跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳唯豪
研究生(外文):Wei-Hao Wu
論文名稱:一個合成的海洋衍生物對於STZ誘發糖尿病大鼠之抗神經發炎作用
論文名稱(外文):The anti-neuroinflammatory effects of a synthetic marine-derived compound on STZ induced diabetic rats
指導教授:溫志宏溫志宏引用關係
指導教授(外文):Zhi-Hong Wen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物科技暨資源學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:137
中文關鍵詞:鎮痛作用神經發炎免疫螢光染色乙型轉型成長因子
外文關鍵詞:neuroinflammationimmunohistochemistrytransforming growth factor-βantinociceptive effects
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
糖尿病是一種代謝異常疾病,伴隨著許多的慢性併發症,包含糖尿病神經病變性疼痛。在先前的離體實驗中,我們得知來自海洋的化合物SWV-1具有抗發炎的作用。在本研究中,我們發現椎管給予或口服SWV-1,在鏈脲佐菌素(streptozotocin, STZ)所誘發糖尿病神經病變大鼠表現出鎮痛作用,且相較於ziconotide來說,給予SWV-1沒有產生明顯的副作用。同時,免疫螢光染色分析的結果顯示,SWV-1顯著抑制STZ所誘發的脊髓神經發炎情形。我們進一步證實,給予轉型生長因子乙型受體(transforming growth factor β type I receptor, TGF-β R1)抑制劑後,會減弱SWV-1對STZ大鼠的止痛效果。根據上述結果,我們認為SWV-1具備糖尿病患神經病變性疼痛之治療藥物開發的潛力。
Diabetes mellitus is a metabolic disease that can have long-term complications, including diabetic neuropathy pain. Base on preliminary screening, we had found that a marine-derived compound, SWV-1 has potential in vitro anti-inflammatory effects. In present study, we found that intrathecal or oral SWV-1 produce antinociceptive effects in STZ-induced diabetic neuropathic rats. Moreover, compare with ziconotide, SWV-1 did not produced any obvious adverse effects. Immunohistochemistical analyses also showed that SWV-1 significantly attenuated STZ-induced spinal neuroninflammation. We further demonstrated that administration of TGF-β type I receptor inhibitor attenuate the analgesic effect of SWV-1 in STZ-rats. In conclusion, SWV-1 is a potential candidate compound for drug development to treat neuropathic pain in patients with diabetes.
審定書 ................................................................................................................................i
誌謝 ................................................................................................................................... ii
中文摘要 .......................................................................................................................... iii
英文摘要 .......................................................................................................................... iv
目錄 ...................................................................................................................................v
圖次 ................................................................................................................................ viii
縮寫及中英文對照表 ...................................................................................................... xi
第一章、前言......................................................................................1
糖尿病與神經病變性疼痛......................................................................1
神經病變性疼痛的發生及傳遞................................................................2
神經發炎影響神經病變性疼痛的發展......................................................9
臨床用於治療神經病變性疼痛之藥物.....................................................11
神經病變性疼痛之動物模式..................................................................13
糖尿病神經病變性疼痛的形成及其病理機制...........................................16
海洋天然物的開發及抗發炎作用............................................................17
研究目的............................................................................................18
第二章、實驗材料與方法......................................................................19
實驗動物............................................................................................19
STZ誘發糖尿病大鼠與疼痛行為分析......................................................19
物理性觸覺過敏測試 (mechanical allodynia)...........................................19
丙酮冷覺過敏測試 (acetone cold allodynia)............................................20
平板式熱覺過敏測試 (plantar test、thermal hyperalgesia)........................20
尾部浸泡測試 (tail immersion)...............................................................20
平衡木測試 (narrow beam test)..............................................................22
椎管插管手術(implantation of intrathecal catheter) ..................................22
樣本組織收集及冷凍切片......................................................................22
組織免疫化學螢光染色(immunohistochemistry).......................................23
西方墨點法(western blot)......................................................................24
使用的目標抗體...................................................................................25
實驗動物之分組...................................................................................25
數據分析.............................................................................................27
第三章、實驗結果................................................................................28
STZ誘發大鼠產生高血糖及體重降低情形................................................28
STZ誘發大鼠產生mechanical allodynia, cold allodynia, thermal
hyperalgesia , tail thermal hyperalgesia及行動力下降情形........................28
STZ誘發大鼠脊髓背角之細胞及分子層次的影響.......................................29
STZ誘發大鼠脊髓背角之microglia活化....................................................29
STZ誘發大鼠脊髓背角之astrocytes活化..................................................29
STZ誘發大鼠脊髓背角之p-p38表現量上升................................................29
STZ誘發大鼠脊髓背角之p-mTOR表現量上升...........................................30
STZ誘發大鼠脊髓背角之TGF-β1表現量下降.............................................30
椎管給予SWV-1或ziconotide對STZ誘發mechanical allodynia和行動力的影響.30
利用疼痛行為測試評估椎管給予SWV-1對STZ大鼠之鎮痛作用 .......................31
椎管給予SWV-1抑制STZ誘發之mechanical and cold allodynia......................31
椎管給予SWV-1抑制STZ誘發之tail thermal hyperalgesia..............................32
評估椎管給予SWV-1或gabapentin對STZ大鼠疼痛行為之鎮痛作用.................32
給予SWV-1或gabapentin抑制STZ誘發之mechanical and cold allodynia.........32
給予SWV-1或gabapentin抑制STZ誘發tail thermal hyperalgesia.....................33
椎管給予SWV-1對STZ大鼠脊髓背角細胞及分子的影響.................................34
椎管給予SWV-1抑制STZ誘發脊髓背角microglia的活化情形..........................34
椎管給予SWV-1抑制STZ誘發脊髓背角astrocytes的活化情形........................34
椎管給予SWV-1對於STZ誘發脊髓背角之p-ERK表現量上升的影響.................35
椎管給予SWV-1對於STZ誘發脊髓背角之p-p38表現量上升的影響..................35
椎管給予SWV-1對於STZ誘發脊髓背角之p-mTOR表現量上升的影響..............36
椎管給予SWV-1對於STZ誘發脊髓背角之IL-1β表現量上升的影響...................36
椎管給予SWV-1對於STZ誘發脊髓背角之BDNF表現量上升的影響.................37
椎管給予SWV-1對於STZ誘發脊髓背角之GDNF表現量下降的影響.................37
椎管給予SWV-1對於STZ誘發脊髓背角之TGF-β1表現量下降影響..................37
椎管給予SWV-1對正常大鼠疼痛訊息傳輸的影響.........................................38
椎管給予SWV-1對正常大鼠脊髓抗神經發炎因子TGF-β1表現量的影響...........38
比較口服給予SWV-1或gabapentin對STZ大鼠疼痛行為之鎮痛作用................39
口服SWV-1或gabapentin對STZ誘發mechanical allodynia及tail heat
hyperalgesia的影響..................................................................................39
口服SWV-1或gabapentin可抑制STZ誘發之mechanicaland cold allodynia ......39
口服SWV-1或gabapentin可抑制STZ誘發之tail thermal hyperalgesia..............40
口服SWV-1或gabapentin對STZ大鼠脊髓背角細胞及分子的影響....................41
口服SWV-1可抑制STZ誘發脊髓背角之microglia的活化情形..........................41
口服SWV-1可抑制STZ誘發脊髓背角之astrocytes的活化情形........................41
口服SWV-1對於STZ誘發脊髓背角之IL-1β表現量上升的影響..........................41
口服SWV-1對於STZ誘發脊髓背角之TGF-β1表現量下降的影響......................42
椎管給予TGF-β RI抑制劑對正常大鼠脊髓背角細胞及分子的影響....................42
椎管給予TGF-β RI抑制劑對正常大鼠脊
髓背角microglia的影響 .......................42
椎管給予TGF-β RI抑制劑對正常大鼠脊髓背角astrocytes的影響.....................43
椎管給予TGF-β RI抑制劑對正常大鼠脊髓背角p-mTOR的影響........................43
椎管給予TGF-β RI抑制劑對正常大鼠脊髓背角IL-1β影響................................43
給予TGF-β RI抑制劑對SWV-1減輕STZ大鼠疼痛行為的影響..........................43
TGF-β RI抑制劑對SWV-1減輕STZ誘發之脊髓神經發炎情形的影響................44
TGF-β RI抑制劑對SWV-1減輕STZ大鼠microglia活化情形的影響....................44
TGF-β RI抑制劑對SWV-1減輕STZ大鼠astrocytes活化情形的影響.................45
TGF-β RI抑制劑對SWV-1減輕STZ大鼠IL-1β大量表現的影響.........................45
TGF-β RI抑制劑對SWV-1增加STZ大鼠脊髓TGF-β1表現量的影響..................45
第四章、實驗討論....................................................................................97
建立大鼠DNP模式以評估海洋衍生物的作用................................................97
椎管給予SWV-1、臨床藥物ziconotide及gabapentin於STZ大鼠鎮痛作用之比較 .98
椎管給予SWV-1可減輕STZ大鼠的脊髓背角之神經發炎情形.............................99
背角感覺神經纖維對於疼痛行為的影響........................................................101
口服SWV-1可減輕STZ大鼠的疼痛行為及脊髓背角的神經發炎情形.................102
TGF-β1在神經病變疼痛過程中可能扮演的角色..............................................103
阻斷TGF-β訊號路徑對脊髓神經發炎的影響...................................................105
總結SWV-1抗神經發炎可能之作用機轉........................................................106
未來展望...................................................................................................108
Reference..................................................................................................109
附錄一.......................................................................................................124
Abad, M. J., Bedoya, L. M., and Bermejo, P., 2008, Natural marine anti-inflammatory products: Mini Rev Med Chem, v. 8, no. 8, p. 740-754.
Abbracchio, M. P., and Ceruti, S., 2006, Roles of P2 receptors in glial cells: focus on astrocytes: Purinergic Signal, v. 2, no. 4, p. 595-604.
Aley, K. O., Reichling, D. B., and Levine, J. D., 1996, Vincristine hyperalgesia in the rat: a model of painful vincristine neuropathy in humans: Neuroscience, v. 73, no. 1, p. 259-265.
Almarestani, L., Waters, S. M., Krause, J. E., Bennett, G. J., and Ribeiro-da-Silva, A., 2007, Morphological characterization of spinal cord dorsal horn lamina I neurons projecting to the parabrachial nucleus in the rat: J Comp Neurol, v. 504, no. 3, p. 287-297.
Amin, B., Hajhashemi, V., Hosseinzadeh, H., and Abnous, K., 2012, Antinociceptive evaluation of ceftriaxone and minocycline alone and in combination in a neuropathic pain model in rat: Neuroscience, v. 224, p. 15-25.
Anderson, C. R., Ashwell, K. W., Collewijn, H., Conta, A., Harvey, A., Heise, C., Hodgetts, S., Holstege, G., Kayalioglu, G., Keast, J. R., McHanwell, S., McLachlan, E. M., Paxinos, G., Plant, G., Scremin, O., Sidhu, A., Stelzner, D., and Watson, C., 2009, The spinal cord.
Anjaneyulu, M., and Chopra, K., 2004, Quercetin attenuates thermal hyperalgesia and cold allodynia in STZ-induced diabetic rats: Indian J Exp Biol, v. 42, no. 8, p. 766-769.
Association, A. D., 2013, Economic costs of diabetes in the U.S. in 2012: Diabetes Care, v. 36, no. 4, p. 1033-1046.
Austin, P. J., and Moalem-Taylor, G., 2010, The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines: J Neuroimmunol, v. 229, no. 1-2, p. 26-50.
Baba, H., Ji, R. R., Kohno, T., Moore, K. A., Ataka, T., Wakai, A., Okamoto, M., and Woolf, C. J., 2003, Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn: Mol Cell Neurosci, v. 24, no. 3, p. 818-830.
Bansal, V., Kalita, J., and Misra, U. K., 2006, Diabetic neuropathy: Postgrad Med J, v. 82, no. 964, p. 95-100.
Bardin, L., Malfetes, N., Newman-Tancredi, A., and Depoortere, R., 2009, Chronic restraint stress induces mechanical and cold allodynia, and enhances inflammatory pain in rat: Relevance to human stress-associated painful pathologies: Behav Brain Res, v. 205, no. 2, p. 360-366.
Barrett, A. M., Lucero, M. A., Le, T., Robinson, R. L., Dworkin, R. H., and Chappell, A. S., 2007, Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: a review: Pain Med, v. 8 Suppl 2, p. S50-62.
Ben-Sasson, S. Z., Hu-Li, J., Quiel, J., Cauchetaux, S., Ratner, M., Shapira, I., Dinarello, C. A., and Paul, W. E., 2009, IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation: Proc Natl Acad Sci U S A, v. 106, no. 17, p. 7119-7124.
Benveniste, E. N., Tang, L. P., and Law, R. M., 1995, Differential regulation of astrocyte TNF-alpha expression by the cytokines TGF-beta, IL-6 and IL-10: Int J Dev Neurosci, v. 13, no. 3-4, p. 341-349.
Bishnoi, M., Bosgraaf, C. A., Abooj, M., Zhong, L., and Premkumar, L. S., 2011, Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1(TRPV1) and inflammatory mediators: Mol Pain, v. 7, p. 52.
Bottner, M., Krieglstein, K., and Unsicker, K., 2000, The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions: J Neurochem, v. 75, no. 6, p. 2227-2240.
Bouhassira, D., Attal, N., Fermanian, J., Alchaar, H., Gautron, M., Masquelier, E., Rostaing, S., Lanteri-Minet, M., Collin, E., Grisart, J., and Boureau, F., 2004, Development and validation of the Neuropathic Pain Symptom Inventory: Pain, v. 108, no. 3, p. 248-257.
Bouhassira, D., Lanteri-Minet, M., Attal, N., Laurent, B., and Touboul, C., 2008, Prevalence of chronic pain with neuropathic characteristics in the general population: Pain, v. 136, no. 3, p. 380-387.
Brionne, T. C., Tesseur, I., Masliah, E., and Wyss-Coray, T., 2003, Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain: Neuron, v. 40, no. 6, p. 1133-1145.
Brodin, G., ten Dijke, P., Funa, K., Heldin, C. H., and Landstrom, M., 1999, Increased smad expression and activation are associated with apoptosis in normal and malignant prostate after castration: Cancer Res, v. 59, no. 11, p. 2731-2738.
Bryans, J. S., and Wustrow, D. J., 1999, 3-substituted GABA analogs with central nervous system activity: a review: Med Res Rev, v. 19, no. 2, p. 149-177.
Burchiel, K. J., Russell, L. C., Lee, R. P., and Sima, A. A., 1985, Spontaneous activity of primary afferent neurons in diabetic BB/Wistar rats. A possible mechanism of chronic diabetic neuropathic pain: Diabetes, v. 34, no. 11, p. 1210-1213.
Calvo, M., and Bennett, D. L., 2012, The mechanisms of microgliosis and pain following peripheral nerve injury: Exp Neurol, v. 234, no. 2, p. 271-282.
Calvo, M., Dawes, J. M., and Bennett, D. L., 2012, The role of the immune system in the generation of neuropathic pain: Lancet Neurol, v. 11, no. 7, p. 629-642.
Campbell, J. N., and Meyer, R. A., 2006, Mechanisms of neuropathic pain: Neuron, v. 52, no. 1, p. 77-92.
Caraci, F., Battaglia, G., Busceti, C., Biagioni, F., Mastroiacovo, F., Bosco, P., Drago, F., Nicoletti, F., Sortino, M. A., and Copani, A., 2008, TGF-beta 1 protects against Abeta-neurotoxicity via the phosphatidylinositol-3-kinase pathway: Neurobiol Dis, v. 30, no. 2, p. 234-242.
Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M., and Yaksh, T. L., 1994, Quantitative assessment of tactile allodynia in the rat paw: J Neurosci Methods, v. 53, no. 1, p. 55-63.
Chen, X., and Levine, J. D., 2001, Hyper-responsivity in a subset of C-fiber nociceptors in a model of painful diabetic neuropathy in the rat: Neuroscience, v. 102, no. 1, p. 185-192.
Chiechio, S., Zammataro, M., Caraci, F., Rampello, L., Copani, A., Sabato, A. F., and Nicoletti, F., 2009, Pregabalin in the treatment of chronic pain: an overview: Clin Drug Investig, v. 29, no. 3, p. 203-213.
Chu, L. C., Tsaur, M. L., Lin, C. S., Hung, Y. C., Wang, T. Y., Chen, C. C., and Cheng, J. K., 2011, Chronic intrathecal infusion of gabapentin prevents nerve ligation-induced pain in rats: Br J Anaesth, v. 106, no. 5, p. 699-705.
Chung, Y., Chang, S. H., Martinez, G. J., Yang, X. O., Nurieva, R., Kang, H. S., Ma, L., Watowich, S. S., Jetten, A. M., Tian, Q., and Dong, C., 2009, Critical regulation of early Th17 cell differentiation by interleukin-1 signaling: Immunity, v. 30, no. 4, p. 576-587.
Coleman, E., Judd, R., Hoe, L., Dennis, J., and Posner, P., 2004, Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS: Glia, v. 48, no. 2, p. 166-178.
Coppini, D. V., Bowtell, P. A., Weng, C., Young, P. J., and Sonksen, P. H., 2000, Showing neuropathy is related to increased mortality in diabetic patients - a survival analysis using an accelerated failure time model: J Clin Epidemiol, v. 53, no. 5, p. 519-523.
Coull, J. A., Beggs, S., Boudreau, D., Boivin, D., Tsuda, M., Inoue, K., Gravel, C., Salter, M. W., and De Koninck, Y., 2005, BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain: Nature, v. 438, no. 7070, p. 1017-1021.
Courteix, C., Eschalier, A., and Lavarenne, J., 1993, Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain: Pain, v. 53, no. 1, p. 81-88.
Daneman, D., 2006, Type 1 diabetes: Lancet, v. 367, no. 9513, p. 847-858.
Daulhac, L., Mallet, C., Courteix, C., Etienne, M., Duroux, E., Privat, A. M., Eschalier, A., and Fialip, J., 2006, Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms: Mol Pharmacol, v. 70, no. 4, p. 1246-1254.
DeFronzo, R. A., 1999, Pharmacologic therapy for type 2 diabetes mellitus: Ann Intern Med, v. 131, no. 4, p. 281-303.
Dworkin, R. H., Backonja, M., Rowbotham, M. C., Allen, R. R., Argoff, C. R., Bennett, G. J., Bushnell, M. C., Farrar, J. T., Galer, B. S., Haythornthwaite, J. A., Hewitt, D. J., Loeser, J. D., Max, M. B., Saltarelli, M., Schmader, K. E., Stein, C., Thompson, D., Turk, D. C., Wallace, M. S., Watkins, L. R., and Weinstein, S. M., 2003, Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations: Arch Neurol, v. 60, no. 11, p. 1524-1534.
Echeverry, S., Shi, X. Q., Haw, A., Liu, H., Zhang, Z. W., and Zhang, J., 2009, Transforming growth factor-beta1 impairs neuropathic pain through pleiotropic effects: Mol Pain, v. 5, p. 16.
Feng, B., Ruiz, M. A., and Chakrabarti, S., 2013, Oxidative-stress-induced epigenetic changes in chronic diabetic complications: Can J Physiol Pharmacol, v. 91, no. 3, p. 213-220.
Field, M. J., Cox, P. J., Stott, E., Melrose, H., Offord, J., Su, T. Z., Bramwell, S., Corradini, L., England, S., Winks, J., Kinloch, R. A., Hendrich, J., Dolphin, A. C., Webb, T., and Williams, D., 2006, Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin: Proc Natl Acad Sci U S A, v. 103, no. 46, p. 17537-17542.
Flatters, S. J., and Bennett, G. J., 2004, Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy: Pain, v. 109, no. 1-2, p. 150-161.
Forsblom, C. M., Sane, T., Groop, P. H., Totterman, K. J., Kallio, M., Saloranta, C., Laasonen, L., Summanen, P., Lepantalo, M., Laatikainen, L., Matikainen, E., Teppo, A. M., Koskimies, S., and Groop, L., 1998, Risk factors for mortality in Type II (non-insulin-dependent) diabetes: evidence of a role for neuropathy and a protective effect of HLA-DR4: Diabetologia, v. 41, no. 11, p. 1253-1262.
Fu, E. S., Zhang, Y. P., Sagen, J., Candiotti, K. A., Morton, P. D., Liebl, D. J., Bethea, J. R., and Brambilla, R., 2010, Transgenic inhibition of glial NF-kappa B reduces pain behavior and inflammation after peripheral nerve injury: Pain, v. 148, no. 3, p. 509-518.
Galer, B. S., Gianas, A., and Jensen, M. P., 2000, Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life: Diabetes Res Clin Pract, v. 47, no. 2, p. 123-128.
Gao, Y. J., and Ji, R. R., 2010, Targeting astrocyte signaling for chronic pain: Neurotherapeutics, v. 7, no. 4, p. 482-493.
Garrison, C. J., Dougherty, P. M., Kajander, K. C., and Carlton, S. M., 1991, Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury: Brain Res, v. 565, no. 1, p. 1-7.
Geranton, S. M., Jimenez-Diaz, L., Torsney, C., Tochiki, K. K., Stuart, S. A., Leith, J. L., Lumb, B. M., and Hunt, S. P., 2009, A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states: J Neurosci, v. 29, no. 47, p. 15017-15027.
Gerwick, W. H., and Moore, B. S., 2012, Lessons from the past and charting the future of marine natural products drug discovery and chemical biology: Chem Biol, v. 19, no. 1, p. 85-98.
Gilron, I., Watson, C. P., Cahill, C. M., and Moulin, D. E., 2006, Neuropathic pain: a practical guide for the clinician: CMAJ, v. 175, no. 3, p. 265-275.
Gordois, A., Scuffham, P., Shearer, A., Oglesby, A., and Tobian, J. A., 2003, The health care costs of diabetic peripheral neuropathy in the US: Diabetes Care, v. 26, no. 6, p. 1790-1795.
Gore, M., Brandenburg, N. A., Hoffman, D. L., Tai, K. S., and Stacey, B., 2006, Burden of illness in painful diabetic peripheral neuropathy: the patients'' perspectives: J Pain, v. 7, no. 12, p. 892-900.
Grande, J. P., 1997, Role of transforming growth factor-beta in tissue injury and repair: Proc Soc Exp Biol Med, v. 214, no. 1, p. 27-40.
Greene, D. A., Stevens, M. J., Obrosova, I., and Feldman, E. L., 1999, Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy: Eur J Pharmacol, v. 375, no. 1-3, p. 217-223.
Harati, Y., 2007, Diabetic neuropathies: unanswered questions: Neurol Clin, v. 25, no. 1, p. 303-317.
Hargreaves, K., Dubner, R., Brown, F., Flores, C., and Joris, J., 1988, A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia: Pain, v. 32, no. 1, p. 77-88.
Hathway, G. J., Vega-Avelaira, D., Moss, A., Ingram, R., and Fitzgerald, M., 2009, Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates: Pain, v. 144, no. 1-2, p. 110-118.
Haydon, P. G., 2001, GLIA: listening and talking to the synapse: Nat Rev Neurosci, v. 2, no. 3, p. 185-193.
Heimans, J. J., Bertelsmann, F. W., and Van Rooy, J. C., 1986, Large and small nerve fiber function in painful diabetic neuropathy: J Neurol Sci, v. 74, no. 1, p. 1-9.
Hovaguimian, A., and Gibbons, C. H., 2011, Clinical Approach to the Treatment of Painful Diabetic Neuropathy: Ther Adv Endocrinol Metab, v. 2, no. 1, p. 27-38.
Hu, Y., Li, W., Lu, L., Cai, J., Xian, X., Zhang, M., Li, Q., and Li, L., 2010, An anti-nociceptive role for ceftriaxone in chronic neuropathic pain in rats: Pain, v. 148, no. 2, p. 284-301.
Huang, S. Y., Chen, N. F., Chen, W. F., Hung, H. C., Lee, H. P., Lin, Y. Y., Wang, H. M., Sung, P. J., Sheu, J. H., and Wen, Z. H., 2012, Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model: Mar Drugs, v. 10, no. 9, p. 1899-1919.
Hylden, J. L., and Wilcox, G. L., 1980, Intrathecal morphine in mice: a new technique: Eur J Pharmacol, v. 67, no. 2-3, p. 313-316.
Inoue, K., Koizumi, S., and Tsuda, M., 2007, The role of nucleotides in the neuron--glia communication responsible for the brain functions: J Neurochem, v. 102, no. 5, p. 1447-1458.
Jensen, T. S., Backonja, M. M., Hernandez Jimenez, S., Tesfaye, S., Valensi, P., and Ziegler, D., 2006, New perspectives on the management of diabetic peripheral neuropathic pain: Diab Vasc Dis Res, v. 3, no. 2, p. 108-119.
Ji, R. R., Gereau, R. W. t., Malcangio, M., and Strichartz, G. R., 2009a, MAP kinase and pain: Brain Res Rev, v. 60, no. 1, p. 135-148.
Ji, R. R., Xu, Z. Z., Wang, X., and Lo, E. H., 2009b, Matrix metalloprotease regulation of neuropathic pain: Trends Pharmacol Sci, v. 30, no. 7, p. 336-340.
Kawasaki, Y., Xu, Z. Z., Wang, X., Park, J. Y., Zhuang, Z. Y., Tan, P. H., Gao, Y. J., Roy, K., Corfas, G., Lo, E. H., and Ji, R. R., 2008a, Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain: Nat Med, v. 14, no. 3, p. 331-336.
Kawasaki, Y., Zhang, L., Cheng, J. K., and Ji, R. R., 2008b, Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord: J Neurosci, v. 28, no. 20, p. 5189-5194.
Kettenmann, H., Hanisch, U. K., Noda, M., and Verkhratsky, A., 2011, Physiology of microglia: Physiol Rev, v. 91, no. 2, p. 461-553.
Kim, S. H., and Chung, J. M., 1992, An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat: Pain, v. 50, no. 3, p. 355-363.
Koeglsperger, T., Li, S., Brenneis, C., Saulnier, J. L., Mayo, L., Carrier, Y., Selkoe, D. J., and Weiner, H. L., 2013, Impaired glutamate recycling and GluN2B-mediated neuronal calcium overload in mice lacking TGF-beta1 in the CNS: Glia, v. 61, no. 6, p. 985-1002.
Koehn, F. E., and Carter, G. T., 2005, The evolving role of natural products in drug discovery: Nat Rev Drug Discov, v. 4, no. 3, p. 206-220.
Lancet, 1998, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group: Lancet, v. 352, no. 9131, p. 837-853.
Lantero, A., Tramullas, M., Diaz, A., and Hurle, M. A., 2012, Transforming growth factor-beta in normal nociceptive processing and pathological pain models: Mol Neurobiol, v. 45, no. 1, p. 76-86.
Lee, J. H., Yang, S. H., Oh, J. M., and Lee, M. G., 2010, Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus: J Pharm Pharmacol, v. 62, no. 1, p. 1-23.
Li, J. H., Huang, X. R., Zhu, H. J., Oldfield, M., Cooper, M., Truong, L. D., Johnson, R. J., and Lan, H. Y., 2004, Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease: FASEB J, v. 18, no. 1, p. 176-178.
Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., and Collins, F., 1993, GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons: Science, v. 260, no. 5111, p. 1130-1132.
Lin, Y., Tian, G., Roman, K., Handy, C., Travers, J. B., Lin, C. L., and Stephens, R. L., Jr., 2009, Increased glial glutamate transporter EAAT2 expression reduces visceral nociceptive response in mice: Am J Physiol Gastrointest Liver Physiol, v. 296, no. 1, p. G129-134.
Lindsay, T. J., Rodgers, B. C., Savath, V., and Hettinger, K., 2010, Treating diabetic peripheral neuropathic pain: Am Fam Physician, v. 82, no. 2, p. 151-158.
Liu, K., Paterson, A. J., Chin, E., and Kudlow, J. E., 2000, Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: linkage of O-linked GlcNAc to beta cell death: Proc Natl Acad Sci U S A, v. 97, no. 6, p. 2820-2825.
Luger, N. M., Mach, D. B., Sevcik, M. A., and Mantyh, P. W., 2005, Bone cancer pain: from model to mechanism to therapy: J Pain Symptom Manage, v. 29, no. 5 Suppl, p. S32-46.
Luo, Z. D., Calcutt, N. A., Higuera, E. S., Valder, C. R., Song, Y. H., Svensson, C. I., and Myers, R. R., 2002, Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin: J Pharmacol Exp Ther, v. 303, no. 3, p. 1199-1205.
Maxwell, D. J., Belle, M. D., Cheunsuang, O., Stewart, A., and Morris, R., 2007, Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn: J Physiol, v. 584, no. Pt 2, p. 521-533.
Mayer, A. M., Glaser, K. B., Cuevas, C., Jacobs, R. S., Kem, W., Little, R. D., McIntosh, J. M., Newman, D. J., Potts, B. C., and Shuster, D. E., 2010, The odyssey of marine pharmaceuticals: a current pipeline perspective: Trends Pharmacol Sci, v. 31, no. 6, p. 255-265.
Medhurst, S. J., Walker, K., Bowes, M., Kidd, B. L., Glatt, M., Muller, M., Hattenberger, M., Vaxelaire, J., O''Reilly, T., Wotherspoon, G., Winter, J., Green, J., and Urban, L., 2002, A rat model of bone cancer pain: Pain, v. 96, no. 1-2, p. 129-140.
Milligan, E. D., and Watkins, L. R., 2009, Pathological and protective roles of glia in chronic pain: Nat Rev Neurosci, v. 10, no. 1, p. 23-36.
Misawa, S., Kuwabara, S., Kanai, K., Tamura, N., Nakata, M., Ogawara, K., Yagui, K., and Hattori, T., 2006, Nodal persistent Na+ currents in human diabetic nerves estimated by the technique of latent addition: Clin Neurophysiol, v. 117, no. 4, p. 815-820.
Moalem, G., and Tracey, D. J., 2006, Immune and inflammatory mechanisms in neuropathic pain: Brain Res Rev, v. 51, no. 2, p. 240-264.
Mogil, J. S., 2009, Animal models of pain: progress and challenges: Nat Rev Neurosci, v. 10, no. 4, p. 283-294.
Mogil, J. S., Simmonds, K., and Simmonds, M. J., 2009, Pain research from 1975 to 2007: a categorical and bibliometric meta-trend analysis of every Research Paper published in the journal, Pain: Pain, v. 142, no. 1-2, p. 48-58.
Moore, K. A., Kohno, T., Karchewski, L. A., Scholz, J., Baba, H., and Woolf, C. J., 2002, Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord: J Neurosci, v. 22, no. 15, p. 6724-6731.
Morgado, C., Silva, L., Pereira-Terra, P., and Tavares, I., 2011, Changes in serotoninergic and noradrenergic descending pain pathways during painful diabetic neuropathy: the preventive action of IGF1: Neurobiol Dis, v. 43, no. 1, p. 275-284.
Newman, D. J., and Cragg, G. M., 2007, Natural products as sources of new drugs over the last 25 years: Journal of Natural Products, v. 70, no. 3, p. 461-477.
Obara, I., Tochiki, K. K., Geranton, S. M., Carr, F. B., Lumb, B. M., Liu, Q., and Hunt, S. P., 2011, Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice: Pain, v. 152, no. 11, p. 2582-2595.
Ohsawa, M., and Kamei, J., 1999, Possible involvement of spinal protein kinase C in thermal allodynia and hyperalgesia in diabetic mice: Eur J Pharmacol, v. 372, no. 3, p. 221-228.
Pabreja, K., Dua, K., Sharma, S., Padi, S. S., and Kulkarni, S. K., 2011, Minocycline attenuates the development of diabetic neuropathic pain: possible anti-inflammatory and anti-oxidant mechanisms: Eur J Pharmacol, v. 661, no. 1-3, p. 15-21.
Park, S. B., Krishnan, A. V., Lin, C. S., Goldstein, D., Friedlander, M., and Kiernan, M. C., 2008, Mechanisms underlying chemotherapy-induced neurotoxicity and the potential for neuroprotective strategies: Curr Med Chem, v. 15, no. 29, p. 3081-3094.
Patil, S. B., Brock, J. H., Colman, D. R., and Huntley, G. W., 2011, Neuropathic pain- and glial derived neurotrophic factor-associated regulation of cadherins in spinal circuits of the dorsal horn: Pain, v. 152, no. 4, p. 924-935.
Petrenko, A. B., Yamakura, T., Baba, H., and Shimoji, K., 2003, The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review: Anesth Analg, v. 97, no. 4, p. 1108-1116.
Pezet, S., Krzyzanowska, A., Wong, L. F., Grist, J., Mazarakis, N. D., Georgievska, B., and McMahon, S. B., 2006, Reversal of neurochemical changes and pain-related behavior in a model of neuropathic pain using modified lentiviral vectors expressing GDNF: Mol Ther, v. 13, no. 6, p. 1101-1109.
Piehl, F., and Lidman, O., 2001, Neuroinflammation in the rat--CNS cells and their role in the regulation of immune reactions: Immunol Rev, v. 184, p. 212-225.
Prehn, J. H., Bindokas, V. P., Marcuccilli, C. J., Krajewski, S., Reed, J. C., and Miller, R. J., 1994, Regulation of neuronal Bcl2 protein expression and calcium homeostasis by transforming growth factor type beta confers wide-ranging protection on rat hippocampal neurons: Proc Natl Acad Sci U S A, v. 91, no. 26, p. 12599-12603.
Price, D. D., McGrath, P. A., Rafii, A., and Buckingham, B., 1983, The validation of visual analogue scales as ratio scale measures for chronic and experimental pain: Pain, v. 17, no. 1, p. 45-56.
Purves, T., Middlemas, A., Agthong, S., Jude, E. B., Boulton, A. J., Fernyhough, P., and Tomlinson, D. R., 2001, A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy: FASEB J, v. 15, no. 13, p. 2508-2514.
Qian, L., Wei, S. J., Zhang, D., Hu, X., Xu, Z., Wilson, B., El-Benna, J., Hong, J. S., and Flood, P. M., 2008, Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia: J Immunol, v. 181, no. 1, p. 660-668.
Raghavendra, V., Tanga, F. Y., and DeLeo, J. A., 2004, Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats: Neuropsychopharmacology, v. 29, no. 2, p. 327-334.
Rauck, R. L., Wallace, M. S., Burton, A. W., Kapural, L., and North, J. M., 2009, Intrathecal ziconotide for neuropathic pain: a review: Pain Pract, v. 9, no. 5, p. 327-337.
Reeve, A. J., Patel, S., Fox, A., Walker, K., and Urban, L., 2000, Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat: Eur J Pain, v. 4, no. 3, p. 247-257.
Ren, K., and Torres, R., 2009, Role of interleukin-1beta during pain and inflammation: Brain Res Rev, v. 60, no. 1, p. 57-64.
Romero-Sandoval, A., Chai, N., Nutile-McMenemy, N., and Deleo, J. A., 2008, A comparison of spinal Iba1 and GFAP expression in rodent models of acute and chronic pain: Brain Res, v. 1219, p. 116-126.
Rondon, L. J., Privat, A. M., Daulhac, L., Davin, N., Mazur, A., Fialip, J., Eschalier, A., and Courteix, C., 2010, Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain: J Physiol, v. 588, no. Pt 21, p. 4205-4215.
Rossini, A. A., Like, A. A., Chick, W. L., Appel, M. C., and Cahill, G. F., Jr., 1977, Studies of streptozotocin-induced insulitis and diabetes: Proc Natl Acad Sci U S A, v. 74, no. 6, p. 2485-2489.
Rowbotham, M. C., Twilling, L., Davies, P. S., Reisner, L., Taylor, K., and Mohr, D., 2003, Oral opioid therapy for chronic peripheral and central neuropathic pain: N Engl J Med, v. 348, no. 13, p. 1223-1232.
Ruocco, A., Nicole, O., Docagne, F., Ali, C., Chazalviel, L., Komesli, S., Yablonsky, F., Roussel, S., MacKenzie, E. T., Vivien, D., and Buisson, A., 1999, A transforming growth factor-beta antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischemic brain injury: J Cereb Blood Flow Metab, v. 19, no. 12, p. 1345-1353.
Saarto, T., and Wiffen, P. J., 2007, Antidepressants for neuropathic pain: Cochrane Database Syst Rev, no. 4, p. CD005454.
Schmidtko, A., Lotsch, J., Freynhagen, R., and Geisslinger, G., 2010, Ziconotide for treatment of severe chronic pain: Lancet, v. 375, no. 9725, p. 1569-1577.
Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L., and Isakson, P., 1994, Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain: Proc Natl Acad Sci U S A, v. 91, no. 25, p. 12013-12017.
Seltzer, Z., Dubner, R., and Shir, Y., 1990, A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury: Pain, v. 43, no. 2, p. 205-218.
Sharma, V., and Kumar, V., 2010, Diabetes in Asia: Lancet, v. 375, no. 9719, p. 408-418.
Shaw, J. E., Sicree, R. A., and Zimmet, P. Z., 2010, Global estimates of the prevalence of diabetes for 2010 and 2030: Diabetes Res Clin Pract, v. 87, no. 1, p. 4-14.
Sindrup, S. H., and Jensen, T. S., 2000, Pharmacologic treatment of pain in polyneuropathy: Neurology, v. 55, no. 7, p. 915-920.
Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., and Ramarao, P., 2005, Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening: Pharmacol Res, v. 52, no. 4, p. 313-320.
Stagg, N. J., Mata, H. P., Ibrahim, M. M., Henriksen, E. J., Porreca, F., Vanderah, T. W., and Philip Malan, T., Jr., 2011, Regular exercise reverses sensory hypersensitivity in a rat neuropathic pain model: role of endogenous opioids: Anesthesiology, v. 114, no. 4, p. 940-948.
Starowicz, K., Makuch, W., Osikowicz, M., Piscitelli, F., Petrosino, S., Di Marzo, V., and Przewlocka, B., 2012, Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms: Neuropharmacology, v. 62, no. 4, p. 1746-1755.
Strle, K., Zhou, J. H., Shen, W. H., Broussard, S. R., Johnson, R. W., Freund, G. G., Dantzer, R., and Kelley, K. W., 2001, Interleukin-10 in the brain: Crit Rev Immunol, v. 21, no. 5, p. 427-449.
Sung, B., Lim, G., and Mao, J., 2003, Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats: J Neurosci, v. 23, no. 7, p. 2899-2910.
Sung, C. S., Cherng, C. H., Wen, Z. H., Chang, W. K., Huang, S. Y., Lin, S. L., Chan, K. H., and Wong, C. S., 2012, Minocycline and fluorocitrate suppress spinal nociceptive signaling in intrathecal IL-1beta-induced thermal hyperalgesic rats: Glia, v. 60, no. 12, p. 2004-2017.
Suzumura, A., Sawada, M., Yamamoto, H., and Marunouchi, T., 1993, Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro: J Immunol, v. 151, no. 4, p. 2150-2158.
Szkudelski, T., 2001, The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas: Physiol Res, v. 50, no. 6, p. 537-546.
Tanga, F. Y., Raghavendra, V., and DeLeo, J. A., 2004, Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain: Neurochem Int, v. 45, no. 2-3, p. 397-407.
Taylor, C. P., 2004, The biology and pharmacology of calcium channel alpha2-delta proteins Pfizer Satellite Symposium to the 2003 Society for Neuroscience Meeting. Sheraton New Orleans Hotel, New Orleans, LA November 10, 2003: CNS Drug Rev, v. 10, no. 2, p. 183-188.
Thullier, F., Lalonde, R., Mahler, P., Joyal, C. C., and Lestienne, F., 1996, Dorsal striatal lesions in rats. 1: Effects on exploration and motor coordination: Arch Physiol Biochem, v. 104, no. 3, p. 300-306.
Todd, A. J., 2010, Neuronal circuitry for pain processing in the dorsal horn: Nat Rev Neurosci, v. 11, no. 12, p. 823-836.
Tomlinson, D. R., and Gardiner, N. J., 2008, Glucose neurotoxicity: Nat Rev Neurosci, v. 9, no. 1, p. 36-45.
Torrance, N., Smith, B. H., Bennett, M. I., and Lee, A. J., 2006, The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey: J Pain, v. 7, no. 4, p. 281-289.
Tramullas, M., Lantero, A., Diaz, A., Morchon, N., Merino, D., Villar, A., Buscher, D., Merino, R., Hurle, J. M., Izpisua-Belmonte, J. C., and Hurle, M. A., 2010, BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) reveals the involvement of the transforming growth factor-beta family in pain modulation: J Neurosci, v. 30, no. 4, p. 1502-1511.
Tsuda, M., Ueno, H., Kataoka, A., Tozaki-Saitoh, H., and Inoue, K., 2008, Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling: Glia, v. 56, no. 4, p. 378-386.
Uceyler, N., Eberle, T., Rolke, R., Birklein, F., and Sommer, C., 2007, Differential expression patterns of cytokines in complex regional pain syndrome: Pain, v. 132, no. 1-2, p. 195-205.
Unsicker, K., and Krieglstein, K., 2002, TGF-betas and their roles in the regulation of neuron survival: Adv Exp Med Biol, v. 513, p. 353-374.
Veves, A., Backonja, M., and Malik, R. A., 2008, Painful diabetic neuropathy: epidemiology, natural history, early diagnosis, and treatment options: Pain Med, v. 9, no. 6, p. 660-674.
Vilhardt, F., 2005, Microglia: phagocyte and glia cell: Int J Biochem Cell Biol, v. 37, no. 1, p. 17-21.
Vincent, A. M., McLean, L. L., Backus, C., and Feldman, E. L., 2005, Short-term hyperglycemia produces oxidative damage and apoptosis in neurons: FASEB J, v. 19, no. 6, p. 638-640.
Wagner, R., Janjigian, M., and Myers, R. R., 1998, Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-alpha expression: Pain, v. 74, no. 1, p. 35-42.
Wattiez, Barrière, Dupuis, and Courteix, 2012, Rodent Models of Painful Diabetic Neuropathy: What Can We Learn from Them?: Diabetes &; metabolism.
Widmann, C., Gibson, S., Jarpe, M. B., and Johnson, G. L., 1999, Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human: Physiol Rev, v. 79, no. 1, p. 143-180.
Wieseler-Frank, J., Maier, S. F., and Watkins, L. R., 2004, Glial activation and pathological pain: Neurochem Int, v. 45, no. 2-3, p. 389-395.
Wild, S., Roglic, G., Green, A., Sicree, R., and King, H., 2004, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030: Diabetes Care, v. 27, no. 5, p. 1047-1053.
Wodarski, R., Clark, A. K., Grist, J., Marchand, F., and Malcangio, M., 2009, Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats: Eur J Pain, v. 13, no. 8, p. 807-811.
Woolf, C. J., and Mannion, R. J., 1999, Neuropathic pain: aetiology, symptoms, mechanisms, and management: Lancet, v. 353, no. 9168, p. 1959-1964.
Xiao, W. H., and Bennett, G. J., 2008, Chemotherapy-evoked neuropathic pain: Abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-L-carnitine: Pain, v. 135, no. 3, p. 262-270.
Xu, Q., Fitzsimmons, B., Steinauer, J., O''Neill, A., Newton, A. C., Hua, X. Y., and Yaksh, T. L., 2011, Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia: J Neurosci, v. 31, no. 6, p. 2113-2124.
Yagihashi, Mizukami, and Sugimoto, 2011, Mechanism of diabetic neuropathy: Where are we now and where to go?: Journal of Diabetes Investigation, v. 2, no. 1, p. 18-32.
Yajima, Y., Narita, M., Usui, A., Kaneko, C., Miyatake, M., Yamaguchi, T., Tamaki, H., Wachi, H., Seyama, Y., and Suzuki, T., 2005, Direct evidence for the involvement of brain-derived neurotrophic factor in the development of a neuropathic pain-like state in mice: J Neurochem, v. 93, no. 3, p. 584-594.
Yaksh, T. L., and Rudy, T. A., 1976, Analgesia mediated by a direct spinal action of narcotics: Science, v. 192, no. 4246, p. 1357-1358.
Yarnitsky, D., Granot, M., Nahman-Averbuch, H., Khamaisi, M., and Granovsky, Y., 2012, Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy: Pain, v. 153, no. 6, p. 1193-1198.
Yasaka, T., Tiong, S. Y., Hughes, D. I., Riddell, J. S., and Todd, A. J., 2010, Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach: Pain, v. 151, no. 2, p. 475-488.
Zelman, D. C., Brandenburg, N. A., and Gore, M., 2006, Sleep impairment in patients with painful diabetic peripheral neuropathy: Clin J Pain, v. 22, no. 8, p. 681-685.
Zhang, H., Yoon, S. Y., Zhang, H., and Dougherty, P. M., 2012, Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of Paclitaxel-induced painful neuropathy: J Pain, v. 13, no. 3, p. 293-303.
Zhang, Y. E., 2009, Non-Smad pathways in TGF-beta signaling: Cell Res, v. 19, no. 1, p. 128-139.
Zhou, L. J., Yang, T., Wei, X., Liu, Y., Xin, W. J., Chen, Y., Pang, R. P., Zang, Y., Li, Y. Y., and Liu, X. G., 2011, Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat: Brain Behav Immun, v. 25, no. 2, p. 322-334.
Zhu, Y., Yang, G. Y., Ahlemeyer, B., Pang, L., Che, X. M., Culmsee, C., Klumpp, S., and Krieglstein, J., 2002, Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage: J Neurosci, v. 22, no. 10, p. 3898-3909.
Zhuang, Z. Y., Gerner, P., Woolf, C. J., and Ji, R. R., 2005, ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model: Pain, v. 114, no. 1-2, p. 149-159.
Zhuang, Z. Y., Kawasaki, Y., Tan, P. H., Wen, Y. R., Huang, J., and Ji, R. R., 2007, Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine: Brain Behav Immun, v. 21, no. 5, p. 642-651.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top