跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃奕豪
研究生(外文):Yi-hao Huang
論文名稱:矩形薄膜於拉伸作用下皺褶變形之實驗探討
論文名稱(外文):Experimental Investigation of Wrinkles in Rectangular Thin Films due to Extension
指導教授:任明華任明華引用關係
指導教授(外文):Ming-Hwa R. Jen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:69
中文關鍵詞:薄膜拉伸機械性能積層薄膜皺褶非接觸式量測
外文關鍵詞:Thin filmWrinkleTensileMechanical propertiesMultilayered films
相關次數:
  • 被引用被引用:4
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本文主要目的為探討薄膜材料的皺褶現象,薄膜結構被廣泛應用於太空及空間建築結構以及微機電領域,對於高精度的薄膜結構來說,皺褶是影響其結構性能的主要因素之一。為了探究薄膜起皺機制和影響其行為模式之因素,針對不同的薄膜材料以單向拉伸起皺實驗為方法,透過拉伸實驗所得薄膜機械性能,並藉此獲得薄膜皺褶擴展機制及演化過程,根據實驗結果探討拉力作用下皺褶產生與分佈的相關特性,並觀察薄膜起皺現象,由皺褶區域的變化、皺褶的擴展情形、皺褶振幅及波長等現象,進行有系統的實驗研究。
  實驗使用的薄膜材料主要分為兩種,塑膠(PET)與金屬(Al)薄膜,文中為了探究多層薄膜亦將此兩種薄膜透過黏合而成積層薄膜,將其製成矩形標準實驗試片,黏結在硬紙板框架中固定之,再上機夾於微拉力試驗機上,用2000 N的負重計進行拉伸測試,同時利用攝影機進行非接觸式量測與觀察,對薄膜皺褶的變形情形及皺褶數目對應其拉伸負載之關係進行分析與討論。
  經由實驗結果觀察得知,不同薄膜材料其皺褶演化趨勢差異不大,皺褶擴展行為具有一定規律,以此規則將其劃分為三階段: 一、面內變形階段,二、面外變形及皺褶增長階段,三、皺褶定型階段,根據此三階段解釋薄膜完整起皺過程。實驗結果亦可發現不同材料其產生的皺褶數目上的差異,及皺褶在薄膜材料進入降伏階段後才逐漸定型,這些現象在文中皆有詳細探討。本文對薄膜皺褶的擴展機制及演化過程進行實驗性的觀察與分析,為薄膜皺褶的理論預測及抑制提供了實驗依據。
The thesis is aimed to investigate the phenomena of wrinkles in thin films. For high precision thin film structures, wrinkles are one of the main factors affecting structure performance. In order to understand the wrinkling mechanism and the factors that influence behavior patterns, uniaxial tensile tests are suitable for different thin films. From tensile tests, we obtain the mechanical properties of thin films and the formation mechanism of wrinkles and also the generation of relevant characteristics of wrinkles due to extension. According to wrinkling phenomena the wrinkle evolution, wrinkle wavelength and amplitude were observed experimentally.

Both polymeric and metallic thin films were used in the experiments. The wrinkling phenomena of symmetric multilayered films by using adhesive glue were also studied. All rectangular samples were pasted firmly in a frame holder and gripped in Micro-tensile testing system. The camera for non-contact measurement was adopted to take the pictures during the process at the same step of loading rate.

The experimental results show that the wrinkling evolution trend of different thin films is almost similar. The evolution of wrinkles is divided into three phases: 1. in-plane deformation phase. 2. out-of-plane deformation and wrinkles initiation and increase phase. 3. wrinkles remain fixed phase. The experimental data also show that the number of wrinkles is different from different films and the wrinkles gradually become stabilized upon reaching yield. The thin film wrinkling formation mechanism and process at corresponding load were studied experimentally. These results provide an experimental basis for theoretical prediction and control of wrinkles in thin films.
目錄
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
圖次 vii
表次 ix
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
1-3 薄膜的皺褶現象 3
1-3-1 薄膜的皺褶原理 3
1-3-2 皺褶的分類 4
1-4 研究方向 5
1-5 文獻回顧 5
1-6 組織與章節 7
第二章 實驗方法 9
2-1 薄膜材料 9
2-2 實驗簡述 10
2-3儀器設備 11
2-4 試片的準備與製作 11
2-5 拉皺實驗 12
2-5-1 實驗儀器設置 12
2-5-2 薄膜固定框架設計 13
2-6實驗步驟 13
第三章 實驗結果 26
3-1 拉皺實驗 26
3-2 薄膜皺褶測量結果 27
第四章 分析與討論 44
4-1 單層薄膜皺褶的產生及演化 44
4-1-1 鋁箔起皺現象 44
4-1-2 PET膜起皺現象 45
4-2 PET/Al/PET及Al/PET/Al積層薄膜機械性能及皺褶探討 45
4-2-1 PET/Al/PET及Al/PET/Al積層薄膜機械性能探討 46
4-2-2 混合理論 46
4-2-3 與混合理論比較 47
4-2-4 PET/Al/PET與Al/PET/Al積層薄膜起皺現象 47
4-3 薄膜的起皺現象及機制 48
4-3-1 薄膜起皺現象 48
4-3-2 薄膜起皺機制 49
4-4 起皺的影響因素 50
第五章 結論 56
參考文獻 57

圖次
圖1-1 薄膜表面外部變形示意圖 8
圖1-2 薄膜結構中三種變形狀態 8
圖2-1 HDPE薄膜皺褶不規則擴展 15
圖2-2 PET薄膜 15
圖2-3 鋁箔 16
圖2-4 MTS Model42 微系統拉力試驗機 16
圖2-5 電腦及TestWorks 4軟體操作畫面 17
圖2-6 手持式控制面板 18
圖2-7 Panasonic DMC-GF6X 數位微單眼相機 18
圖2-8 旋轉式裁刀與壓克力板 19
圖2-9 Mitutoyo 數位式外徑測微器 19
圖2-10 攝影補光燈 20
圖2-11 3M多功能噴膠 20
圖2-12 承受拉伸作用的矩形簡支承薄膜 21
圖2-13 皺褶實驗試片尺寸圖 21
圖2-14 皺褶實驗試片:鋁箔及PET薄膜 22
圖2-15 積層薄膜堆疊示意圖 22
圖2-16 實驗儀器設備架構圖 23
圖2-17 薄膜固定框架設計圖 23
圖2-18 薄膜拉皺實驗流程圖 24
圖3-1 鋁箔0.2%偏距降伏強度 28
圖3-2 鋁箔試片拉伸應力應變關係圖 28
圖3-3 PET薄膜試片拉伸應力應變關係圖 29
圖3-4 PET/Al/PET積層薄膜試片拉伸應力應變關係圖 29
圖3-5 Al/PET/Al積層薄膜試片拉伸應力應變關係圖 30
圖3-6 鋁箔負載位移及皺褶數目關係圖 30
圖3-7 PET薄膜負載位移及皺褶數目關係圖 31
圖3-8 PET/Al/PET積層薄膜負載位移及皺褶數目關係圖 31
圖3-9 Al/PET/Al積層薄膜負載位移及皺褶數目關係圖 32
圖3-10 鋁箔拉皺實驗結果 33
圖3-11 PET膜拉皺實驗結果 35
圖3-12 PET/Al/PET積層薄膜拉皺實驗結果 37
圖3-13 Al/PET/Al積層薄膜拉皺實驗結果 39
圖4-1 積層薄膜承受拉伸作用破壞圖 52
圖4-2 四種薄膜材料拉伸曲線與皺褶分布情形 53
圖4-3 薄膜楊氏係數與皺褶數目關係圖 53

表次
表2-1 PET膜性質表 25
表3-1 鋁箔拉伸實驗數據 (h=16μm) 41
表3-2 PET膜拉伸實驗數據 (h=16μm) 41
表3-3 PET/Al/PET膜拉伸實驗數據 42
表3-4 Al/PET/Al膜拉伸實驗數據 42
表3-5 薄膜材料楊氏係數實驗數據 43
表4-1 四種薄膜材料之機械性質(平均值) 54
表4-2 混合理論計算PET/Al/PET與Al/PET/Al之黏膠承受負載 54
表4-3 PET/Al/PET與Al/PET/Al楊氏係數之混合理論計算與實驗值比較結果 54
表4-4 薄膜於降伏負載時形成之皺褶數目 55
1.Delozier, D. M., Watson, K. A., Smith, J. G. and Connell, J. W., “Preparation and characterization of space durable polymer nanocomposite films,” Composites Science and Technology, Vol.65, pp. 749~755, 2005.
2.Lake, M. S., Peterson, L. D. and Levine, M. B., “Rationale for defining structural requirements for large space telescopes,” Journal of spacecraft and rockets, Vol.39, pp. 674~681, 2002.
3.Roddeman, D. G., Drukker, J., Oomens, C. W. J., and Janssen, J. D., “The wrinkling of thin membranes: Part I-Theory,” Journal of Applied Mechanics, Vol.54, pp. 884~887, 1987.
4.Epstein, M. and Forcinito, M. A., “Anisotropic membrane wrinkling: theory and analysis,” International Journal of Solids and Structures, Vol.38, pp. 5253~5272, 2001.
5.郭姵伶,積層陶瓷電容器承受高溫均壓其變形分析,國立中山大學機械與機電工程學系碩士論文,2011。
6.Gupta, S., Dixit, M., Sharma, K. and Saxena, N. S., “Mechanical study of metallized polyethylene terephthalate (PET) films,” Surface &; Coatings Technology, Vol.204, pp. 661~666, 2009.
7.Ding, H. and Yang, B., “The modeling and numerical analysis of wrinkled membranes,” International Journal for Numerical Methods in Engineering, Vol.58, pp. 1785~1801, 2003.
8.Freeland, R. E., Bilyeu, G. D., Veal, G. R., Steiner, M. D. and Carson, D. E., “Large inflatable deployable antenna flight experiment results,” Acta Astronautica, Vol.41, iss.4-10, pp. 267~277, 1997.
9.Freeland, R. E., Bilyeu, G. D. and Veal, G. R., “Development of flight hardware for a large, inflatable-deployable antenna experiment,” Acta Astronautica, Vol.38, iss.4-8, pp. 251~260, 1996.
10.Murphy, D. M. and Murphey, T. W., “Scalable solar sail subsystem design considerations,” In: 43rd Structures, Structural Dynamics, and Materials Conference, AIAA 2002-1703, pp. 1~14, 2002.
11.Grossman, G. and Williams, G., “Inflatable concentrators for solar propulsion and dynamic space power,” Journal of Solar Energy Engineering, Vol.112, pp. 229~236, 1990.
12.Murphy, D. M. and Murphey, T. W., “A method to quantify the thrust degradation effects of structural Wwinkles in solar sails,” In: 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, AIAA 2002-1560, pp. 1~12, 2002.
13.Kukathasan, S. and Pellegrino, S., “Nonlinear vibration of wrinkled membranes,” In: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2003-1747, pp. 1~11, 2003.
14.Lecieux, Y. and Bouzidi, R., “Experimental analysis on membrane wrinkling under biaxial load – Comparison with bifurcation analysis,” International Journal of solids and Structures, Vol.47, pp. 2459~2475, 2010.
15.Nayyar, V., Ravi Chandar, K. and Huang, R., “Stretch-induced wrinkling of polyethylene thin sheets: experiments and modeling,” International Journal of solids and Structures, Vol.51, pp. 1847~1858, 2014.
16.Miyamura, T., “Wrinkling on stretched circular membrane under in-plane torsion: Bifurcation analyses and experiments,” Engineering Structures, Vol.23, pp. 1407~1425, 2000.
17.Wesley Wong, Y. and Pellegrino, S., “Wrinkled Membranes Part I: Experiments,” Journal of Mechanics of Materials and Structures, Vol.1, iss.1 pp. 1~23, 2006.
18.Blandino, J. R., Johnston, J. D., Miles, J. J. and Soplop, J. S., “Thin film membrane wrinkling due to thermal and mechanical loads,” In: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2001-1345, 2001.
19.Wang, C. G., Du, X. W., Tan, H. F. and He, X. D., “A new computational method for wrinkling analysis of gossamer space structures,” International Journal of Solids and Structures, Vol.46, pp. 1516~1526, 2009.
20.Mikulas, M. M., “Behavior of a flat stretched membrane wrinkled by the rotation of an attached hub,” NASA Technical Note, NASA TN D-2456, 1964.
21.Dharamsi, U. K., Evanchik, D. M. and Blandino, J. R., “Comparing photogrammetry with a conventional displacement measurement technique on a 0.5m square kapton membrane,” In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2002-1258, 2002.
22.黃存佑,積層陶瓷電容產品之有限元素模擬分析,國立中山大學機械與機電工程學系碩士論文,2009。
23.Gong, G., Pyo, J., Mathew, A. P. and Oksman, K., “Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc),” Composites: Part A, Vol.42, pp. 1275~1282, 2011.
24.Stoeckel, F., Konnerth, J. and Gindl Altmutter, W., “Mechanical propertiesofadhesivesforbondingwood - A review,” International Journal of Adhesion &; Adhesives, Vol.45, pp. 32~41, 2013.
25.吳盈輝,積層陶瓷電容器高溫高壓之變形與薄膜受拉力皺摺現象分析與探討,國立中山大學機械與機電工程學系博士論文,2013。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊