跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/02/26 16:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯明儒
研究生(外文):Ming-Ru Tang
論文名稱:利用六角孔洞漣波陣列結構用於Ag/SiO2/Ag紅外線熱輻射器發光強度之研究
論文名稱(外文):Emission Enhancement in Ag/SiO2/Ag Infrared Thermal Emitter by Using a Hexagonal Dimple Array
指導教授:林吉聰張議聰張議聰引用關係
指導教授(外文):Jyi-Tsong LinYi-Tsung Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:52
中文關鍵詞:漣波結構電子束蒸鍍法射頻濺鍍法表面電漿子紅外線熱輻射
外文關鍵詞:Dimple structureDual E-Beam EvaporationSputterSurface plasmonThermal emitter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:330
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是探討表面電漿子理論並延伸其應用研究,利用不同銀膜厚度Ag(10, 11, 15和18 nm)、漣波狀銀膜之有無、銀膜孔洞形狀(圓形週期a= 3 μm,圓形孔洞直徑D = 2 μm、方形週期a = 5 μm,方形孔洞邊長L = 2 μm)、SiO2共振腔厚度(100, 520, 900和2000 nm)及加熱溫度(100-250 ℃),分析其物理特性、輻射頻譜和半高寬寬度和表面電漿子共振之特性應用於Ag/SiO2/Ag熱輻射表面電漿子發光器(Ag/SiO2/Ag plasmonic thermal emitter, ASA-PTE)。並討論表面電漿子對於ASA-PTE之影響,以Perkin Elmer 2000 Fourier Transfer Infrared(FTIR) system以及Bruker IFS 66v/s FTIR量測ASA-PTE之熱輻射頻譜和色散關係圖。由本實驗結果獲得:當ASA-PTE最上層Ag表面電漿子層多了一層10~15 nm的薄膜後可以增強其元件的輻射強度:在a = 3 μm,D = 2 μm時,加熱溫度達100 ℃、150 ℃和200 ℃時,功率分別達到22.4 mW/cm2、31.2 mW/cm2和42.3 mW/cm2;a = 5 μm,L = 2 μm時,加熱溫度達100 ℃、150 ℃和200 ℃時,功率分別達到43.2 mW/cm2、63.4 mW/cm2和79.3 mW/cm2。由此可證明表面電漿子及其效應仍有其應用潛力與未來的可發展性,未來能利用紅外線熱輻射器製做生醫相關元件之設計。
In this letter presents the effect of surface plasmon polaritons (SPPs) and ap-plied to thermal emitter. First, the sample Ag/SiO2/Ag plasmonic thermal emitter (ASA-PTE) were fabricated by using photolithography and evaporation proce-dures. There have three different designed. Different thickness of Ag film (10, 11, 15 and 18 nm). The dimple Ag film (a = 3, 5 μm, D = 2μm, L = 2μm) or not. Different thickness of SiO2 cavity (100, 520, 900 and 2000 nm). Analyzed SPPs by the emittance and efficiency. The thermal emission spectra and dispersion relations of reflection spectra are measured by Perkin Elmer 2000 Fourier Transfer Infrared (FTIR) and Bruker IFS 66 v/s FTIR. We designed 10 nm to 15 nm dimple Ag coupling layer and enhance the emission intensity. When the size a = 3μm, D = 2μm, heating temperature 100℃, 150℃ and 200℃, the emission power are 22.4 mW/cm2, 31.2 mW/cm2 and 42.3 mW/cm2 respectively. And the size a = 5 μm, L=2μm, heating temperature 100℃, 150℃ and 200℃, the emis-sion power are up to 43.2 mW/cm2, 63.4 mW/cm2 and 79.3 mW/cm2 respec-tively. Prove that the surface plasmons can efficiently applied to thermal emit-ter. The future work is combine with Biomedical application.
論文審定書…………………………………………………………… i
致謝…………………………………………………………………… ii
中文摘要……………………………………………………………… iii
英文摘要……………………………………………………………… iv
目錄…………………………………………………………………… v
圖目錄………………………………………………………………… vii
第一章 緒論 1
1.1 研究動機 1
1.2 研究的方法與論文架構 3
第二章 研究理論與文獻探討 4
2.1 表面電漿子基本原理 4
2.2 電子束蒸鍍原理 11
2.3 射頻反應式磁控濺鍍法 12
2.3-1 電漿原理 12
2.3-2 射頻濺鍍法(Radio Frequency Sputtering) 13
2.3-3 磁控濺鍍法(Magnetron Sputtering) 14
2.4 電漿輔助化學氣相沉積(PECVD) 15
2.5 光阻塗佈(Spin Coating) 19
2.6 曝光技術 (Photolithgraphy) 20
2.7 量測分析方法 21
2.7-1 FTIR System 21
第三章 實驗 24
3.1 實驗步驟 24
3.2 各層材料與參數 25
3.2-1 鉬(Mo): 25
3.2-2 銀(Ag): 25
3.2-3 二氧化矽(SiO2): 25
第四章 Ag/SiO2/Ag表面電漿子紅外線熱輻射器 26
4.1 Ag/SiO2/Ag熱輻射元件之製作 26
4.2 平坦的ASA-PWT特性之分析 29
4.2-1 SiO2厚度100 nm,Ag上耦合層厚度10 nm 29
4.2-2 SiO2厚度100 nm,Ag上耦合層厚度11 nm 30
4.2-3 SiO2厚度900 nm,Ag上耦合層厚度15 nm 30
4.2-4 SiO2厚度2000 nm,Ag上耦合層厚度15nm 32
4.3 表面電漿子與ASA-PTE特性之分析與結論 33
第五章 結論 39
Reference……………………………………………………………….. 40
Published……………………………………………………………….. 43
[1]W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwave-length optics,” Nature, vol. 424, pp. 824–830, Aug. 2003.
[2]J. B. Pendry, L. M. Moreno, and J. G. Vidal, “Mimicking surface plasmons with structured surfaces,” Science, vol. 305,pp. 847–848, Aug. 2004.
[3]S. Y. Huang, H. H. Hsiao, Y. T. Chang, H. H. Chen, Y. W. Jiang, H. F. Huang, P. E. Chang, H. C. Chang, and S. C. Lee, “Extraordinary transmis-sion through a silver film perforated with bowtie-shaped aperture array in midinfrared region,”Appl. Phys. Lett., vol. 98, no. 25, pp. 253107-1–253107-3, 2011.
[4]M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfared narrow-band plasmonic thermal emit-ter,”Appl. Phys. Lett., vol. 89, no. 17, pp. 173116-1–173116-3, 2006.
[5]C. Y. Chen, M. W. Tsai, Y. W. Jiang, Y. H. Ye, Y. T. Chang, and S. C. Lee, “Coupling of surface plasmons between two silver films in a plasmonic thermal emitter,” Appl. Phys. Lett., vol. 91, no. 24,pp. 243111-1–243111-3, 2007.
[6]Y. H. Ye, Y. W. Jiang, M. W. Tsai, Y. T. Chang, C. Y. Chen, D. C. Tzuang, Y. T. Wu and S. C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett., vol. 93, no. 3,pp. 033113-1–033113-3, 2008.
[7]Y. T. Chang, Y. T. Wu, J. H. Lee, H. H. Chen, C. Y. Hsueh, H. F. Huang, Y. W. Jiang, P. E. Chang, and S. C. Lee, “Emission properties of Ag/dielectric/Ag plasmonic thermal emitter with different lattice type, hole shape and dielectric material,” Appl. Phys. Lett., vol. 95, no. 21, pp. 213102-1–213102-3,2009.
[8]Y. T. Wu, Y. T. Chang, H. H. Chen, H. F. Huang, D. C. Tzuang, Y. W. Jiang, P. E. Chang, and S. C. Lee, “Narrow bandwidth mid-infrared wave-guide thermal emitters,” IEEE Photon. Technol. Lett., vol. 22, no. 15, pp. 1159–1161, Aug. 1, 2010.
[9]Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett., vol. 12, no. 7,pp. 3808–3813, 2012.
[10]C. M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater., vol. 2, no. 6,pp. 628–633, 2012.
[11]W. C. Tu, Y. T. Chang, H. P. Wang, C. H. Yang, C. T. Huang, J. H. He, and S. C. Lee, “Improved light scattering and surface plasmon tuning in amor-phous silicon solar cells by double-walled carbon nanotubes,” Solar Energy Mater. Solar Cells., vol. 101, pp. 200–203, Jun. 2012.
[12]M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W.G. Schoen-feld, C.P. Rinsland, C. Bernardo and D. W. T. Griffith, “Improved vibra-tion-rotation (0-1) HBr line parameters for validating high resolution infra-red atmospheric spectra measurements,” Pergamon., vol. 60, no. 5, pp. 863-867, 1998.
[13]G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. G. Baets, “III-V/Silicon Photonics for Short-Wave Infrared Spectroscopy,” IEEE., vol. 48, no. 2, 2012.
[14]R. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure,” JVSTA., vol. 2, no. 2, pp. 500-503, 1984.
[15]H. Raether, “Surface Plasmons,” Springer, New York, 1988.
[16]A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Reports., 408, 131-134, 2005.
[17]M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanopho-tonics: design, fabrication, and operation of nanometric devices using optical near fields”, IEEE J. Selected Topics Quantum Electron., 8, 839, 2002.
[18]S. Kawata, M. Ohtsu, and M. Irie ed. “Nano-Optics,” Springer, 2002.
[19]P. N. Prasad, “Nanophotonics,” Wiley, Hoboken, NJ, 2004.
[20]Y. T. Chang, T. H. Chuang, C. H. Yang, M. W. Tsai, and S. C. Lee, “Transmission through randomly arranged microcells of subwavelength holes on an aluminum film,” Appl. Phys. Lett. vol. 90, no. 21, pp. 213101-1–213101-3, 2007.
[21]吳民耀,劉威志,表面電漿子理論與模擬,物理雙月刊(廿八卷二期),2006年4月
[22]邱國斌,蔡定平,金屬表面電漿簡介,物理雙月刊(廿八卷二期),2006年4月
[23]Y. T. Wu, Y. T. Chang, Y. W. Jiang, P. E. Chang, Y. H. Ye, D. C. Tzuang, H. H. Chen, H. F. Huang, and S. C. Lee, “Extraordinary Transmission Through Ag–Si Structure Perforated With Rhombus Lattice Hole Arrays”, IEEE., vol. 22, no. 20, pp. 1041-1135, Oct, 2010.
[24]H. Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice- Hall, Inc., (2000)
[25]Y. T. Chang, Member, IEEE, Y. C. Chen, M. R. Tang, W. C. Chi, and M. H. Tsai, “Emission Enhancement in Ag/SiO2/Ag Thermal Emitter by Using a Hexagonal Dimple Array”, IEEE., vol. 25, no. 14, pp. 1328-1331, 2013.
[26]B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics,” New York, NY, USAL Wiley, p.242, 1991.
[27]E. D. Palik, “Handbook of Optical Constants of Solids I&;II,” San Diego, CA, USA: Academic, 1985.
[28]蕭宏,半導體製程技術導論,歐亞書局, 2001.
[29]S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, &;quot;Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst,&;quot; Nano Lett., vol. 10, pp. 4128-4133, Sep-tember 2010.
[30]Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phy. Rev. B, vol. 78, no. 15, pp. 153111-1-153111-4, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top