跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/22 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳怡靜
研究生(外文):Yi-Jing Chen
論文名稱:舌下絡脈特徵自動化擷取系統
論文名稱(外文):Automatic Sublingual Vein Feature Extraction System
指導教授:蔣依吾蔣依吾引用關係
指導教授(外文):John Y. Chiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:72
中文關鍵詞:直方圖均化舌背影像舌下絡脈舌診
外文關鍵詞:histogram equalizationback of the tongue imagesublingual veintongue diagnosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
中醫診斷精髓在於「辨證論治」,而辨證以望、聞、問、切四診為依據,望診居四診之首,舌診為中醫望診之重要項目。舌診包括望舌面及舌下絡脈,近年來,醫療研究相繼指出舌下脈絡與人體臟腑關係密切,藉由觀察舌下絡脈變化,判斷人體臟腑是否發生病變,進而及早治療。惟臨床舌診判讀往往取決於醫師主觀判斷、經驗累積以及當時所在環境因素,其結果易囿於知識、經驗、思維模式、診斷技巧、對顏色感知及詮釋等主觀判定影響,不同醫師對同一舌象可能做出互異判斷,重複性不佳。因此藉由科學方法輔助醫師進行診斷,循標準化判別程序,獲得可靠斷證結果,以提高中醫臨床應用價值,為一重要課題。本文建立一套以影像處理為基礎之舌下絡脈徵自動化擷取系統,藉由電腦判讀達到客觀化及定量化之目標,特徵之擷取結果亦能成為應用於臨床輔助及中醫舌下絡脈診資料庫建立之重要前提。
舌下脈絡特徵擷取主要分離舌背部位,再擷取舌背上舌下脈絡區域判斷特徵表象。首先,拍攝患者舌背影像,透過色彩校正補償色彩失真進而擷取舌背區域。本文藉由分析舌背、嘴唇、牙齒及皮膚部位RGB色彩表現,轉為人眼容易辨認HSI色彩空間,配合皮膚區域移除、檢測矩形、牙齒區域移除、黑色區域移除和偵測控制點後擷取舌背影像。將分離後舌背影像進行直方圖均化與色相偏移以增強色彩對比,經RGB色彩分量變化、色調、飽和度、及亮度特性分離舌下脈絡,並依舌下脈絡色彩資訊和位置區分色澤、長度與分支,藉細線化分析有否曲張,同時擷取舌下脈絡週圍特徵如囊柱、囊泡、瘀點、瘀血絲,整合特徵結果並分析舌脈狀況,藉以輔助並提供中醫師做為臨床上診斷參考。
The essence of TCM diagnosis is “Syndrome Differentiation and Treatment”, in which differentiation is based on four methods of observation, smell, inquiry and palpation. The examination of the observing is the most important procedure in the method of “tongue diagnosis”. In recent years, sublingual vein is proved to be related closely with human organs in medical researches. By observing pathological changes of sublingual vein with features to determine if lesion happens to human organs and then give treatments as soon as possible. Due to the clinical tongue diagnosis usually depends on the factors of doctor’s subjective opinions, accumulated experiences and environment at time, the result is likely to be limited to and influenced by subjectively judgments of knowledge, experiences, thinking patterns, diagnosis skills, senses and explanations of color. Different doctors may not have the same diagnosis to one tongue pattern which leads to inconsistency. By using technical method as assistance to diagnose, along with standard judgment progress to acquire reliable diagnosis is an important issue to improve the value of TCM clinical application. This research is about using one of the developments of image process technology-Automatic sublingual vein feature extraction system-to reach targets of objective and quantitative by computer interpretation. An important prerequisite is that the result of sublingual vein features also can be applied in clinical assistance and used in sublingual vein date base.
  The features of sublingual arteries and veins are captured mainly from separating the parts of the back of tongue, and then grab the area of sublingual arteries and veins to identify its features. First, take the photos of patients’ back tongues and grab the exact images of their sublingual arteries and veins via adjusting the unreal color parts of the tongue photos. This research grabs the images of back tongues via analyzing the RGB performances of tongue back, lips, teeth, and mouth skin, and transferring these into HIS color, which is easier for human eyes to recognize the features of these parts, and also combined with the removals of mouth skin area, teeth area, and black area, rectangle detection, and detection of control points to further improve the images of the back of tongue. After the separation of the back of the tongue image, process histogram equalization and hue offset to enhance the color contrast level, and use the changes in RGB color components, hue, saturation, and brightness characteristics to separate sublingual vein, and in accordance with sublingual vein colors and locations to distinguish the color light, the length and the vein branches to analyze whether there is a varicose vein. At the same time, the research is intended to capture the tongue features such as sublingual sac column, vesicles, petechiae, and bleeding silk, and integrate and analyze these features to assist and provide practitioners as clinical diagnostic references.
目 錄
論文審定書 i
中文摘要 ii
英文摘要 iii
第一章 簡介 1
1.1 舌下絡脈診及其歷史 2
1.1.1 舌下絡脈之解剖學基礎 3
1.1.2 舌下絡脈診察要領 4
1.1.3 舌下絡脈之形狀性質 4
1.2 相關研究 5
1.2.1 基於特徵聚類舌下絡脈特徵自動提取方法 5
1.2.2 舌下絡脈對比度不同情況時之舌下絡脈分割 6
1.2.3 近紅外舌下靜脈提取 10
第二章 理論基礎 14
2.1 HSI彩色模型 14
2.2 Connected Component Labeling 15
2.3 膨脹與侵蝕 16
2.4 極座標轉換 17
第三章 研究方法 21
3.1 取像環境與設備 21
3.2 擷取流程 23
3.3 舌背區域提取 24
3.3.1 色彩校正 24
3.3.2 移除皮膚區域 26
3.3.3 矩形檢測 28
3.3.4 牙齒與黑色區域檢測 29
3.3.5 控制點偵測 31
3.3.6 舌背擷取 33
3.4 舌背特徵擷取 33
3.4.1 舌下絡脈 33
3.4.2 舌下絡脈寬度及長度比例 36
3.4.3 舌下絡脈顏色 37
3.4.4 分枝 38
3.4.5 曲張判斷 39
3.4.6 囊柱與囊泡 40
3.4.7 瘀點 41
3.4.8 瘀血絲 42
第四章 實驗結果 44
第五章 結論與未來展望 55
參考文獻 56
附錄一、舌診總報告 59


圖 次
圖 1-1 特徵聚類處理過程與絡脈提取結果 6
圖 1-2 針對舌下絡脈對比度高時處理步驟 7
圖 1-3濾波處理及絡脈處理結果 7
圖 1-4 PBSVS與ASVS分析結果 10
圖 1-5 近紅外光提取方法之水域分割 11
圖 1-6近紅外光提取方法之舌背提取 12
圖 1 7近紅外光提取方法之舌下絡脈提取結果 13
圖 2-1 HSI彩色模型 14
圖 2-2八連通示意圖 16
圖 2-3 Connected Component Labeling物件標記結果 16
圖 2-4 形態學-膨脹示意圖 17
圖 2-5 形態學-侵蝕示意圖 17
圖 2-6 原始影像、舌頭與六個方向明亮度關係 18
圖 2-7 Sobel濾波器之結果與作者提出之edge detector濾波方式所得結果 19
圖 2-8 擷取舌頭之流程與結果 20
圖 2-9 原始影像、初始化之Snake與擷取結果 20
圖 3-1 裝載於相機鏡頭之環形LED燈 21
圖 3-2 舌診儀由舌診檢查托架、相機支撐部、軌道及校正色卡組成 22
圖 3-3 擷取之舌部影像範例 22
圖 3-4舌背及舌下特徵擷取流程 23
圖 3-5 原始影像與色彩校正後結果 25
圖 3-6 R、G、B校正資料 26
圖 3-7 色調統計圖表 27
圖 3-8 移除皮膚影像 28
圖 3-9 檢測矩形影像 29
圖 3-10 牙齒區域影像 30
圖 3-11 黑色區域影像 31
圖 3-12 極座標轉換與搜尋方向示意圖 31
圖 3-13 舌背外部與內部之控制點偵測結果 32
圖 3-14 控制點搜尋結果 33
圖 3-15 擷取舌頭結果 33
圖 3-16舌下絡脈提取步驟與結果 35
圖 3-17 舌背伸舌模模擬 36
圖 3-18 絡脈細線化結果與絡脈寬度 37
圖 3-19 舌下絡脈顏色分類 38
圖 3-20 分枝空隙與水平切割示意圖與分枝擷取結果 39
圖 3-21 特徵點提取示意圖 40
圖 3-22 舌下絡脈篩選後區塊及囊柱與囊泡提取結果 41
圖 3-23 瘀點提取結果 42
圖 3-24 淤血絲提取結果 43

表 次
表 4-1 各特徵標示之顏色 44
表 4-2 舌背特徵提取結果 45
表 4-3 舌背特徵提取結果 47
表 4-4舌背特徵提取結果 49
表 4-5舌背特徵提取結果 51
表 4-6舌背特徵提取結果 53
[1] 李乃民等,《中國舌診大全》。北京:學苑出版社,1995,頁1-525。
[2] 王季藜等,《舌診源鑑》。台北:立得出版社,1993,頁2-15。
[3] 洪禎徽,《舌診》。台北:立得出版社,1996。
[4] 靳士英,《舌下絡脈診法的基礎與臨床研究》。廣東科技出版社,1998。
[5] K. Minah, C. Deirdre and Z. Christopher, “Traditional Chinese Medicine tongue inspection: An examination of inter-and intrapractitioner reliability for specific tongue characteristics,” J. ACM., Vol. 14, No. 5, pp. 527-536, 2008.
[6] 趙榮菜等,〈舌質舌苔的計算機定量描述和分類〉,《中醫雜誌》,第2卷,頁47,1989。
[7] 張永賢、邱創乾,〈以色彩學探討中醫舌象之研究〉,《第六十六屆國醫節中醫學術研討會》,頁2,1996。
[8] Pang, B., Zhang, D., Li, N., Wang, K., “Computerized tongue diagnosis based on Bayesian Network,” IEEE Trans Biomedical Engineering, Vol. 51, No.10, pp. 1803-1810, 2004.
[9] N. Li, et al., The Handbook of Chinese Tongue Diagnosis, Peking, Xueyuan Publishing Company, 1994.
[10] WANG Fa-wei, LIU Yi, LIN Ming-xiong, “Observation and Analysis of 112 Cases on Subglossal Collateral Vessels of Coronary Heart Disease Patients[J],”Chinese Journal of Information on Traditional Chinese Medicine, vol.11, Issue 4, pp. 323-325, 2004.
[11] YANG Ya-ping, QIAN Jun, ZHAN Zhen, WANG Yuan, XU Hai-xia, YANG Wei-hong. “An Analysis on Features of Sublingual Collaterals in Diabetes Patients with Angiopathy, ” Journal of Nanjing University of Traditional Chinese Medicine, Vol.24, 2008.
[12] Z. Yan, K. Wang, and N. Li, “Segmentation of sublingual veins from near infrared sublingual images,” IEEE Int''l Conf. on Bioinformatics and Bioengineering, pp. 1-5, Athens, Oct. 8-10, 2008.
[13] Z. Yan, N. Li, “Adaptive segmentation and feature quantization of sublingual veins of healthy humans,” Lecture Notes in Computer Science 4901, pp. 107-114, 2008 [1st Int. Conf. Medical Biometrics Hong Kong, 2008].
[14] D. Zhang, Z. Yan, N. Li, K. Wang, Portable sublingual vein image acquisition device based on near infrared, Invent Patent of P. R. China, Application No. 200710144966.2, Publication Date: July, 9th, 2008.
[15]宋汝濬,《攝影學》。台北:藝術圖書公司,1993,頁10-11、65-69。
[16]林傑人編著,《實用攝影》。台北:渤海堂文化事業有限公司,1993,頁106-123、265-272。
[17]彭清華,〈舌下診法的研究發展〉,《江蘇中醫》, 第5卷,頁40-45,1988。
[18]靳士英、司兆學等,〈瘀證舌下絡脈的病理組織學研究〉,《中醫雜誌》, 第3卷,頁42-43,1992。
[19]陳澤霖、謝嘉文等,〈5403 例正常人舌象分析〉,《中醫雜誌》,第2卷,頁18-22,198 1。
[20]李樹棠、沈立明等,〈舌下絡脈診治意義探析〉,《寰宇中醫雜誌》,第1卷,頁37-38,1992。
[21] 不著撰人,任應秋,《黃帝內經章句索引》。台北:啟業書局,1987。
[22] 葛洪,《後備急處方、虛黃》卷二,明萬曆甲戌年刊本。北京:人民衛生出版社, 1982,頁36。
[23] 巢元方 ,《諸病源侯診》上冊,第一版。北京:人民衛生出版社,1980,頁389。
[24] 巢元方 ,《諸病源侯診》上冊, 第一版。北京:人民衛生出版社,1980, 頁401。
[25] 孫思邈 ,《備急千金藥方 》第一版。北京:人民衛生出版社,1987,頁17。
[26] 金蒙禮 ,《醫方類聚》卷四,第一版。北京:人民衛生出版社,1979,頁389。
[27] 陳自明 ,《婦人大全良方》第一版。北京:人民衛生出版社,1985,頁483。
[28] 靳士英,〈絡脈診法考〉,《中醫雜誌》,第3卷,頁60,1987。
[29] 靳士英等,〈舌下絡脈診法的發展〉,《新中醫》,第10卷,頁51-54,1989。
[30] SUN Dan-Ping, WU Jia, ZHANG Yong-Hong, BAI Jing, WENG Wei-Liang, WU Yu, “Automatic Sublingual Venae Extraction Method Based on Clustering”, Chinese Journal of Biomedical Engineering, Vol.27, No. 2, pp. 265-269, 2008.
[31]Zifei Yan, Kuanquan Wang, Naimin Li. “Computerized feature quantification of sublingual veins from color sublingual images,” Computer Methods and Programs in Biomedicine, Vol. 93, No.2, pp. 192-205, 2009.
[32]于淼,閏子飛,王寬全,李乃民,〈一種近红外舌下静脈提取方法〉,《智能系統學報》,第3卷,第4期,頁309-312,2008。
[33]Roullot, E. “A Unifying Framework for Color Image Calibration,” 15th Inter. Conf. on Systems, Signals and Image Proc. IWSSIP., pp. 97-100, 2008.
[34]Wangmeng Zuo, Kuanquan Wang, Zhang D. and Hongshi Zhang, “Combination of polar edge detection and active contour model for automated tongue segmentation,” The 3rd International Conf. on Image and Graphics, pp. 270-273, 18-20, 2004.
[35]M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” IEEE Trans. IJCV, vol. 1, pp. 321-331, 1987.
[36]WANG J, JIANG G W, GUAN H, “Realization of the extended Douglas-peeueker compressing algorithm[J] ,”Belting Surveying and Mapping, Vol.3, pp. 13-14, 2002.
[37] 鍾國亮,《影像處理與電腦視覺》,東華書局,ISBN: 9574831418,2002。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top