跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/05 23:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳秉剛
研究生(外文):Bing-gang Wu
論文名稱:多輸入多輸出放大傳遞中繼系統之有限回授非線性傳收設計
論文名稱(外文):Limited Feedback Designs for Nonlinear Transceiver in Dual-Hop Amplify-and-Forward MIMO Systems
指導教授:曾凡碩
指導教授(外文):Fan-Shuo Tseng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:49
中文關鍵詞:多輸入多輸出放大傳遞預編碼器通道訊息QR連續干擾消除最小均方誤差連續干擾消除
外文關鍵詞:amplify-and-forwardchannel state informationprecoderQR-successive interference cancellationMMSE-successive interference cancellationmultiple-input multiple-output
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文針對多輸入多輸出放大傳遞中繼系統中,設計以有限回授機制為基礎之非線性傳收設計。我們考量兩種非線性接收機,包含QR連續干擾消除及最小均方誤差連續干擾消除接收器,並考量實際通道資訊擷取狀況,設計來源端與中繼端碼字選擇之準則。我們分別提出以全域通道訊息與局部通道訊息為基準之預編碼選擇機制。首先,考慮目的端可以知道全域通道訊息,包含來源端至中繼端與中繼端至目的端之通道。目的端利用這些全域通道訊息,使用最似最佳解或最大化目的端訊雜比之碼字選擇法則,分別回傳來源端與中繼端之碼字索引至來源端與中繼端。然而,目的端欲在實際系統中獲得全域通道訊息將需要傳送很多訊號以外的資訊,這在通道變化很快的環境比較不合適,因此,本論文另提出以局部通道訊息為主之碼字選擇機制,其中中繼端只知道來源端至中繼端通道訊息,目的端只知道中繼端至目的端通道訊息,再利用最大化訊雜比法則,選擇預編碼碼字。經由學理證明顯示出,目的端以局部通道訊息之碼字選擇的信號訊雜比將會小於以全域通道訊息下的信號訊雜比,模擬結果顯示全域通道資訊為主之碼字選擇機制優於以局部通道資訊為主之碼字選擇機制效能,但也付出較高複雜度的代價。
In this thesis, we study the nonlinear transceiver designs with limited feedback mechanism in the multiple-input multiple-output (MIMO) amplify-and-forward relay systems. We consider two nonlinear receivers, QR - successive interference cancellation (SIC) and minimum mean-squared error (MMSE) SIC receivers, to jointly design the codeword selection criteria for the source and relay precoders. Considering the acquired channel state information (CSI), we proposed two kinds of codewords selection criteria. For the first, the destination exploits the global CSI, including the source-to-relay and the relay-to-destination channels, to jointly select the source and relay codewords. With the global CSI, the codeword selection criteria are devised based on the approximated optimum codeword and the maximum signal-to-interference plus noise (SINR) criteria. However, in real-word applications, the system has to spend large overhead to let the destination acquire the global CSI which essentially reduces the spectral efficiency and is not applicable in the time-varying environment. Therefore, we subsequently proposed the codeword selection criteria based on the local CSI where the relay only knows the source-to-relay channel and the destination acquires the relay-to-destination channel merely. The codeword selection criteria are then devised with the maximum SINR criterion. The SINR at the destination with the proposed local CSI is further analyzed to be a lower bound of that with the global CSI. Simulation results show that the proposed transceivers with global CSI is superior to that with local CSI while the later having shorter feedback latency and lower computational complexity.
誌謝…………………………………………………..………………... i
中文摘要……………………….…………………………………….... ii
英文摘要………………………………………………………..……... iii
目錄……………………………………………………………..……... iv
圖次………………………………………………...................…….. v
第1章 序言………………………………………......…………….…..1
第2章 系統模型…..…………………………………………………....10
第2.1節 多輸入多輸出放大傳遞中繼系統………….………………10
第2.2節 QR連續干擾消除接收機之來源端與中繼端預編碼設計...13
第2.3節 最小均方誤差連續干擾消除接收機之來源端與中繼端預編碼設…….17
第3章 有限回授機制下傳收機設計…………...………………………22
第3.1節 使用勞埃德(Lloyd)演算法建構碼書….………..............…22
第3.2.1節 全域(global)通道資訊下最似最佳解之碼字選取準則..…23
第3.2.2節 全域通道資訊下最大化最小訊雜比之碼字選取準則.…..24
第3.3節 局部(local)通道資訊下一種選擇碼字的準則…………..….25
第3.4節 複雜度問題之探討 ………………………………………….29
第3.5節 通道資訊的問題 …………………………………………….30
第4章 系統模擬及探討…………………………....……………………31
第5章 結論與未來展望…………………………………………………35
參考文獻………………..……………………………………………….36
[1] D. Gesbert, M. Shafi, D.-S. Shiu, P. J. Smith, and A. Naguib, “From theory to practice: An overview of MIMO space-time coded wireless systems,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 3, pp. 281–302, April 2003.
[2] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Communications Magazine, vol. 42, no. 10, pp. 60–67, Oct. 2004.
[3] M. Z. Siam and M. Krunz, “An overview of MIMO-oriented channel access in wireless networks,” IEEE Wireless Communications, vol. 15, no. 1, pp. 63–69, Feb. 2008.
[4] S. M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[5] L. Zheng and D. N. C. Tse, “Diversity and multiplexing a fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inform. Theory, vol. 49, no. 5, pp. 1073–1096, May 2003.
[6] H. Liao, “A coding theorem for multiple-access communications,” presented at IEEE Int. Symp. on Information Theory, Asilomar, CA, 1972.
[7] D. Slepian and J. K. Wolf, “A coding theorem for multiple-access channels with correlated sources,” Bell Syst. Tech. J., vol. 52, no. 7, pp. 1037–1076, Sep. 1973.
[8] T. M. Cover, “Broadcast channels,” IEEE Trans. Inform. Theory, vol. 18, no. 1, pp. 2–14, Jan. 1972.
[9] A. Soysal and S. Ulukus, “Optimality of beamforming in fading MIMO multiple access channels,” IEEE Trans. Communications, vol. 57, no. 4, pp. 1171–1183, April 2009.
[10] G. Caire and S. Shamai (Shitz), “On the achievable throughput of a multiantenna Gaussian broadcast channel,” IEEE Trans. Inform. Theory, vol. 49, no. 7, pp. 1691–1706, July 2003.
[11] S. Vishwanath, N. Jindal and A. Goldsmith, “Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.
[12] E. C. van der Meulen, “Three-terminal communication channels,” Advances in Applied Probability, vol. 3, pp. 120-154, 1971.
[13] Sahin S., and Aygolu U, “Amplify-and-forward strategy with limited feedback in two-way relay channels,” IEEE Wireless Commun., pp. 1-5, Nov. 2011.
[14] J. N. Laneman, D. N.C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[15] M. Janani, A. Hedayat, T. E. Hunter, and A. Nosratinia, “Coded cooperation in wireless communications: space-time transmission and iterative decoding,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 362- 371, Feb. 2004.
[16] G. Kramer, M. Gastpar, and F. W. Kneubuhler, “Cooperative strategies and capacity theorems for relay networks,” IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3037-3063, Sept. 2005.
[17] A. B. Carleial, “Interference channels,” IEEE Trans. Inform. Theory, vol. 24, no. 1, pp. 60–70, Jan. 1978.
[18] S. A. Jafar and M. J. Fakereddin, “Degrees of freedom for the MIMO interference channel,” IEEE Trans. Inform. Theory, vol. 53, no. 7, pp. 2637–2642, July 2007.
[19] S. A. Jafar and S. Shamai (Shitz), “Degrees of freedom region for the MIMO X channel,” IEEE Trans. Inform. Theory, vol. 54, no. 1, pp. 151–170, Jan. 2008.
[20] V. R. Cadambe and S. A. Jafar, “Interference alignment and the degrees of freedom for the k user interference channel,” IEEE Trans. Inform. Theory, vol. 54, no. 8, pp. 3425–3441, Aug. 2008.
[21] J. Shin and J. Moon, “Weighted-sum-rate-maximizing linear transceiver filters for the k-user MIMO interference channel,” IEEE Trans. Communications, vol. 60, no. 10, pp. 2776–2783, Oct. 2012.
[22] H. Shen, B. Li, M. Tao, and X. Wang, “MSE-based transceiver designs for the MIMO interference channel,” IEEE Trans. Wireless Communications, vol. 9, no. 11, pp. 3480–3489, Nov. 2010.
[23] C. E. Chen and W. H. Chung, “An iterative minmax per-stream MSE transceiver design for MIMO interference channel,” IEEE Wireless Communications letters, vol. 1, no. 3, pp. 229–232, June 2012.
[24] N. M. Behrang, J. G. Andrews, and R. W. Health, Jr., “MIMO interference alignment over correlated channels with imperfect CSI,” IEEE Trans. Signal Processing, vol. 59, no. 6, pp. 2783–2794, June 2011.
[25] K. Gomadam, V. R. Cadambe, and S. A. Jafar, “Approaching the capacity of wireless networks through distributed interference alignment,” in Proc. 2008 IEEE Global Telecommun. Conf., pp. 1–6, 2008.
[26] C. Shi, R. A. Berry, and M. L. Honig, “Adaptive beamforming in interference networks via bi-directional training,” in Information Sciences and Systems (CISS) Conf., Mar. 2010.
[27] O. E. Ayach and R. W. Heath, Jr., “Interference alignment with analog channel state feedback,” IEEE Trans. Wireless Communications, vol. 11, no. 2, pp. 626–636, Feb. 2012.
[28] O. E. Ayach, A. Lozano, and R. W. Heath, Jr., “On the overhead of interference alignment: training, feedback, and cooperation,” IEEE Trans. Wireless Communications, vol. 11, no. 11, pp. 4192–4203, Nov. 2012.
[29] D. J. Love and R. W. Heath, Jr., “Limited feedback unitary precoding for spatial multiplexing systems,” IEEE Trans. Inform. Theory, vol. 51, no. 8, pp. 2967–2976, Aug. 2005.
[30] D. J. Love, R. W. Health, Jr., V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An overview of limited feedback in wireless communication systems,” IEEE Trans Journal on Selected Areas in Communications, vol. 26, no. 8, pp. 1341–1365, Oct. 2008.
[31] V. K. N. Lau, Y. Liu, and T. A. Chen, “On the design of MIMO block-fading channels with feedback-link capacity constraint,” IEEE Trans. Communications, vol. 52, no. 1, pp. 62–70, Jan. 2004.
[32] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE Trans. Inform. Theory, vol. 52, no. 11, pp. 5045–5060, Nov. 2006.
[33] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO achievable rates with downlink training and channel state feedback,” IEEE Trans. Inform. Theory, vol. 56, no. 6, pp. 2845–2866, June 2010.
[34] A. D. Dabbagh and D. J. Love, “Multiple antenna MMSE based downlink precoding with quantized feedback or channel mismatch,” IEEE Trans. Communications, vol. 56, no. 11, pp. 1859–1868, Nov. 2008.
[35] C. E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans. Inform. Theory, vol. 2, no. 3, pp. 8–19, Sep. 1956.
[36] C. E. Shannon, “Channels with side information at the transmitter,” IBM Journal Research and Dev., vol. 2, no. 4, pp. 289–293, Oct. 1958.
[37] J. Hayes, “Adaptive feedback communications,” IEEE Trans. Communications, vol. 16, no. 1, pp. 29–34, Feb. 1968.
[38] J. P. M. Schalkwijk and T. Kailath, “A coding scheme for additive noise channels with feedback - Part I: No bandwidth constraint,” IEEE Trans. Inform. Theory, vol. 12, no. 2, pp. 172–182, April 1966.
[39] J. P. M. Schalkwijk, “A coding scheme for additive noise channels with feedback - Part II: Band-limited signals,” IEEE Trans. Inform. Theory, vol. 12, no. 2, pp. 183–189, April 1966.
[40] G. L. Turin, “Signal design for sequential detection systems with feedback,” IEEE Trans. Inform. Theory, vol. 11, no. 3, pp. 401–408, July 1965.
[41] G. L. Turin, “Comparison of sequential and nonsequential detection systems with uncertainty feedback,” IEEE Trans. Inform. Theory, vol. 12, no. 1, pp. 5–8, Jan. 1966.
[42] W. Santipach and M. L. Honig, “Signature optimization for CDMA with limited feedback,” IEEE Trans. Inform. Theory, vol. 51, no. 10, pp. 3475–3492, Oct. 2005.
[43] D. J. Love, R. W. Heath, Jr., and T. Strohmer, “Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2735–2747, Oct. 2003.
[44] R. W. Heath, Jr., S. Sandhu, and A. J. Paulraj, “Antenna selection for spatial multiplexing systems with linear receivers,” IEEE Commun. Lett., vol. 5, no. 4, pp. 142-144, Apr. 2001.
[45] O. Munoz-Medina, J. Vidal, and A. Agustin, “Linear transceiver designs in non-regenerative relays with channel state information,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2593-2604, Jun. 2007.
[46] W. Haihong, G. Mounir, C. Wenjing, W. Xin, and W. Jibo, “A Limited Feedback Joint Precoding for Dual Hop MIMO Amplify-and-Forward Relay Systems,” IEEE Trans. pp. 1-6, 2013.
[47] Y. Huang, L. Yang, M. Bengtsson, and B. Ottersten, “A limited feedback joint precoding for amplify-and-forward relaying,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1347-1357, Mar. 2010.
[48] F. S. Tseng, W. R. Wu, “Nonlinear Transceiver Designs in MIMO Amplify-and-Forward Relay Systems,” IEEE Trans on Vehicular Technology, vol. 60, no. 2, pp. 528-538, Feb 2011.
[49] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[50] Y. Jiang, J. Li, andW.W. Hager, “Joint transceiver design for MIMO communications using geometric mean decomposition,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3791–3803, Oct. 2005.
[51] Y. Jiang, J. Li, and W. W. Hager, “Uniform channel decomposition for MIMO communications,” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4283–4294, Nov. 2005.
[52] D. S. Bernstein, Matrix Mathematics. Princeton, NJ: Princeton Univ. Press, 2005.
[53] S. Zhou and B. Li, “BER criterion and codebook construction for finiterate precoded spatial multiplexing with linear receivers,” IEEE Trans. Signal Process., vol. 54, no. 5, pp. 1653-1665, May 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊