跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 13:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林文彥
研究生(外文):Wen-yen Lin
論文名稱:熱退火對 n-ZnO/i-Al 2 O 3 /p-Si pin 二極體之結構、形貌和電性所造成的影響
論文名稱(外文):Effects of thermal annealing on the structure, morphology, and electrical properties of n-ZnO/i- Al 2 O 3 /p-Si pin diodes
指導教授:陳永松陳永松引用關係
指導教授(外文):Quark Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:68
中文關鍵詞:氧化鋁pin 二極體熱退火氧化鋅射頻濺鍍
外文關鍵詞:thermal annealingpin diodeAl2O3ZnOrf-sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究利用射頻濺鍍系統在 p-型矽基板上成長 n-型氧化鋅薄膜,並導
入氧化鋁作為其絕緣緩衝層,使其構成之 pin 二極體。樣品製備過程會先在矽基
板表面沉積一層純鋁,之後在氧氣環境中退火使鋁與原生氧化矽分別氧化還原為
氧化鋁與純矽,進而改善接面以利成長出高品質之氧化鋅薄膜。改變不同氧化鋅
之濺鍍功率,以求高品質的最佳鍍率;改變不同氧化鋅成長溫度,以改善晶體結
構並提升其晶體品質;利用不同溫度之熱退火改變氧化鋅晶粒大小,當晶粒越大
時晶界分布數目會跟著減少,漏電流亦隨之減小。利用 X-ray 繞射之非對稱面掃
描,如: phi scan、GIXRD 和 pole figure,分析樣品晶體結構與品質;利用掃描式
電子顯微鏡觀察樣品熱退火處理後之表面形貌變化;利用穿透式電子顯微鏡更進
一步觀察樣品之晶體微結構;將光致螢光光譜作多峰擬合,得到成長之氧化鋅能
隙,分析其能帶邊緣結構和缺陷密度;分析電性量測之漏電流與能帶結構,瞭解
pin 二極體特性。
This thesis investigates the pin diodes which were fabricated with n-type ZnO thin
films on p-type Si by rf-sputtering, using Al 2 O 3 as an insulated buffer layer. A pure Al
layer was first deposited on bare Si substrate, which was then annealed in O 2 ambient,
all meant to reduce the native SiO 2 into Si and have Al 2 O 3 formed as a crystalline layer
for high quality ZnO growth. Different sputtering powers for the ZnO meant to search
the best deposition rate. Different growth temperatures for the ZnO meant to improve
the crystal structure and quality. Different annealing temperatures for the ZnO resulted
in different grain sizes. With larger grains, the leakage current was lowered, suggesting
that grain boundaries are responsible for the leakage current. In-plane XRD, pole
figures, and GIXRD were used to exam the crystal structure and quality. SEM was used
to observe the surface morphology. TEM was used to observe the crystal micro-
structure. The results of PL data with multi-peak analysis give the band gap, defect
density, and structure of near-band edge. Through comparisons of leakage current and
energy band structure, the electrical measurement can be used to analyze the
characteristic of pin diode.
論文審定書..................................................................................................................... i
致謝............................................................................................................................... ii
摘要.............................................................................................................................. iii
Abstract ....................................................................................................................... iv
目錄............................................................................................................................... v
圖目錄.......................................................................................................................... vii
表目錄........................................................................................................................... xi
第一章 緒論.................................................................................................................. 1
1-1 前言 ........................................................................................................................1
1-2 氧化鋅(ZnO)特性 ................................................................................................... 1
1-3 氧化鋅(ZnO)成長方式 ............................................................................................ 3
1-4 研究動機 ................................................................................................................ 4
第二章 實驗儀器及理論基礎......................................................................................... 5
2-1 濺鍍(sputtering)系統及原理.................................................................................... 5
2-1-1 濺鍍系統 ............................................................................................................. 5
2-1-2 濺鍍原理 ............................................................................................................. 6
2-2 X 光繞射儀(X-ray diffraction, XRD) ........................................................................ 9
2-2-1 X-ray 特性及原理................................................................................................. 9
2-2-2 X-ray 繞射儀掃描模式........................................................................................ 11
2-3 掃描式電子顯微鏡(SEM) ..................................................................................... 13
2-4 穿透式電子顯微鏡(TEM) ..................................................................................... 14
2-5 光致螢光(PL) ....................................................................................................... 15
2-6 電性量測 .............................................................................................................. 16
2-6-1 pin 二極體 .......................................................................................................... 16
2-6-2 傳輸線模型(TLM) .............................................................................................. 18
第三章 實驗設計.......................................................................................................... 19
第四章 實驗結果與分析............................................................................................... 21
4-1 射頻濺鍍功率對氧化鋅薄膜之影響 ....................................................................... 21
4-1-1 成長參數 ........................................................................................................... 21
4-1-2 X-ray 分析結果................................................................................................... 22
4-2 成長溫度對氧化鋅薄膜之影響 .............................................................................. 26
4-2-1 成長參數 .......................................................................................................... 26
4-2-2 X-ray 分析結果.................................................................................................. 27
4-3 熱退火溫度對氧化鋅薄膜之影響 .......................................................................... 32
4-3-1 成長參數 ......................................................................................................... 32
4-3-2 X-ray 分析結果.................................................................................................. 33
4-3-3 SEM 分析結果 .................................................................................................. 41
4-3-4 TEM 分析結果 .................................................................................................. 43
4-3-5 PL 分析結果 ..................................................................................................... 46
4-3-6 I-V 電性量測結果 .............................................................................................. 48
第五章 結論................................................................................................................ 51
參考文獻...................................................................................................................... 52
附錄.............................................................................................................................. 56
[1] S. Bang, S. Lee, J. Park, S. Park, W. Jeong, and H. Jeon, &;quot;Investigation of the
effects of interface carrier concentration on ZnO thin film transistors fabricated
by atomic layer deposition,&;quot; J. Phys. D: Appl. Phys., vol. 42, pp. 235102, 2009.
[2] Z. Fu, B. Lin, G. Liao, and Z. Wu, &;quot;The effect of Zn buffer layer on growth and
luminescence of ZnO films deposited on Si substrates,&;quot; Journal of Crystal
Growth, vol. 193, pp. 316-321, 1998.
[3] T. Hanada, &;quot;Basic Properties of ZnO, GaN, and Related Materials,&;quot; in Oxide
and Nitride Semiconductors: Processing, Properties and Applications, T. Yao
and S. K. Hong, Eds, 2009, ISBN 978-3-540-88846-8.
[4] Z. L. Wang, &;quot;Zinc oxide nanostructures: growth, properties and applications,&;quot;
J. Phys.: Condens. Matter, vol. 16, pp. 829-858, 2004.
[5] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, et al., &;quot;Room-
Temperature Ultraviolet Nanowire Nanolasers,&;quot; Science, vol. 292, pp. 1897-
1899, 2001.
[6] Z. Guo-Liang, L. Bi-Xia, H. Liang, M. Xiang-Dong, and F. Zhu-Xi, &;quot;Structural
and Luminescence Properties of ZnO Thin Films Deposited by Atmospheric
Pressure Chemial Vapour Deposition,&;quot; Chinese Phys. Lett., vol. 21, pp. 1381-
1383, 2004.
[7] N. KAWAMOTO, M. FUJITA, T. TATSUMI, and Y. HORIKOSHI, &;quot;Growth of
ZnO on Si Substrate by Plasma-Assisted Molecular Beam Epitaxy,&;quot; Jpn. J. Appl.
Phys., vol. 42, pp. 7209-7212, 2003.
[8] E. Guziewicz, I. A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wójcik,
et al., &;quot;Extremely low temperature growth of ZnO by atomic layer deposition,&;quot;
Journal of Applied Physics, vol. 103, pp. 033515, 2008.
[9] A. Tiwari, M. Park, C. Jin, H. Wang, D. Kumar, and J. Narayan, &;quot;Epitaxial
growth of ZnO films on Si(111),&;quot; Journal of Materials Research, vol. 17, pp.
2480-2483, 2002.
[10] D. G. Baik and S. M. Cho, &;quot;Application of sol-gel derived films for ZnO/n-Si
junction solar cells,&;quot; Thin Solid Films, vol. 354, pp. 227-231, 1999.
[11] S. H. Jeong, B. S. Kim, and B. T. Lee, &;quot;Photoluminescence dependence of ZnO
films grown on Si(100) by radio-frequency magnetron sputtering on the growth
ambient,&;quot; Applied Physics Letters, vol. 82, pp. 2625-2627, 2003.
[12] Y. Y. Kim, S. Woo Kang, B. H. Kong, and H. K. Cho, &;quot;Epitaxial growth of high-
temperature ZnO layers on sapphire substrate by magnetron sputtering,&;quot;
Physica B: Condensed Matter, vol. 401–402, pp. 408-412, 2007.
[13] X. H. Wei, M. Q. Yue, and J. Zhu, &;quot;Orientation growth and electrical properties
53

of ZnO/BaTiO3 heterostructures on silicon substrates by chemical solution
deposition,&;quot; J. Phys. D: Appl. Phys., vol. 44, pp. 125304, 2011.
[14] C. P. Chen, M. Y. Ke, C. C. Liu, Y. J. Chang, F. H. Yang, and J. J. Huang,
&;quot;Observation of 394nm electroluminescence from low-temperature sputtered n-
ZnO∕SiO2 thin films on top of the p-GaN heterostructure,&;quot; Applied Physics
Letters, vol. 91, pp. 091107, 2007.
[15] W. L. Wang, C. Y. Peng, Y. T. Ho, and L. Chang, &;quot;Microstructure of a-plane
ZnO grown on LaAlO3 (001),&;quot; Thin Solid Films, vol. 518, pp. 2967-2970, 2010.
[16] K. Nakamura, T. Shoji, and K. Hee-Bog, &;quot;Growth of ZnO films on (012)LiTaO3
by ECR-MBE and determination of their polarity,&;quot; in Applications of
Ferroelectrics, 2000. ISAF 2000. Proceedings of the 2000 12th IEEE
International Symposium on, 2000, pp. 467-470.
[17] M. Nistor, N. B. Mandache, J. Perrière, C. Hebert, F. Gherendi, and W. Seiler,
&;quot;Growth, structural and electrical properties of polar ZnO thin films on MgO
(100) substrates,&;quot; Thin Solid Films, vol. 519, pp. 3959-3964, 2011.
[18] C. Jia, Y. Chen, G. Liu, X. Liu, S. Yang, and Z. Wang, &;quot;Growth of c-oriented
ZnO films on (001) SrTiO3 substrates by MOCVD,&;quot; Journal of Crystal Growth,
vol. 311, pp. 200-204, 2008.
[19] X. M. Fan, J. S. Lian, L. Zhao, and Y. H. Liu, &;quot;Single violet luminescence
emitted from ZnO films obtained by oxidation of Zn film on quartz glass,&;quot;
Applied Surface Science, vol. 252, pp. 420-424, 2005.
[20] F. Chaabouni, M. Abaab, and B. Rezig, &;quot;Characterization of n-ZnO/p-Si films
grown by magnetron sputtering,&;quot; Superlattices and Microstructures, vol. 39, pp.
171-178, 2006.
[21] P. Prepelita, R. Medianu, B. Sbarcea, F. Garoi, and M. Filipescu, &;quot;The influence
of using different substrates on the structural and optical characteristics of ZnO
thin films,&;quot; Applied Surface Science, vol. 256, pp. 1807-1811, 2010.
[22] B. Huang, G. He, and H. Yang, &;quot;Effects of annealing on the crystal structures
and blue emission properties of sputtered ZnO films,&;quot; Physica B: Condensed
Matter, vol. 405, pp. 4101-4104, 2010.
[23] Y. Chen, F. Jiang, L. Wang, C. Zheng, J. Dai, Y. Pu, et al., &;quot;Structural and
luminescent properties of ZnO epitaxial film grown on Si(111) substrate by
atmospheric-pressure MOCVD,&;quot; Journal of Crystal Growth, vol. 275, pp. 486-
491, 2005.
[24] A. Nahhas, H. K. Kim, and J. Blachere, &;quot;Epitaxial growth of ZnO films on Si
substrates using an epitaxial GaN buffer,&;quot; Applied Physics Letters, vol. 78, pp.
1511-1513, 2001.
[25] B. H. Lin, W. R. Liu, S. Yang, C. C. Kuo, C. H. Hsu, W. F. Hsieh, et al., &;quot;The Growth of an Epitaxial ZnO Film on Si(111) with a Gd2O3(Ga2O3) Buffer
Layer,&;quot; Crystal Growth &; Design, vol. 11, pp. 2846-2851, 2011.
[26] W. Guo, A. Allenic, Y. B. Chen, X. Q. Pan, W. Tian, C. Adamo, et al., &;quot;ZnO
epitaxy on (111) Si using epitaxial Lu2O3 buffer layers,&;quot; Applied Physics
Letters, vol. 92, pp. 072101, 2008.
[27] H. K. Yu, J. M. Baik, and J. L. Lee, &;quot;Design of an Interfacial Layer to Block
Chemical Reaction for Epitaxial ZnO Growth on a Si Substrate,&;quot; Crystal
Growth &; Design, vol. 11, pp. 2438-2443, 2011.
[28] T. Onuma, S. F. Chichibu, A. Uedono, Y.-Z. Yoo, T. Chikyow, T. Sota, et al.,
&;quot;Reduced defect densities in the ZnO epilayer grown on Si substrates by laser-
assisted molecular-beam epitaxy using a ZnS epitaxial buffer layer,&;quot; Applied
Physics Letters, vol. 85, pp. 5586-5588, 2004.
[29] F. Dadabhai, F. Gaspari, S. Zukotynski, and C. Bland, &;quot;Reduction of silicon
dioxide by aluminum in metal–oxide–semiconductor structures,&;quot; Journal of
Applied Physics, vol. 80, pp. 6505-6509, 1996.
[30] M. Birkholz, Thin Film Analysis by X-ray Scattering: WILEY-VCH Verlag
GmbH &; Co. KGaA, Weinheim, 2006, ISBN 978-3-527-31052-4.
[31] B. D. Cullity, Elements Of X Ray Diffraction: Addison-Wesley Publishing
Company, Inc., 1956, ISBN 978-0-201-61091-8.
[32] K. K. Ng, &;quot;p-i-n DIODE,&;quot; in Complete Guide To Semiconductor Devieces,
Second ed: Wiley-IEEE Press, 2002, ISBN 978-0-471-20240-0.
[33] HOU Chang-min, HUANG Ke-ke, GAO Zhong-min, LI Xiang-shan, FENG
Shou-hua, ZHANG Yuan-tao, DU Guo-tong, &;quot;Structural and Optical Properties
of ZnO Films with Different Thicknesses Grown on Sapphire by MOCVD,&;quot;
CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, vol. 22, pp. 552-555,
2006.
[34] Y. Lin, J. Xie, H. Wang, Y. Li, C. Chavez, S. Lee, et al., &;quot;Green luminescent
zinc oxide films prepared by polymer-assisted deposition with rapid thermal
process,&;quot; Thin Solid Films, vol. 492, pp. 101-104, 2005.
[35] M. G. Norton, L. A. Tietz, S. R. Summerfelt, and C. B. Carter, &;quot;Observation of
the early stages of growth of superconducting thin films by transmission
electron microscopy,&;quot; Applied Physics Letters, vol. 55, pp. 2348-2350, 1989.
[36] Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, et al.,
&;quot;Enhancement of near-band-edge photoluminescence from ZnO films by face-
to-face annealing,&;quot; Journal of Crystal Growth, vol. 259, pp. 335-342, 2003.
[37] B. Lin, Z. Fu, and Y. Jia, &;quot;Green luminescent center in undoped zinc oxide films
deposited on silicon substrates,&;quot; Applied Physics Letters, vol. 79, pp. 943-945,
2001.
[38] Hojoong Kim, Suk Yang, Kyung Park, Parthiban Shanmugam, and J. Y. Kwon,
&;quot;Leakage Current Analysis Depends on Grain Size Variation in Zinc Oxide Thin
Film Transistor,&;quot; The Electrochemical Society Meeting2013.
[39] Jaehyoung Koo, Seokhoon Kim, Sangmin Jeon, Hyeongtag Jeon, Yangdo Kim,
and Y. Won, &;quot;Characteristics of Al2O3 Thin Films Deposited Using
Dimethylaluminum Isopropoxide and Trimethylaluminum Precursors by the
Plasma-Enhanced Atomic-Layer Deposition Method,&;quot; Journal of the Korean
Physical Society, vol. 48, pp. 131-136, 2006.
[40] B. Ealet, M. H. Elyakhloufi, E. Gillet, and M. Ricci, &;quot;Electronic and
crystallographic structure of γ-alumina thin films,&;quot; Thin Solid Films, vol. 250,
pp. 92-100, 1994.
[41] I. Costina and R. Franchy, &;quot;Band gap of amorphous and well-ordered Al2O3 on
Ni3Al(100),&;quot; Applied Physics Letters, vol. 78, pp. 4139-4141, 2001.
[42] L. Li-qun and W. Zhi-xin, &;quot;A rapid MPPT algorithm based on the research of
solar cell''s diode factor and reverse saturation current,&;quot; WSEAS
TRANSACTIONS on SYSTEMS, vol. 7, pp. 568-579, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊