, 2007.
[29]Y. S. Nam, S. W. Lee, K. S. Baek, and S. K. Chang, "Temperature and Polarization Dependence of the Near-Band-Edge Photoluminescence in a Non-Polar ZnO Film Grown by Using Molecular Beam Epitaxy," Journal of the Korean Physical Society, vol. 53, pp. 288-291, 2008.
[30]J. Rihani, V. Sallet, N. Yahyaoui, J. C. Harmand, M. Oueslati, and R. Chtourou, "Interdot carrier''s transfer via tunneling pathway studied from photoluminescence spectroscopy," Journal of Luminescence, vol. 129, pp. 251-255, 2009.
[31]C. Kittel, Introduction to Solid State Physics, 8th ed., 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊