[1] Spendley, W. G. R. F. R., Hext, G. R., &; Himsworth, F. R. (1962). Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics, 4(4), 441-461.
[2] Nelder, J. A., &; Mead, R. (1965). A simplex method for function minimization. The computer journal, 7(4), 308-313.
[3] Box, M. J. (1965). A new method of constrained optimization and a comparison with other methods. The Computer Journal, 8(1), 42-52.
[4] 林豐澤. (2005). 演化式計算上篇: 演化式演算法的三種理論 模式 Evolutionary Computation Part 1: Three Theoretic Models of Evolutionary Algorithms. 智慧科技與應用統計學報, 3(1), 1-28.[5] Eberhart, R., &; Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS''95., Proceedings of the Sixth International Symposium on (pp. 39-43). IEEE.
[6] Price, K. V. (1996, June). Differential evolution: a fast and simple numerical optimizer. In Fuzzy Information Processing Society, 1996. NAFIPS. 1996 Biennial Conference of the North American (pp. 524-527). IEEE.
[7] Storn, R., &; Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
[8] Mezura-Montes, E., Velázquez-Reyes, J., &; Coello Coello, C. A. (2006, July). A comparative study of differential evolution variants for global optimization. In Proceedings of the 8th annual conference on Genetic and evolutionary computation (pp. 485-492). ACM.
[9] Epitropakis, M. G., Plagianakos, V. P., &; Vrahatis, M. N. (2011, April). Finding multiple global optima exploiting differential evolution''s niching capability. In Differential Evolution (SDE), 2011 IEEE Symposium on (pp. 1-8). IEEE.
[10] Li, X. (2010). Niching without niching parameters: particle swarm optimization using a ring topology. Evolutionary Computation, IEEE Transactions on, 14(1), 150-169.
[11] Thomsen, R. (2004, June). Multimodal optimization using crowding-based differential evolution. In Evolutionary Computation, 2004. CEC2004. Congress on (Vol. 2, pp. 1382-1389). IEEE.
[12] Kennedy, J., &; Mendes, R. (2002). Population structure and particle swarm performance. In Evolutionary Computation, 2002. CEC''02. Proceedings of the 2002 Congress on (Vol. 2, pp. 1671-1676). IEEE.
[13] Dorronsoro, B., &; Bouvry, P. (2010). Differential evolution algorithms with cellular populations. In Parallel Problem Solving from Nature, PPSN XI (pp. 320-330). Springer Berlin Heidelberg.
[14] Epitropakis, M. G., Plagianakos, V. P., &; Vrahatis, M. N. (2012, June). Multimodal optimization using niching differential evolution with index-based neighborhoods. In Evolutionary Computation (CEC), 2012 IEEE Congress on (pp. 1-8). IEEE.
[15] Hofbauer, J., &; Sigmund, K. (1998). Evolutionary games and population dynamics. Cambridge University Press.
[16] Nowak, M. A., Tarnita, C. E., &; Antal, T. (2010). Evolutionary dynamics in structured populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 19-30.
[17] Ohtsuki, H., &; Nowak, M. A. (2006). The replicator equation on graphs. Journal 72
of theoretical biology, 243(1), 86-97.
[18] Ohtsuki, H., &; Nowak, M. A. (2006). Evolutionary games on cycles. Proceedings of the Royal Society B: Biological Sciences, 273(1598), 2249-2256.
[19] Matsuda, H., Ogita, N., Sasaki, A., &; Satō, K. (1992). Statistical Mechanics of Population The Lattice Lotka-Volterra Model. Progress of theoretical Physics, 88(6), 1035-1049.
[20] 藍兆杰、徐偉傑、陳怡君譯、Dixit,A and Skeath,S著(2002),策略的賽局,台北,弘智文化事業有限公司。