跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖萩燁
研究生(外文):Chiu-Yeh Liao
論文名稱:水溫與石珊瑚白化相關性之研究
論文名稱(外文):Effects of temperature on stony coral bleaching
指導教授:劉莉蓮
指導教授(外文):Li-Lian Liu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋科學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:45
中文關鍵詞:白化石珊瑚高溫溫差太平洋年代際振盪
外文關鍵詞:HeatStony coralBleachingTemperature fluctuationPacific Decadal Oscillation (PDO)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1227
  • 評分評分:
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:0
過去數十年來,高溫造成全球性大規模珊瑚白化,然而低溫、溫差及其他環境因子與珊瑚白化之相關研究仍然不足。因此,本研究探討石珊瑚白化與溫度(高溫、低溫、溫差)、颱風以及氣候變遷指標之相關性。自2005年5月至2013年5月每季於墾丁南灣海域核三廠入、出水口各三條固定測線,進行水溫記錄及石珊瑚白化覆蓋率調查研究。結果發現,石珊瑚組成在入水口樣點以分支狀軸孔珊瑚(Acropora spp.) (40.7 ± 33.5%)為主,出水口樣點以團塊狀微孔珊瑚(Porites spp.) (17.5 ± 14.4%)以及分支狀千孔珊瑚(Millepora spp.) (12.5 ± 21.6%)比例較高。32次調查中,入水口有16~22次白化,出水口則有5~21次白化發生,且四季皆有白化現象。以固定橫截線入水口INF5與出水口EFF作為代表測線進行分析比較,石珊瑚之高溫白化閾值(Degree Heating Weeks, DHWs)入水口樣點(29.5°C)較出水口樣點(28.5°C)高。第一季入水口之白化現象與前28天之溫差變動範圍大有關,溫差越大白化越嚴重,但出水口處之白化現象與高溫或溫差皆無顯著相關;第二季,入水口及出水口之白化現象皆與高溫或溫差無顯著相關;第三季,入水口及出水口之白化現象皆與持續性高溫有關;第四季,入水口之白化現象與前28天之高溫相關性較高,期間前7天之溫差變動範圍大也是影響白化之因素,出水口樣點之白化則與前14天之溫差變動範圍小有關。颱風並非造成此兩樣點珊瑚於夏、秋兩季白化之主因。太平洋年代際振盪指標(Pacific Decadal Oscillation index, PDO index)與入水口珊瑚白化有顯著正相關,且珊瑚白化有1個月之時間延遲現象。總結而言,高溫、溫差變動範圍過大或過小皆與石珊瑚白化有關。同時,入、出水口四季石珊瑚白化與溫度的相關性不一致可能與此兩處石珊瑚組成種類不同有密切相關。
Events of high temperature causing large scale coral bleaching have been reported worldwide in last several decades. However, the role of low temperature, temperature fluctuation and other environmental factors in relation to coral bleaching is still insufficient. Here, the effects of temperature (high, low and fluctuation), typhoons and climate indices on stony coral bleaching were investigated seasonally at INF and EFF of Kenting, Taiwan, during May 2005 - May 2013. Based on the records of 3 fixed transect lines in each site, the branch Acropora (40.7 ± 33.5%) is the most abundant stony coral at INF. In contrast, the clump Porites (17.5 ± 14.4%) and the branch Millepora (12.5 ± 21.6%) are the major species at EFF. In a total of 32 surveys, coral bleaching occurred every season at both INF and EFF and bleaching times were 16~22 and 5~21, respectively. Further analyses with representative transect lines of INF5 and EFF showed that the Degree Heating Weeks (DHWs) at INF and EFF were 29.5 and 28.5°C. In the first season, coral bleaching was positively correlated with large temperature fluctuation 28 days before the bleaching survey at INF, but not at EFF. In the second season, no correlation between coral bleaching and heat or temperature fluctuation was observed at both sites. In the third season, coral bleaching was significantly correlated with continuous hot at both sites. In the fourth season, coral bleaching was correlated with 28 days’ heat before the survey at INF. And large temperature fluctuation 7 days before survey also affected the bleaching. In contrast, coral bleaching was correlated with small temperature fluctuation 14 days before survey at EFF. Typhoons didn’t have significant effect on coral bleaching at both sites and Pacific Decadal Oscillation index (PDO index) was positively correlated with coral bleaching at INF with one month time lag. In summary, stony coral bleaching occurred in every season at both sites. Heat, great or small temperature fluctuation all affected on the bleaching events. Difference in species composition of stony coral community is probably a crucial factor resulting in dissimilar bleaching patterns at INF and EFF.
謝辭 I
中文摘要 II
英文摘要 III
目錄 V
表目錄 VII
圖目錄 VIII
一、前言 1
二、材料與方法 4
2.1固定橫截線石珊瑚組成與白化比例變動調查 4
2.2水溫與石珊瑚白化相關性探討 4
2.2.1高溫閾值與石珊瑚白化相關性探討 5
2.2.2低溫閾值與石珊瑚白化相關性探討 5
2.2.3高溫、低溫及溫差與石珊瑚白化相關性探討 5
2.3颱風與石珊瑚白化相關性探討 6
2.4全球氣候變遷指標與石珊瑚白化相關性探討 6
三、結果 8
3.1固定橫截線石珊瑚白化覆蓋率變動調查 8
3.2水溫與石珊瑚白化相關性探討 8
3.2.1高溫閾值與石珊瑚白化相關性探討 9
3.2.2低溫閾值與石珊瑚白化相關性探討 9
3.2.3高溫、低溫及溫差與石珊瑚白化相關性探討 9
3.3颱風與石珊瑚白化相關性探討 10
3.4全球氣候變遷指標與石珊瑚白化相關性探討 11
四、討論 12
4.1高溫閾值與石珊瑚白化 12
4.2低溫閾值與石珊瑚白化 12
4.3高溫及溫差與石珊瑚白化 12
4.4颱風與石珊瑚白化 13
4.5全球氣候變遷指標與石珊瑚白化 13
4.6總結 14
五、參考文獻 15
表 18
圖 26
戴昌鳳,吳岱穎。2007。建立氣候變遷對環境與生態永續性衝擊預警指標與機制--子計畫三:建立氣候變遷對我國海域珊瑚衝擊預警指標與機制 研究成果報告。

戴昌鳳,洪聖雯。2009。台灣珊瑚圖鑑。貓頭鷹出版社。台灣。

Berkelmans, R. et al. 2002. Automatic weather stations: Tools for managing and monitoring potential impacts to coral reefs. Mar. Technol. Soc. J. 36: 29-38.

Berkelmans, R., and J. K. Oliver. 1999. Large-scale bleaching of corals on the Great Barrier Reef. Coral Reefs 18: 55-60.

Bruno, J. F., and E. R. Selig. 2007. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. Plos One 2, 8, e711, doi:10.1371/ journal.pone.0000711.

Chao, Y., M. Ghil, and J. C. McWilliams. 2000. Pacific interdecadal variability in this century''s sea surface temperatures. Geophys Res Lett 27: 2261-2264.

Chen, A.C.T., B.J. Wang and L.Y. Hsing. 2004. Upwelling and degree of nutrient consumption in Nanwan Bay, Southern Taiwan. J Mar Sci Tech 12:442–447.

Connell, J. H. 1997. Disturbance and recovery of coral assemblages. Coral Reefs 16: S101-S113.

Dennis, C. 2002. Reef under threat from ''bleaching'' outbreak. Nature 415: 947-947.

Done, T. et al. 2007. Decadal changes in turbid-water coral communities at Pandora Reef: loss of resilience or too soon to tell? Coral Reefs 26: 789-805.

Egana, A. C., and L. H. DiSalvo. 1982. Mass expulsion of zooxanthellae by Easter Island Corals. Pac Sci 36: 61-63.

Fang, L. S., Y. W. Chen, and C. S. Chen. 1991. Feasibility of using ATP as an index for environmental-stress on hermatypic Coral. Mar Ecol Prog Ser 70: 257-262.

Gilmour, J. P., L. D. Smith, A. J. Heyward, A. H. Baird, and M. S. Pratchett. 2013. Recovery of an isolated coral reef system following severe disturbance. Science 340: 69-71.

Glynn, P. W. 1984. Widespread coral mortality and the 1982-83 El Nino Warming Event. Environ Conserv 11: 133-146.

Glynn, P. W. 1993. Coral-reef bleaching - ecological perspectives. Coral Reefs 12: 1-17.

Guest, J. R. et al. 2012. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. Plos One 7, e33353.

Hoegh-Guldberg, O. 1999. Climate change, coral bleaching and the future of the world''s coral reefs. Mar Freshwater Res 50: 839-866.

Hoegh-Guldberg, O., M. Fine, W. Skirving, R. Johnstone, S. Dove and A. Strong. 2005. Coral bleaching following wintry weather. Limnol Oceanogr 50:265-271.

Hsieh, H.J., Y.L. Hsien, M.S. Jeng, W.S. Tsai, W.C. Su and C.A. Chen. 2008. Tropical fishes killed by the cold. Coral Reefs 27:599-599.

Hung, C. W., H. H. Hsu, and M. M. Lu. 2004. Decadal oscillation of spring rain in northern Taiwan. Geophys. Res. Lett., 31, L22206, doi: 10.1029 / 2004 GL 021344.

Lee, H. J., S. Y. Chao, K. L. Fan, and T. Y. Kuo. 1999. Tide-induced eddies and upwelling in a semi-enclosed basin: Nan Wan. Estuar Coast Shelf 49: 775-787.

Leichter, J. J., G. B. Deane, and M. D. Stokes. 2005. Spatial and temporal variability of internal wave forcing on a coral reef. J Phys Oceanogr 35: 1945-1962.

Liu, G., W. Skirving, and A.E. Strong. 2003. Remote sensing of sea surface temperatures during 2002 Barrier reef coral bleaching. Eos Transactions 84, 137–144.

Loya, Y. et al. 2001. Coral bleaching: the winners and the losers. Ecol. Lett. 4: 122-131.

Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Am Meteorol Soc 78: 1069-1079.

Marshall, P. A., and A. H. Baird. 2000. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19: 155-163.

Mayfield, A. B., P. H. Chan, H. M. Putnam, C. S. Chen, and T. Y. Fan. 2012. The effects of a variable temperature regime on the physiology of the reef-building coral Seriatopora hystrix: results from a laboratory-based reciprocal transplant. J Exp Biol 215: 4183-4195.

McClanahan, T. R., A. H. Baird, P. A. Marshall, and M. A. Toscano. 2004. Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia. Mar. Pollut. Bull. 48: 327-335.

Muscatine, L., and J. W. Porter. 1977. Reef corals - mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27: 454-460.

Null, J. 2002. El Niño has a weather-making partner: Pacific Decadal Oscillation. In: San Jose Mercury News.

Oliver, T. A., and S. R. Palumbi. 2011. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30: 429-440.

Roth, M. S., R. Goericke, and D. D. Deheyn. 2012. Cold induces acute stress but heat is ultimately more deleterious for the reef-building coral Acropora yongei. Sci. Rep. 2.

Siebeck, U.E., N.J. Marshall, A. Kluter, and O. Hoegh-Guldberg. 2006. Monitoring coral bleaching using a colour reference card. Coral Reefs 25:453– 460.

Steen, R. G., and L. Muscatine. 1984. Daily Budgets of Photosynthetically Fixed Carbon in Symbiotic Zoanthids. Biol Bull 167: 477-487.

Taylor, D. L. 1971. Ultrastructure of Zooxanthella Endodinium-Chattonii in-Situ. J Mar Biol Assoc UK 51: 227.

Trenberth, K.E. 1997. The definition of El Niño. B Am Meteorol Soc 78:2771-2777.

Trenberth, K.E. and T.J. Hoar. 1997. El Niño and climate change. Geophys Res Lett 24:3057-3060.

Related Worldwide Websites (URL):
中央氣象局:
http://www.cwb.gov.tw/V7/index.htm
中央氣象局颱風資料庫:
http://rdc28.cwb.gov.tw/data.php
Nino 3.4 index, NOAA, U.S.A.:
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt
The Pacific Decadal Oscillation (PDO), JISAO, U.S.A:
http://jisao.washington.edu/pdo/
PDO index, JISAO, U.S.A:
http://jisao.washington.edu/pdo/PDO.latest
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top