跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭力禎
研究生(外文):Li-Jhen Jheng
論文名稱:使用非對稱PRESS技術偵測J-耦合代謝物之模擬研究
論文名稱(外文):Investigation of the Detection on J-coupled Metabolites using Point-Resolved Spectroscopy Asymmetry Technique by Simulation.
指導教授:賴炳宏柯正雯
指導教授(外文):Ping-Hong LaiCheng-Wen Co
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:61
中文關鍵詞:耦合系統頻譜編輯磁共振頻譜
外文關鍵詞:coupled spin systemsPRESSVeSPAMRSspectrum editing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
磁共振頻譜(magnetic resonance spectroscopy, MRS)可用來量化代謝物的濃度,並已經廣泛應用在臨床醫學上。但是一些臨床上應用的頻譜,其代謝物受到耦合系統的影響,使得頻譜產生重疊的現象,造成頻譜觀察及分析上的困難。為了改善此情況,我們以模擬的方式,觀察非對稱PRESS頻譜編輯區分強耦合代謝物的現象,並找出區分這些強耦合代謝物之最佳化實驗參數值。

非對稱PRESS頻譜編輯主要是利用改變PRESS間的重新聚焦脈衝時間來調配強耦合代謝物的訊號,透過頻譜相減消除單波峰及弱耦合代謝物的訊號,觀察出強耦合AB系統和MN系統的頻譜變化。我們的結果顯示,在一般常用的磁場下,此方法能有效取得強耦合代謝物頻譜,如glutamate、myo-inositol、NAA和taurine。而且,只需要改變TE1和TE2兩個參數,因此在實際臨床應用上也有其方便性的優點。
Magnetic Resonance Spectroscopy (MRS) has been used widely to quantify metabolite concentrations for clinical systems. However, some spectra in clinical application are obscured by stronger, overlapping resonances, and made the analytic and observation of these metabolites more difficult. In order to improve this situation, simulation was performed to generate spectra with PRESS asymmetry technique which helps to distinguish the strongly coupled metabolites. The experimental parameters were also optimized for these metabolites by this simulation.

PRESS asymmetry technique relies on strongly coupled signal modulation by changing the timing between refocusing pulses, and obtaining one spectrum of which singlets and weakly coupled signals were removed by subtraction. Then, it is possible to observe the signal variation of AB couple system and MN couple system. Our results show that, in conventional clinical field strengths, this method can extract spectra of some strongly coupled metabolites, such as glutamate, myo-inositol, NAA and taurine. Moreover, this technique is easy to be realized by changing TE1 and TE2 parameters, and is therefore convenient for clinical usage.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 v
第一章 緒論 1
1.1 概述 1
1.2 文獻回顧 1
1.3 研究動機 3
1.4 組織架構 4
第二章 原理 5
2.1 磁共振頻譜 5
2.2 人體大腦中常見的代謝物 7
2.3 化學位移 11
2.4 J-耦合 12
2.5 非對稱PRESS頻譜編輯 13
第三章 方法與步驟 15
3.1 VeSPA 15
3.2 數值模擬實驗設計 21
3.2.1 模擬參數設定 21
3.2.2 實驗步驟 21
第四章 結果 27
第五章 討論與結論 43
參考文獻 49
[1]F. G. Woermann, M. A. McLean, P. A. Bartlett, G. J. Parker, G. J. Barker, and J. S. Duncan, "Short echo time single‐voxel 1H magnetic resonance spectroscopy in magnetic resonance imaging–negative temporal lobe epilepsy: Different biochemical profile compared with hippocampal sclerosis," Annals of neurology, vol. 45, pp. 369-376, 1999.
[2]R. A. Moats, T. Ernst, T. K. Shonk, and B. D. Ross, "Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease," Magnetic resonance in medicine, vol. 32, pp. 110-115, 1994.
[3]V. Govindaraju, K. Young, and A. A. Maudsley, "Proton NMR chemical shifts and coupling constants for brain metabolites," NMR in Biomedicine, vol. 13, pp. 129-153, 2000.
[4]R. B. Thompson and P. S. Allen, "A new multiple quantum filter design procedure for use on strongly coupled spin systems found in vivo: its application to glutamate," Magnetic resonance in medicine, vol. 39, pp. 762-771, 1998.
[5]H. Kim, J. M. Wild, and P. S. Allen, "Strategy for the spectral filtering of myo‐inositol and other strongly coupled spins," Magnetic resonance in medicine, vol. 51, pp. 263-272, 2004.
[6]L. N. Ryner, J. A. Sorenson, and M. A. Thomas, "3D localized 2D NMR spectroscopy on an MRI scanner," Journal of Magnetic Resonance, Series B, vol. 107, pp. 126-137, 1995.
[7]K. L. Behar and T. Ogino, "Assignment of resonances in the 1H spectrum of rat brain by two‐dimensional shift correlated and j‐resolved NMR spectroscopy," Magnetic resonance in medicine, vol. 17, pp. 285-303, 1991.
[8]D. Mayer and D. M. Spielman, "Detection of glutamate in the human brain at 3 T using optimized constant time point resolved spectroscopy," Magnetic resonance in medicine, vol. 54, pp. 439-442, 2005.
[9]R. Hurd, N. Sailasuta, R. Srinivasan, D. B. Vigneron, D. Pelletier, and S. J. Nelson, "Measurement of brain glutamate using TE‐averaged PRESS at 3T," Magnetic resonance in medicine, vol. 51, pp. 435-440, 2004.
[10]J. W. Pan, G. F. Mason, G. M. Pohost, and H. P. Hetherington, "Spectroscopic imaging of human brain glutamate by water‐suppressed J‐refocused coherence transfer at 4.1 T," Magnetic resonance in medicine, vol. 36, pp. 7-12, 1996.
[11]H. K. Lee, A. Yaman, and O. Nalcioglu, "Homonuclear J‐refocused spectral editing technique for quantification of glutamine and glutamate by 1H NMR spectroscopy," Magnetic resonance in medicine, vol. 34, pp. 253-259, 1995.
[12]D. Rothman, K. Behar, H. Hetherington, and R. Shulman, "Homonuclear 1H double-resonance difference spectroscopy of the rat brain in vivo," Proceedings of the National Academy of Sciences, vol. 81, pp. 6330-6334, 1984.
[13]C. Choi, N. J. Coupland, P. P. Bhardwaj, N. Malykhin, D. Gheorghiu, and P. S. Allen, "Measurement of brain glutamate and glutamine by spectrally‐selective refocusing at 3 tesla," Magnetic resonance in medicine, vol. 55, pp. 997-1005, 2006.
[14]F. Schubert, J. Gallinat, F. Seifert, and H. Rinneberg, "Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla," Neuroimage, vol. 21, pp. 1762-1771, 2004.
[15]J. Hu, S. Yang, Y. Xuan, Q. Jiang, Y. Yang, and E. M. Haacke, "Simultaneous detection of resolved glutamate, glutamine, and γ-aminobutyric acid at 4T," Journal of Magnetic Resonance, vol. 185, pp. 204-213, 2007.
[16]J. Snyder, R. B. Thompson, and A. H. Wilman, "Difference spectroscopy using PRESS asymmetry: application to glutamate, glutamine, and myo‐inositol," NMR in Biomedicine, vol. 23, pp. 41-47, 2010.
[17]B. Corporation, "波譜儀基本原理與實驗使用手冊."
[18]R. A. De Graaf, In vivo NMR spectroscopy: principles and techniques: Wiley-Interscience, 2008.
[19]B. J. Soher, P. Semanchuk, K. Young, and D. Todd, "Vespa–Simulation User Manual and Reference."
[20]B. J. Soher, P. Semanchuk, K. Young, D. Todd, and J. Matson, "Vespa–RFPulse User Manual and Reference."
[21]B. J. Soher, P. Semanchuk, K. Young, and D. Todd, "Vespa–Priorset User Manual and Reference."
[22]B. J. Soher, P. Semanchuk, K. Young, and D. Todd, "Vespa–Analysis User Manual and Reference."
[23]A. H. Wilman and P. S. Allen, "The response of the strongly coupled AB system of citrate to typical 1H MRS localization sequences," Journal of Magnetic Resonance, Series B, vol. 107, pp. 25-33, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top