跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/01/30 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:力偉倫
研究生(外文):Wei-Lun Li
論文名稱:摩擦模型應用於摩擦攪拌銲接過程熱傳導與材料流動之理論與實驗研究
論文名稱(外文):Friction Models for Theoretical and Experimental Studies on the Heat Transfer and Material Flow during the Friction Stir Welding Process
指導教授:邱源成李榮宗李榮宗引用關係
指導教授(外文):Yuang-Cherng ChiouRong-Tsong Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:103
中文關鍵詞:材料流動行為摩擦攪拌銲接臨界溫度熱傳導無探針滯滑比內嵌式
外文關鍵詞:heat conductionflow behavior of materialstick-slip ratiopinlessembedded-typecritical temperaturefriction stir welding
相關次數:
  • 被引用被引用:2
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
本研究使用理論模型模擬無探針工具與內嵌式工具在摩擦攪拌銲接過程中之
熱傳導現象與材料流動行為。利用摩擦模型預測工具與材料間之滯滑比。模擬結
果顯示在相同擠壓力下,轉速越高滯滑比越大;而在相同工具轉速下,擠壓力越
大滯滑比越大。模擬結果亦可看出內嵌式工具之於無探針工具對材料攪動範圍較
大且材料流動速度較快。
K-type 熱電偶用於摩擦攪拌對接過程中低碳鋼試片間之溫度量測,在穩態情
況下,數值解與量測溫度甚為吻合。銲道顯現三種不同區域,包含攪拌區、熱機
影響區與熱影響區。藉由等溫線與相圖,當溫度達1394 ˚C以上時被預測為攪拌區,
此區可發現含有δ相之肥粒鐵,熱機影響區則介於上臨界溫度880 ˚C~1394 ˚C 之
間。數值與實驗結果顯示,在相同銲接情況下,內嵌式工具比純肩部工具之攪拌
區更為顯著。
In this study, a theoretical model was used to simulate the phenomena of heat
conduction and the flow behavior of material in the process of friction stir welding with
the pinless and the embedded-type tools. The friction model was employed to predict
the stick-slip ratio between the tool and the material. Theoretical results showed that
under the same downward force, the higher the rotational speed, the greater stick-slip
ratio is; and under the same rotational speed, the greater the downward force, the greater
stick-slip ratio. Results also showed that the embedded-type tool has wider stirred range
with higher flow speed of the material than that of the pinless tool.
The interface temperatures between the butt SS400 steels were measured using the
K-type thermocouples during the welding process, numerical results were in very good
agreement with the measured temperatures at the steady-state conditions. The welded
regions displayed three different zones including the stir zone, the
thermo-mechanically affected zone, and the heat affect zone. By the isotherm and the
phase diagram, the stir zone could be predicted at the temperature above 1394 ˚C
where the δ-phase of the ferrite was found, the thermo-mechanically affected zone
was between the upper critical temperature 880 ˚C and 1394 ˚C. Comparing with the
pinless tool, the numerical and experimental results showed that the embedded-type
tool had the more obvious stir zone under the same welding conditions.
誌謝 ................................................................................................................................... i
摘要 .................................................................................................................................. ii
Abstract ............................................................................................................................ iii
目錄 .................................................................................................................................. ii
圖目錄 ............................................................................................................................. vi
表目錄 ............................................................................................................................. ix
第一章 緒論 .............................................................................................................. 1
1.1 摩擦攪拌銲接概論 ........................................................................................... 1
1.2 文獻回顧 ........................................................................................................... 2
1.3 研究目的 ........................................................................................................... 5
1.4 論文架構 ........................................................................................................... 6
第二章 理論模型 ...................................................................................................... 8
2.1 三維圓柱座標系 ............................................................................................... 8
2.2 工具種類 ........................................................................................................... 8
2.3 熱傳模型 ........................................................................................................... 9
2.4 材料塑性變形產熱 .......................................................................................... 11
2.5材料塑性流動模型 .......................................................................................... 13
2.6 邊界條件-摩擦模型與熱逸散 ........................................................................ 16
2.7 數值方法 ─ 有限差分法 .............................................................................. 19
2.8 數值方法 ─ 積分法 ...................................................................................... 30
2.9 預測材料表面之流動軌跡 ............................................................................. 32
第三章 結果與討論 ................................................................................................ 43
3.1 模擬項目 ......................................................................................................... 43
3.2 工具種類對溫度與材料流動深度的影響 ..................................................... 43
3.3工具種類與轉速對表面材料滯滑比之影響 .................................................. 45
3.4 驗證點銲溫度分布與流動範圍之模擬結果 ................................................. 45
3.5工具進給速率對溫度分布的影響 .................................................................. 47
3.6 預測變態點位置與金屬成相 ......................................................................... 48
第四章 結論 ............................................................................................................ 86
4.1 結論 ................................................................................................................. 86
4.2 未來展望 ......................................................................................................... 87
參考文獻 ........................................................................................................................ 89
[1] W.M. Thomas, E.D. Nicholas, J.C. Needham , M.G. Church, P. Templesmith, C.
Dawes Intl. Patent Application no PCT/GB92/02203 and GB Patent Application
1991. no. 9125978.9,
[2] Y. Chao, X. Qi, Thermal and thermo-mechanical modeling of friction stir welding of
aluminum alloy 6061-T6, J. Mater. Proc. Mfg. Sci.Vol. 7: 215–233. (1998)
[3] T.U. Seidel, A.P. Reynolds Technol Weld Join Sci.Vol. 8: 175–83. (2003)
[4] Q. Shi, T. Dickerson, H.R. Shercliff, Thermo-mechanical FE modelling of friction
stir welding of AL-2024 including tool loads, in: Proceedings of the Fourth
International Symposium on Friction Stir Welding, Park city, UT, (2003).
[5] M.Z.H. Khandkar, J.A. Khan, A.P. Reynolds, Sci Technol Weld Join. Vol.
8(3):165–74. (2003)
[6] M. Song, R. Kovacevic, Numerical and experimental study of the heat transfer
process in friction stir welding, Proc. Instn Mech. Engrs. Part B: J. Eng. Manufacture
Vol.217(81):73–85. (2003)
[7] M. Song, R. Kovacevic, Thermal modeling of friction stir welding in a moving
coordinate and its validation, Int. J. Machine Tool Manufacturing Vol.43(6): 605–615.
(2003)
[8] M. Song, R. Kovacevic, Heat Transfer modeling for both workpiece and tool in the
friction stir welding process: a coupled model, Proc.Instn Mech. Engrs. Part B: J.
Eng. Manufacture Vol.218:17–33. (2004)
[9] P. Ulysse, Three-dimensional modeling of the friction stir-welding process,
International Journal of Machine Tools and Manufacture Vol.42:1549–1557. (2002)
[10] P.A. Colegrove, H.R. Shercliff, 3-Dimensional CFD modelling of flow round a
threaded friction stir welding tool profile, Journal of Materials
ProcessingTechnology Vo1.69: 320–327. (2005)
[11] A. Askari, S. Silling, B. London, M. Mahoney, Modeling and analysis of friction
stir welding processes, in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin,
D.P. Field (Eds.), Friction Stir Welding and Processing, TMS, Warrendale,
PA,43–54. (2001)
[12] P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, D. Allehaux,
Mechanical and thermal modelling of friction stir welding, Journal ofMaterials
Processing Technology Vol.171: 348–357. (2006)
[13] J.A. Schey, Introduction to Manufacturing Processes, second ed., McGraw-Hill,
New York, (1987)
[14] Y. He, D.E. Boyce, P.R. Dawson, Three-dimensional modeling of void growth in
friction stir welding of stainless steel, in: J.M.A.C.d. Sa, A.D. Santos (Eds.),
Proceedings of the 9th International Conference on Numerical Methods inIndustrial
Formation Processing, 25–34.(2007)
[15] P. Ulysse, Three-dimensional modeling of the friction stir-welding process,
International Journal of Machine Tools and Manufacture Vol.42:1549–1557. (2002)
[16] H. Schmidt, J. Hattel, A local model for the thermomechanical conditions in
friction stir welding, Modeling and Simulation in Materials Science and
Engineering Vol.13:77–93. (2005)
[17] Cho JH, Boyce DE, Dawson PR. Mater Sci Eng A;Vol.398:146–63. (2005)
[18] R. Nandan, G.G. Roy, T. DebRoy, Metal Mater Trans A; Vol.37(4):1247–59. (2006)
[19] R. Nandan, G.G. Roy, T. DebRoy, T. Sci Technol Weld Join;Vol.11(5):526–37.
(2006)
[20] B.C. Liechty, B.W. Webb, Modeling the frictional boundary condition in friction
stir welding, in: International Journal of Machine Tools &; Manufacture
Vol.48:1474–1485.(2008)
[21] P. Upadhyay, A.P. Reynolds, Effects of thermal boundary conditions in friction stir
welded AA7050-T7 sheets, Materials Science and Engineering A
Vol.527:1537–1543.(2010)
[22] 賴欣聰,數值模型應用於摩擦攪拌點銲過程溫度與材料流動之理論與實驗研
究,國立中山大學,機械研究所,碩士論文。 (2012)
[23] R.T. Lee, C.T. Liu, Y.C. Chiou, 2012, “Experimental investigations on the feeding
force and its formation mechanism during friction stir welding of aluminum alloy
using a novel dynamometer”, Journal of Chinese Society of Mechanical
Engineering. Vol.33, pp.11-19.
[24] Y.C. Chiou, C.T. Liu, R.T. Lee, 2013, “A Pinless Embedded Tool Used in FSSW
and FSW of Aluminum Alloy”, accepted to Journal of Materials Processing
Technology.
[25] S. W. Yuan, Foundations of fluid mechanics,First Edition ,Taipei Taiwan, Mei Ya
publications, Inc, pp.115-123.(1951)
[26] J.E. Gould, Z. Feng; Heat Flow Model for Friction Stir Welding of Aluminum
Alloys, Journal of Materials Processing &; Manufacturing Science,Vol.7
(1998),185-194
[27] H. Schmidt, J. Hattel and J. Wert; An analytical model for the heat generation in
friction stir welding, Modeling Simul. Mater. Sci. Eng. 12 (2004) 143–157
[28] M. Khonsari, E. Richard Booser, Applied Tribology Bearing Design and
Lubrication, United States of America, A Wiley-Interscience publication,
P109-P118. (2001)
[29] T. Sheppard and D.S.Wright: Metal. Technol, 1979, vol. 6, pp. 215-23.
[30] R.Nandan, G.G.Roy, and T. Debroy; Numerical Simulation of
Three Dimensional Heat Transfer and Plastic Flow During Friction
Stir Welding, Metallurgical and Materials Transactions A, Vol. 37A, (2006) 1247-1259
[31] R.Nandan, G.G.Roy, and T. Debroy; Three-dimensional heat and material flow
during friction stir of mild steel, Acta Materialia 55 (2007) 883-895
[32] J.H. Cho, D.E. Boyce, P.R. Dawson, Mater Sci Eng A;Vol.398:146–63. (2005)
[33] S. Nakamura, Applied numerical methods with software, Englewood Cliffs, New
Jersey, Prentice-Hall, Inc. (1991)
[34] 邱源成、李榮宗、謝銘哲、劉鑑德,“組裝型摩擦攪拌熔接工具”,中華民國
發明專利申請第 101104567號。2012.02.13
[35] M.J. Lee, Studies on bonding mechanisms of the FSSW for low-carbon steel plates
using a novelassembled-type tool. (2012)
[36] W. D. Callister, Materials science and engineering : an introduction, Wiley Asia
Student Edition, Jhhn Wiley &; Sons, Inc, pp.290-295. (2007)
[37] K. Aota, K. Ikeuchi, Development of friction stir spot welding using rotating tool
without probe and its application to low-carbon steel plates. (2009)
[38] 林高弘,摩擦攪拌銲接過程熱傳與材料流動之數值研究,國立中山大學,機
械研究所,碩士論文。 (2010)
[39] 鄭宇翔,摩擦攪拌熔接過程材料流動之理論與實驗研究,國立中山大學,機
械研究所,碩士論文。 (2011)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top