跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱鈺涵
研究生(外文):Yu-Han Chiu
論文名稱:利用電動力輔助奈米級Fe3O4/S2O82–程序整治後勁溪底泥中鄰苯二甲酸酯類之可行性研究
論文名稱(外文):Remediation Feasibility Study of Phthalate Residues in the Sediment of Houjing River Using Electrokinetic- assisted Nano-Fe3O4/S2O82– Process
指導教授:楊金鐘楊金鐘引用關係
指導教授(外文):Gordon C. C. Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:191
中文關鍵詞:電動力法過硫酸鹽奈米級Fe3O4底泥鄰苯二甲酸酯類
外文關鍵詞:ElectrokineticPersulfateNano-Fe3O4Phthalate EstersSediment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:2
本研究調查高雄市後勁溪底泥中8種鄰苯二甲酸酯類之殘留量,並選定適當採樣點位採集大量底泥,並利用奈米級Fe3O4活化過硫酸鹽氧化程序佐以電動力法整治底泥中鄰苯二甲酸酯類,並針對含鄰苯二甲酸酯類污染之模擬水樣進行其反應動力及中間產物之探討。
於後勁溪底泥殘留量調查方面,針對7個採樣點位進行4梯次底泥樣品之調查,研究結果發現,該河川底泥中可檢出4種鄰苯二甲酸酯類,於楠梓溪支流三奶壇橋採樣點位可檢出mg/kg (ppm濃度) 等級之DEHP (鄰苯二甲酸二(2-乙基己基)酯) 殘留量,其平均殘留濃度 (2,886 μg/kg) 及最高濃度 (5,477 μg/kg) 為「底泥品質指標之分類管理及用途限制辦法」之下限值1.46及2.78倍。
於奈米級Fe3O4活化過硫酸鹽氧化降解模擬水樣及底泥中鄰苯二甲酸酯類之反應動力學方面,標的污染物之反應可藉由擬一階反應動力方程式加以描述,結果顯示,隨著標的污染物其烷基鏈之增加,反應速率常數隨之減小,而標的污染物之反應速率常數k值亦受模擬水樣及底泥中所含物質影響;針對氧化降解之產物質荷比 (m/z) 加以探討,降解產物與水溶液中殘留物質具有交互作用,致使檢出之質荷比 (m/z) 大於標的污染物者。
於電動力輔助奈米級Fe3O4活化過硫酸鹽氧化降解底泥中鄰苯二甲酸酯類方面,本研究電動力試驗用之底泥係採自後勁溪流域之德惠橋採樣點位,試驗結果顯示:(1) 於陽極槽注入奈米級Fe3O4及過硫酸鹽的試驗組別,其注入物可藉由電滲透流移向陰極端,同時藉由反應產生之SO4–‧、OH‧及H2SO5等強氧化劑,可將底泥中鄰苯二甲酸酯類予以有效降解;(2) 單純提高電位梯度 (1 V/cm→2 V/cm) 有助於鄰苯二甲酸酯類之去除;(3) 反應28日之試驗組別,奈米級Fe3O4反應生成之Fe2+及Fe3+,藉離子遷移往陰極端移動,並於鄰近陰極端底泥產生Fe(OH)2(s)及Fe(OH)3(s),進而堵塞底泥孔隙,降低電滲透流流量,因此,與反應14日之試驗組別相較,鄰苯二甲酸酯類去除率的提升不會超過15%;(4) 反應56日之試驗組別在較高的室溫條件下所操作,導致投入之S2O82–尚未進入底泥室即已受到稍高溫度之加速催化而降低其有效濃度,因此,反應時間的增加,鄰苯二甲酸酯類去除率並無提升;(5) 若將試藥級藥劑以工業級藥劑替代,最佳試驗組別其總操作費用可由104,982元/公噸降至3,192元/公噸,操作費用相較其他整治技術為中等,因此,本整治技術具有其應用潛勢。
The main objectives of this study are three-fold: (1) to investigate the residual concentrations of eight phthalate esters (PAEs) in sediment samples collected from the Houjing River, Kaohsiung, Taiwan; (2) to detect the intermediate products and find out the reaction kinetics of target compounds; and (3) to evaluate the applicably of coupling nano-Fe3O4/S2O82- process and electrokinetic process for the removal of PAEs in sediments of the Houjing River.
First, four batches of sediment sampling were conducted at seven sampling sites along the Houjing River. Four compounds of phthalate esters (PAEs) were detected. Of which, the level of parts per million (ppm) of residual di(2-ethylhexyl) phthalate (DEHP) was detected at Sannaitan Bridge. The relevant average concentration (2,886 µg/kg) and highest concentration (5,477 µg/kg) are 1.46 and 2.78 times higher than the “Regulations for Systematic Management of Quality Indices of Sediments and Their Use Restrictions” promulgated by Taiwan EPA.
A pseudo-first-order kinetic model was found to be suitable for describing the oxidation kinetics for the target compounds in a simulated aqueous solution and actual sediments treated by the nano-Fe3O4/S2O82- oxidation process. The results showed that rate constants decreased with the increase of alkyl chain length. Substances in aqueous solution and sediments would affect the rate constants as well. Degradation products resulting from nano-Fe3O4/S2O82- oxidation process might have interactions with residual substances in the reaction system yielding compounds of greater molecular weights as compared with the target compounds.
The injection of nanoscale Fe3O4 slurry and persulfate solution coupled with the electrokinetic (EK) process was tested for remediation of phthalate esters in the sediments. Test results for the removal of PAEs in the sediment samples collected at Dehuei Bridge of the Houjing River are given as follows: (1) in the test run of injecting nanoscale Fe3O4 and persulfate solution into the anode reservoir, the derived radicals and oxidant were transported into sediments by electroosmotic flow; (2) an increase of the electric potential gradient from 1 V/cm to 2 V/cm would enhance the removal of PAEs in control tests with no addition of reagents to the EK remediation system; (3) Fe2+ and Fe3+ originated from nano-Fe3O4 dissociation migrated from the anode to the cathode and formed precipitates in the pores of sediments near the cathode for the EK test with a reaction time of 28 days. Such precipitates were blamed for the decrease of the cumulative electroosmotic flow quantity. Thus, an increase of removal efficiency of no greater than 15% was obtained as compared with the test with a reaction time of 14 days; (4) for the test having a treatment time of 56 days under a slightly higher temperature condition, it was speculated that a greater degree of S2O82– catalyzation due to higher ambient temperatures has reduced its available concentration before entering the sediment compartment. Therefore, the corresponding PAEs removal efficiency was even worse than that of tests of reaction time with 14 and 28 days; and (5) if reagent grade reagents were replaced by those of industrial grade, the operating cost was about 105 USD/ton, which is comparable with other remediation technologies for sediments contaminated by various organic compounds.
聲明切結書 i
謝誌 ii
摘要 iii
ABSTRACT v
圖目錄 xii
表目錄 xvi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
1.3 研究內容與架構 5
第二章 文獻回顧 7
2.1 鄰苯二甲酸酯類 (PAEs) 7
2.1.1 鄰苯二甲酸酯類之特性及危害 7
2.1.2 鄰苯二甲酸酯類於環境中之流布 9
2.1.3 高級氧化技術處理鄰苯二甲酸酯類 11
2.2 底泥整治技術之簡介 14
2.2.1 現地化學氧化法 (In-situ Chemical Oxidation, ISCO) 15
2.2.2 底泥整治技術相關研究及案例 18
2.3 過硫酸鹽氧化劑 19
2.3.1 過硫酸鹽 (S2O82–) 之反應機制 20
2.3.2 過硫酸鹽 (S2O82–) 之應用 22
2.4 奈米科技與材料 24
2.4.1 奈米級四氧化三鐵 (Fe3O4) 25
2.5 電動力技術 27
2.5.1 電動力整治技術之原理 28
2.5.2 電動力整治技術之去除機制 29
2.5.3 電動力整治技術之相關研究及案例 32
2.6 基本反應動力學之介紹 34
第三章 實驗材料與方法 41
3.1 實驗材料 41
3.2 實驗設備 43
3.2.1 儀器設備 43
3.2.2 電動力管柱處理系統 46
3.3 實驗方法 48
3.3.1 後勁溪底泥中鄰苯二甲酸酯類污染調查 48
3.3.2 奈米級Fe3O4製備 52
3.3.3 奈米級Fe3O4之顯微結構觀測與結晶相分析 52
3.3.4 奈米級Fe3O4懸浮液製備 53
3.3.5 過硫酸鹽 (S2O82-) 溶液製備 54
3.3.6 奈米級Fe3O4/S2O82–氧化降解模擬水樣及底泥中PAEs
之氧化試驗 55
3.3.7 電動力法輔助奈米級Fe3O4/S2O82–氧化程序整治受PAEs
污染之後勁溪底泥 56
第四章 結果與討論 63
4.1 後勁溪底泥中鄰苯二甲酸酯類流布調查 63
4.1.1 後勁溪底泥PAEs殘留量調查結果 63
4.1.2 後勁溪枯水期及豐水期之底泥PAEs殘留量調查結果 66
4.2 奈米級Fe3O4之基本特性分析 67
4.2.1 場發射型掃描式電子顯微鏡分析 (FE SEM) 67
4.2.2 環境掃描式電子顯微鏡-能量分散光譜儀分析
(ESEM-EDS) 69
4.2.3 X-光繞射儀分析 (XRD) 70
4.3 利用可溶性澱粉製備奈米級Fe3O4懸浮液之懸浮性探討 72
4.4 底泥基本特性分析 73
4.5 奈米級Fe3O4/S2O82–氧化降解模擬水樣及底泥中 PAEs
之成效探討 75
4.5.1 奈米級Fe3O4/S2O82–氧化降解 PAEs 反應動力學
之試驗結果 75
4.5.2 奈米級Fe3O4/S2O82–氧化降解 PAEs 降解產物
之試驗結果 79
4.6 電動力法輔助奈米級Fe3O4/S2O82–氧化降解PAEs污染
之後勁溪底泥 83
4.7 操作費用之評估與比較 115
4.8 以電動力法輔助奈米級Fe3O4/S2O82‒氧化降解PAEs污染
之後勁溪底泥其未來應用性 121
第五章 結論與建議 122
5.1 結論 122
5.2 建議 124
參考文獻 125
附錄 150
附錄1 不同溫度下的水之相對密度及校正因子 K 值 150
附錄2 美國農業部 (USDA) 土壤質地分類圖 151
附錄3 後勁溪底泥中鄰苯二甲酸酯類殘留量調查結果 152
附錄4 後勁溪底泥樣品採集照片圖 154
附錄5 奈米級Fe3O4/S2O82–氧化降解 PAEs之推測降解產物
一覽表 158
碩士在學期間發表之學術論文 169
英文部分:
Acar, Y.B. and A.N. Alshawabkeh, “Principle of Electrokinetic Remediation,” Environmental Science &; Technology, Vol. 27, No. 13, pp. 2638-3647 (1993).
Acar, Y.B., R.J. Gale, and A.N. Alshawabkeh, “Electrokinetic Remediation: Basics and Technology Status,” Journal of Hazardous Materials, Vol. 40, No. 2, pp. 117-137 (1995).
Alshawabkeh, A.N. and Y.B. Acar, “Removal of Contaminants from Soils by Electrokinetics: A Theoretical Treaties,” Journal of Environmental Science and Health, Part (A), Vol. 27, No. 7, pp. 1835-1861 (1992).
Alshawabkeh, A.N. and H. Sarahney, “Effect of Current Density on Enhanced Transformation of Naphthalene,” Environmental Science &; Technology, Vol. 39, No. 15, pp. 5837-5843 (2005).
Amold, S.M., W.J. Hickey, and R.F. Harris, “Degradation of Atrazine by Fenton’s Reagent: Condition Optimization and Product Quantification,” Environmental Science &; Technology, Vol. 29, No. 8, pp. 2083-2089 (1995).
ASTM, “Standard Test Method for Specific Gravity of Soil,” ASTM D845-83 (1983).
Babich, M.A., “Overview of Phthalates Toxicity,” United States Consumer Product Safety Commission Bethesda, http://www.cpsc.gov//PageFiles/126521/phthalover.pdf (2010).
Bard, A.J., R. Parson, and J. Jordan, “Titanium, Zirconium, and Hafnium,” Standard Potentials in Aqueous Solution, A.J. Bard, ed., pp. 540-541, Austin, Texas, USA (1985).
Bajt, O., G. Mailhot, and M. Bolte, “Degradation of Dibutyl Phthalate by Homogeneous Photocatalysis with Fe(Ⅲ) in Aqueous Solution,” Applied Catalysis B: Environmental, Vol. 33, No. 3, pp. 239-248 (2001).
Block, P.A., R.A. Brown, and D. Robinson, “Novel Activation Technologies for Sodium Persulfate In Situ Chemical Oxidation,” Proceedings of the Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compound, Monterey, CA. (2004).
Breuer, P., C. Jeffery, and R. Meakin, “Fundamental Investigation of the SO2/Air, Peroxide and Caro’s Acid Cyanide Destruction Process,” https://publications.csiro.au/rpr/download?pid=csiro:EP112870&;dsid=DS2 (2011).
Cang, L., G.P. Fan, D.M. Zhou, and Q.Y. Wang, “Enhanced-Electokinetic Remediation of Copper-Pyrene Co-Contaminated Soil with Different Oxidants and pH Control,” Chemosphere, Vol. 90, No. 8, pp. 2326-2331 (2013).
Caruntu, D., G. Caruntu, Y. Chen, C.J. O’Connor, G. Goloverda, and V.L. Kolesnichenko, “Synthesis of Variable-Sized Nanocrystals of Fe3O4 with High Surface Reactivity,” Chemistry of Materials, Vol. 16, No. 25, pp. 5527-5534 (2004).
Chang, B.V., C.M. Yang, C.H. Cheng, and S.Y. Yuan, “Biodegradation of Phthalate Esters by Two Bacteria Strains,” Chemosphere, Vol. 55, No. 4, pp. 533-538 (2004).

Chang, B.V., C.S. Liao, and S.Y. Yuan, “Anaerobic Degradation of Diethyl Phthalate, Di-n-butyl Phthalate, and Di-(2-ethylhexyl) Phthalate from River Sediment in Taiwan,” Chemosphere, Vol. 58, No. 11, pp. 1601-1607 (2005).
Chang, Y.C. and D.H. Chen, “Preparation and Adsorption Properties of Monodisperse Chitosan-Bound Fe3O4 Magnetic Nanoparticles for Removal of Cu(Ⅱ) Ions,” Journal of Colloid and Interface Science, Vol. 283, No. 2, pp. 446-451 (2005).
Chemwiki, “Reduction Potential Intuition,” http://chemwiki.ucdavis.edu/Analytical_Chemistry/Electrochemistry/Reduction_Potential_Intuition (2014).
Chen, A., H. Wang, and X. Li, “Influence of Concentration of FeCl3 Solution on Properties of Polypyrrole-Fe3O4 Composites Prepared by Common Ion Absorption Effect,” Synthetic Metals, Vol. 145, No. 2-3, pp. 153-157 (2004).
Chung, H.I. and M. Kamon, “Ultrasonially Enhanced Electrokinetic Remediation for Removal of Pb and Phenanthrene in Contaminated Soils,” Engineering Geology, Vol. 77, No. 3-4, pp. 233-242 (2003).
Chung, Y.C. and C.Y. Chen, “Degradation of Di-(2-ethylhexyl) Phthalate (DEHP) by TiO2 Photocatalysis,” Water, Air, and Soil Pollution, Vol. 200, No. 1-4, pp. 191–198 (2009).
Cunningham, S.D. and W.R. Berti, “Remediation of Contaminated Soils with Green Plants: An Overview,” In Vitro Cellular &; Developmental Biology–Plan, Vol. 29, No. 4, pp.207-212 (1993).
Chowdhury, A.I.A, D.M. O’Carrroll, Y. Xu, and B.E. Sleep, “Electrophoresis Enhanced Transport of Nano-Scale Zero Valent Iron,” Advances in Water Resources, Vol. 40, No. 8, pp. 71-82 (2012).
Clara, G., G. Windhofer, W. Hartl, K. Braun, M. Simon, O. Gans, C. Scheffknecht, and A. Chovanec, “Occurrence of Phthalates in Surface Runoff, Untreated and Treated Wastewater and Fate During Wastewater Treatment,” Chemosphere, Vol. 78, No. 9, pp. 1078-1084 (2010).
Dávila, B., K.W. Whitford, and E.S. Saylor, “Technology Alternatives for the Remediation of PCB-Contaminated Soil and Sediment,” In EPA Engineering Issue, EPA/540/S-93/506, Washington, DC: U.S. Environmental Protection Agency (1993).
Do, S.H., Y.J. Kwon, S.J. Bang, and S.H. Kong, “Persulfate Reactivity Enhanced by Fe2O3-MnO and CaO-Fe2O3-MnO Composite: Identification of Composite and Degradation of CCl4 at Various Levels of pH,” Chemical Engineering Journal, Vol. 221, No. 1996, pp. 72-80 (2013).
Earls, A.O., I.P. Axford, and J.H. Braybrook, “Gas Chromatography−Mass Spectrometry Determination of the Migration of Phthalate Plasticisers from Polyvinyl Chloride Toys and Childcare Articles,” Journal of Chromatography A, Vol. 983, No. 1-2, pp. 237-246 (2003).
Ežerskis, Z., V. Morkūnas, M. Suman, and C. Simoneau, “Analytical Screening of Polyadipates and Other Plasticisers in Poly(vinyl chloride) Gasket Seals and in Fatty Food by Gas Chromatography−Mass Spectrometry,” Analytica Chimica Acta, Vol. 604, No. 1, pp. 29-38 (2007).
Fatoki, O.S., M. Bornman, L. Ravandhalala, L. Chimuka, B. Genthe, and A. Adeniyi, “Phthalate Ester Plasticizers in Freshwater Systems of Venda, South Africa and Potential Health Effects,” Water SA, Vol. 36, No. 1, pp. 117-125 (2010).
Field, J.A., C.A. Johnson, J.B. Rose, and G. Editorset, “What is “Emerging”?”Environmental Science &; Technology, Vol. 40, pp. 7105 (2006).
Fisher, J.S., “Environmental Anti-Androgens and Male Reproductive Health: Focus on Phthalates and Testicular Dysgenesis Syndrome,” Reproduction, Vol. 127, No. 3, pp. 305-315 (2004).
FMC-Corporation, “Persulfates Technical Information,” (2001).
FMC-Corporation, “Hydorgen Peroxide and Caro’s Acid Powerful Oxidants for Cyanide Destruction,” (2014).
Fonseca, B., M. Pazos, T. Tavares, and M.A. Sanromán, “Removal of Hexavalent Chromium of Contaminated Soil by Coupling Electrokinetic Remediation and Permeable Reactive Biobarriers,” Environmental Science and Pollution Research, Vol. 19, No. 5, pp. 1800-1808 (2011).
Foster, P.M.D., E. Mylchreest, K.W. Gaido, and M. Sar, “Effects of Phthalate Esters on the Developing Reproductive Tract of Male Rats,” Human Reproductive Update, Vol. 7, No. 3, pp. 231-235 (2001).
Fromme, H., T. Küchler, T. Otto, K. Pilz, J. Müller, and A. Wenzel, “Occurrence of Phthalates and Bisphenol A and F in the Environment,” Water Research, Vol. 36, No. 6, pp. 1429-1438 (2002).
Gallego-Blanca, R., A. García-Rubio, J.M. Rodríguez-Maroto, F. García-Herruzo, C. Vereda-Alonso, and C. Gómez-Lahoz, “Sequential Application of Different EKR Enhancements to a Mercury Contaminated Soil,” Book of Abstract, 8th Symposium on Electrokinetic Remediation (EREM 2009), p.38, Lisbon, Portugal, July 26-29 (2009).
Garrido-Ramírez, E.G., B.K.G. Theng, and M.L. Mora, “Clay and Oxide Minerals as Catalysts and Nanocatalysts in Fenton-like Reactions- A Review,” Applied Clay Science, Vol. 47, No. 3-4, pp. 182-192 (2010).
Giannis, A., D. Pentari, J.Y. Wang, and E. Gidarakos, “Application of Sequential Extraction Analysis to Electrokinetic Remediation of Cadmium, Nickel and Zinc from Contaminated Soils,” Journal of Hazardous Materials, Vol. 184, No. 1-3, pp. 547-554 (2010).
Gibbons, S.E., C. Wang, and Y. Ma, “Determination of Pharmaceutical and Personal Care Products in Wastewater by Capillary Electrophoresis with UV Detection,” Talanta, Vol. 84, No. 4, pp. 1163-1168 (2001).
Goulden, P.D. and D.H.J. Anthony, “Kinetics of Uncatalyzed Peroxydisulfate Oxidation of Organic Material in Fresh Water,” Analytical Chemistry, Vol. 50, No. 7, pp. 953-958 (1978).
Hahladakis, J.N., N. Lekkas, A. Smponias, and E. Gidarakos, “Sequential Application of Chelating Agents and Innovative Surfactants for the Enhanced Electroremediation of Real Sediments from Toxic Metals and PAHs,” Chemosphere, Vol. 105, No. 6, pp. 44-52 (2014).
Hoppin, J.A., J.W. Brock, B.J. Davis, and D.D. Baird, “Reproducibility of Urinary Phthalate Metabolites in First Morning Urine Samples,” Environmental Health Perspectives, Vol. 110, No. 5, pp. 515-518 (2002).
Hou, L., H. Zhang, and X. Xue, “Ultrasound Enhanced Heterogeneous Activation of Peroxydisulfate by Magnetite Catalyst for the Degradation of Tetracycline in Water,” Separation and Purification Technology, Vol. 84, No. 24, pp. 147-152 (2012).
House, D.A., “Kinetic and Mechanism of Oxidation by Peroxydisulfate,” Chemical Reviews, Vol. 62, No. 3, pp. 185-203 (1962).
Huang, K.C., R.A. Couttenye, and G.E. Hoag, “Kinetics of Heat-Assisted Persulfate Oxidation of Methyl Tert-butyl Ether (MTBE),” Chemosphere, Vol. 49, No. 4, pp. 413-420 (2002).
Iglesias, O., M.A. Sanromán, and M. Pazos, “Surfactant-Enhanced Solubilization and Simultaneous Degradation of Phenanthrene in Marine Sediment by Electro-Fenton Treatment,” Industrial&; Engineering Chemistry Research, Vol. 53, No. 8, pp. 2917-2923 (2014).
Ishmuratov, G.Y., V.A. Vydrina, M.P. Yakovleva, Y.A. Galkina, I.F. Lobko, R.R. Muslukhov, E.M. Vyrpaev, and A.G. Toistikov, “ Oxidation of Bicyclic Monoterpene Ketones with Caro’s Acid,” Russian Journal of Organic Chemistry, Vol. 48, No. 9, pp. 1210-1215 (2012).
Jeon, C.S., J.S. Yang, K.J. Kim, J.S. Yang, and K. Baek, “Electrokinetic Removal of Petroleum Hydrocarbon from Residual Clayey Soil Following a Washing Process,” CLEAN- Soil, Air, Water, Vol. 38, No. 2, pp. 189-193 (2010).
Kaneco, S., H. Katsumata, T. Suzuki, and K. Ohta, “Titanium Dioxide Mediated Photocatalytic Degradation of Dibutyl Phthalate in Aqueous Solution−Kinetics, Mineralization and Reaction Mechanism,” Chemical Engineering Journal, Vol. 125, No. 1, pp. 59-66 (2006).
Kim, Y.H., T.M. Heinze, R. Beger, J.V. Pothuluri, and C.E. Cerniglia, “A Kinetic Study on the Degradation of Erythromycin A in Aqueous Solution,” International Journal of Pharmaceutics, Vol. 271, No. 1-2, pp. 63-76 (2004).
Kim, W.S., S.O. Kim, and K.W. Kim, “Enhanced Electrokinetic Extraction of Heavy Metals from Soils Assisted by Ion Exchange Membranes,” Journal of Hazardous Materials, Vol. 118, No. 1-3, pp. 93-102 (2005).
Kim, K.J., D.H. Kim, J.C. Yoo, and K. Baek, “Electrokinetic Extraction of Heavy Metals from Dredged Marine Sediment,” Separation and Purification Technology, Vol. 79, No. 2, pp. 164-169 (2011).
Kim, B.Y., G.Y. Park, E.K. Jeon, J.M. Jung, H.B. Jung, S.H. Ko, and K. Baek, “Field Application of In Situ Electrokinetic Remediation for As-, Cu-, and Pb- Contaminated Paddy Soil,” Water, Air, &;Soil Pollution, Vol. 224, No. 9, pp. 1697-1706 (2013).
Kolthoff, I.M. and E.M. Carr, “Volumetric Determination of Persulfate in Presence of Organic Substances,” Analytical Chemstry, Vol. 25, No. 2, pp. 298-301 (1953).
Kolthoff, I.M., A.I. Medalia, and H.P. Raaen, “The Reaction between Ferrous Iron and Peroxides IV. Reaction with Potassium Persulfate,” Journal of the American Chemical Society, Vol. 73, No. 4, pp. 1733-1739 (1951).
Kurlyandskaya, G.V., J.Cunanan, S.M. Bhagat, J.C. Aphesteguy, and S.E. Jacobo, “Field-Induced Microwave Absorption in Fe3O4/Polyanlline Composites Synthesized by Different Methods,” The Journal of Physics and Chemistry of Solids, Vol. 68, No. 8, pp. 1527-1532 (2007).

Latini, G., “Monitoring Phthalate Exposure in Humans,” Clinica Chimica Acta, Vol. 361, No. 1-2, pp .20-29 (2005).
Lee, B.N., W.T. Ying, and Y.T. Shen, “Microwave-induced Combustion of Volatile Organic Compounds in an Industrial Flue Gas Over the Magnetite Fixed-bed,” Chemosphere, Vol. 69, No. 11, pp. 1821-1826 (2007).
Leinz, R.W., D.B. Hoover, and A.L. Meier, “NEOCHIM: An Elctrochemical Method for Environmental Application,” Journal of Geochemical Exploration, Vol. 64, No. 3, pp. 421-434 (1998).
Li, J., J.D. Gu, and L. Pan, “Transformation of Dimethyl Phthalate, Dimethyl Isophthalate and Dimethyl Terephthalate by Rhodococcus Rubber Sa and Modeling the Process Using the Modified Gompertz Model,” International Biodeterioration &; Biodegradation, Vol. 55, No. 3, pp. 223-232 (2005)
Li, F., X. Wang, C. Liu, Y. Li, F. Zeng, and L. Liu, “Reductive Transformation of Pentachlorophenol on the Interface of Subtropical Soil Colloids and Water,” Geoderma, Vol. 148, No. 1, pp. 70-78 (2008).
Li, T., S. Yuan, J. Wan, L. Lin, H. Long, X. Wu, and X. Lu, “Pilot-Scale Electrokinetic Movement of HCB and Zn in Real Contaminated Sediments Enhanced with Hydroxypropyl-β-Cyclodextrin,” Chemosphere, Vol. 76, No. 9, pp. 1226-1232 (2009).
Li, S.X., D. Wei, N.K. Mak, Z.W. Cai, X.R. Xu, H.B. Li, and Y. Jiang, “Degradation of Diphenylamine by Persulfate: Performance Optimization, Kinetics and Mechanism,” Journal of Hazardous Materials, Vol. 164, No. 1, pp. 26-31 (2009).
Liang, C., Z.S. Wang, and C.J. Bruell, “Influence of pH on Persulfate Oxidation of TCE at Ambient Temperature,” Chemosphere, Vol. 66, No. 1, pp. 106-113 (2007).
Liang, C., C.F. Huang, N. Mohanty, and R.M. Kurakalva, “A Rapid Spectrophotometric Determination of Persulfate anion in ISCO,” Chemosphere, Vol. 73, No. 9, pp. 1540-1543 (2008).
Liang, C., C.P. Liang, and C.C. Chen, “ pH Dependence of Persulfate Activation by EDTA/Fe(Ⅲ) for Degradation of Trichloroethylene,” Journal of Contaminant Hydrology, Vol. 106, No. 3-4, pp. 173-182 (2009).
Liang, C., Y.Y. Guo, Y.C. Chien, and Y.J. Wu, “Oxidative Degradation of MTBE by Pyrite-Activated Persulfate: Proposed Reaction Pathways,” Industrial &; Engineering Chemistry Research, Vol. 49, No. 18, pp. 8858-8864 (2010).
Lin, C., C.J. Lee, W.M. Mao, and F. Nadim, “Identifying the Potential Sources of di-(2-Ethylhexyl) Phthalate Contamination in the Sediment of the Houjing River in Southern Taiwan,” Journal of Hazardous Materials, Vol. 161, No. 1, pp. 270-275 (2009).
Lin, Y.T., C. Liang, and J.H. Chen, “Feasibility Study of Ultraviolet Activated Persulfate Oxidation of Phenol,” Chemosphere, Vol. 82, No. 8, pp. 1168-1172 (2011).
Liou, S.H., G.C.C. Yang, C.L. Wang, and Y.H. Chiu, “Monitoring of PAEMs and Beta-Agonists in Urine for a Small Group of Experimental Subjects and PAEs and Beta-Agonists in Drinking Water Consumed by the Same Subjects,” Journal of Hazardous Materials, http://dx.doi.org/10.1016/j.jhazmat.2014.02.024 (2014).
Liu, H.L. J.H. Wu, J.H. Min, J.H. Lee, and Y.K. Kim, “Monosized Core-Shell Fe3O4(Fe)/Au Multifunctional Nanocrystal,” Journal of Nanoscience and Nanotechnology, Vol. 9, No. 2, pp. 754-758 (2009).
Liu, C.S., K. Shih, C.X. Sun, and F. Wang, “Oxidative Degradation of Propachlor by Ferrous and Copper Ion Activated Persulfate,” Science of the Total Environment, Vol. 416, No. 59, pp. 507-512 (2012).
Lu, Y., Y. Wang, J. Zhao, X. Zeng, Q. Luo, and L. Wang, “Biodegradation of Dimethyl Phthalate, Diethyl Phthalate and Di-n-butyl Phthalate by Rhodococcus sp. L4 Isolated from Activated Sludge,” Journal of Hazardous Materials, Vol. 168, No. 2-3, pp. 938-943 (2009).
Ma, J.W., F.Y. Wang, Z.H. Huang, and H. Wang, “Simultaneous Removal of 2,4-Dichlorophenol and Cd from Soils by Electrokinetic Remediation Combined with Active Bamboo Charcoal,” Journal of Hazardous Materials, Vol. 176, No. 1-3, pp. 715-720 (2010).
Mak, S.Y., and D.H. Chen, “Fast Adsorption of Methylene Blue on Polyacrylic Acid-Bound Iron Oxide Magnetic Nanoparticles,” Dyes and Pigments, Vol. 61, No. 1, pp. 93-98 (2004).
Malik, M.A., M. Ilyas, and K. Zaheer, “Kinetics of Permanganate Oxidation of Synthetic Macromolecule Poly (Vinyl Alcohol),” Indian Journal of Chemistry, Vol. 48A, No. 2, pp. 189-193 (2009).
Mehta, R.V., R.V. Upadhyay, S.W. Charles, and C.N. Ramchand, “Direct Binding of Protein to Magnetic Particles,” Biotechnology Techniques, Vol. 11, No. 7, pp. 493-496 (1997).
National Nanotechnology Initiative, “What is Nanotechnology?” http://www.nano.gov/nanotech-101/what/definition (2014).
Nam, P., S. Kapila, Q. Liu, W. Tumiatti, A. Porciani, and V. Flanigan, “Solvent Extraction and Tandem Dechlorination for Decontamination of Soil,” Chemosphere, Vol. 43, No. 4-7, pp. 485-491 (2001).
Vanýek, P., “Electrochemical series” Handbook of Chemistry and Physics (77th ed.)”, D.R. Lide (Ed.), pp. 5-98, CRC Press, New York (1996),
NIST Chemistry WebBook, “http://webbook.nist.gov/chemistry/” (2014).
Nyer, E.K., S. Fam, D.F. Kidd, P.L. Palmcr, G. Bocttcheer, T.L. Corssman, and S.S. Suthersan, “In-Situ Treatment,” CRC Press, Inc., Boca Raton, Florida, pp. 310-314 (1996).
Nystrøm, G.M. L.M. Ottosen, and A. Villumsen, “Test of Experimental Set-Ups for Electrodialytic Removal of Cu, Zn, Pb and Cd from Different Contaminated Habour Sediment,” Engineering Geology, Vol. 77, No. 3-4, pp. 349-357 (2005).
Oh, S.Y., H.W. Kim, J.M. Park, H.S. Park, and C. Yoon, “Oxidation of Polyvinyl Alcohol by Persulfate Activated with Heat, Fe2+, and Zero-Valent Iron,” Journal of Hazardous Materials, Vol. 168, No. 30, pp. 346-351 (2009).
Oyo-Ita, O.E., B.O. Ekpo, I.O. Oyo-Ita, and J.O. Offem, “Phthalates and Other Plastic Additives in Surface Sediments of the Cross River System, S.E. Niger Delta, Nigeria: Environmental Implication,” Environment and Pollution, Vol. 3, No. 1, pp. 60-72(2014).
Pang, S.C., S.F. Chin, and M.A. Anderson, “Redox Equilibria of Iron Oxides in Aqueous-Based Magnetite Dispersions : Effect of pH and Redox Potential,” Journal of Colloid and Interface Science, Vol. 311, No. 1, pp. 94-101 (2007).
Park, S.Y., G.Y. Park, D.Y. Kim, J.S. Yang, and K. Baek, “Electrokinetic Separation of Heavy Metals from Wastewater Treatment Sludge,” Separation Science and Technology, Vol. 45, No. 12-13, pp. 1982-1987 (2010).
Pazos, M., M.A. Sanromán, and C. Cameselle, “Improvement in Electrokinetic Remediation of Heavy Metal Spiked Kaolin with the Polarity Exchange Technique,” Chemosphere, Vol. 62, No. 5, pp. 817-822 (2006).
Peijeneburg, W.J.G.M. and J. Struijs, “Occurrence of Phthalate Esters in the Environment of the Netherlands,” Ecotoxicology and Environmental Safety, Vol. 63, No. 2, pp. 204-215 (2006).
Perolo, L.W., “Review: In Situ and Bioremediation of Organic Pollutants in Aquatic Sediments,” Journal of Hazardous Materials, Vol. 177, No. 1-3, pp. 81-89 (2010).
Petrović, M., E. Eljarrat, M.J. López de Alda, and D. Barceló, “Analysis and Environmental Level of Endocrine-Disrupting Compounds in Freshwater Sediments,” TrAC Trends in Analytical Chemistry, Vol. 20, No. 11, pp. 637-648 (2001).
Psillakis, E., D. Mantzavinos, and N. Kalogerakis, “Monitoring the Sonochemical Degradation of Phthalate Esters in Water Using Solid−Phase Microextraction,” Chemosphere, Vol. 54, No. 7, pp. 849-857 (2004).
Rajić, L., B. Dalmacija, M. Dalmacija, S. Rončević, and S.U. Perović, “Enhancing Electrokinetic Lead Removal from Sediment: Utilizing the Moving Anode Technique and Increasing the Cathode Compartment Length,” Electrochimica Acta, Vol. 86, No. 8, pp. 36-40 (2012).
Rakowska, M.I., D. Kupryianchyk, M.P.J. Smit, A.A. Koelmans, J.T.C Grotenhuis, and H.M.M. Rijnaarts, “Kinetics of Hydrophobic Organic Contaminant Extraction from Sediment by Granular Activated Carbon,” Water Research, Vol. 51, No. 10, pp. 86-95 (2014).
Reddy, K.R. “Electrokinetic Remediation of Soils at Complex Contaminated Sites: Technology Status, Challenges, and Opportunities,” Coupled Phenomena in Environmental Geotechnics (CPEG), Italy, pp.131-147 (2013).
Ren, L., H. Lu, L. He, and Y. Zhang, “Enhanced Electrokinetic Technologies with Oxidization-Reduction for Organically-Contaminated Soil Remediation,” Chemical Engineering Journal, Vol. 247, No. 1, pp. 111-124 (2014).
Richardson, S.D. and T.A. Ternes, “Water Analysis: Emerging Contaminants and Current Issues,” Analytical Chemistry, Vol. 83, No. 12, pp. 4614-4648 (2011).
Richardson, S.D., “Environmental Mass Spectrometry: Emerging Contaminants and Current Issues,” Analytical Chemistry, Vol. 84, No. 2, pp. 747-778 (2012).
Roslev, P., K. Vorkamp, J. Aarup, K., Frederiken, and P.H. Nielsen, “Degradation of Phthalate Esters in an Activated Sludge Wastewater Treatment Plant,” Water Research, Vol. 41, No. 5, pp. 969-976 (2007).
Rudel, R.A. and L.J. Perovich, “Endocrine Disrupting Chemicals in Indoor and Outdoor Air,” Atmospheric Environment, Vol. 43, No. 1, pp.170-181 (2009).
Saien, J., Z. Ojaghloo, A.R. Soleymani, and M.H. Rasoulifard, “Homogeneous and Heterogeneous AOPs for Rapid Degradation of Triton X-100 in Aqueous Media via UV Light, Nano Titania Hydrogen Peroxide and Potassium Persulfate,” Chemical Engineering Journal, Vol. 167, No. 1, pp. 172-182 (2011).
Selçuk, H., G. Eremektar, and S. Meriç, “The Effect of Pre-ozone on Acute Toxicity and Inert Soluble COD Fractions of a Textile Finishing Industry Wastewater,” Journal of Hazardous Materials, Vol. 137, No. 1, pp. 254-260 (2006).
Shih, Y.J., W.N. Putra, Y.H. Huang, and J.C. Tsai, “Mineralization and Deflourization of 2,2,3,3,-Tetrafluoro-1-Propanol (TFP) by UV/Persulfate Oxidation and Sequential Adsorption,” Chemosphere, Vol. 89, No. 10, pp. 1262-1266 (2012).
Siegrist, R.L., M. Crimi, and T.J. Simpkin, “In Situ Chemical Oxidation for Groundwater Remediation,” SERDP/ESTCP Environmental Remediation Technology, Vol. 3, Springer Science+ Business Media, LCC, New York (2011).
Sommariva, C., A. Attenborough, F. Poggi, A.A.M. Al-Mahdi, T. Hort, T.K. Tokunaga, Y. Ito, and Y. Maeda, “ Matching Hollow-Fiber with Spiral-Wound Membranes: Process Compatibility and Optimization,” IDA Journal of Desalination and Water Reuse, Vol. 4, No. 2, pp. 40-44 (2012).
Stales, C.A., D.R. Peterson, T.F. Parkerton, and W.J. Adams, “The Environmental Fate of Phthalate Esters: A Literature Review,” Chemosphere, Vol. 35, No. 4, pp. 667-749 (1997).
Steele, W.V. and E.H. Appelman, “The Standard Enthalpy of Formation of Peroxymonosulfate (HSO5–) and the Standard Electrode Potential of the Peroxymonosulfate-Bisulfate Couple,” The Journal of Chemical Thermodynamic, Vol. 14, No. 4, pp. 337-344 (1982).
Suèr, P., K. Gitye, and B. Allard, “Specitaion and Transport of Heavy Metals and Macroelements during Electroremediation,” Environmental Science &; Technology, Vol. 37, No. 1, pp. 177-181 (2003).
Sun, J., J. Huang, A. Zhang, W. Liu, and W. Cheng, “Occurrence of Phthalate Esters in Sediments in Qiantang River, China and Inference with Urbanization and River Flow Regime,” Journal of Hazardous Materials, Vol. 248-249, No. 16, pp. 142-149 (2013).
Swan, S.H., “Environmental Phthalate Exposure in Relation to Reproductive Outcomes and Other Health Endpoints in Humans,” Environmental Research, Vol. 108, No. 2, pp. 177-184 (2008).
Teil, M.J., K. Tlili, M. Blanchard, M. Chevreuil, F. Alliot, and P. Labadie, “Occurrence of Polybrominated Diphenyl Esters, Polychlorinated Bisphenyls, and Phthalates in Freshwater Fish from the Orge River (Ile-de France),” Archives of Environmental Contamination and Toxicology, Vol. 63, No. 1, pp. 101-113 (2012).
Tsitionaki, A., B. Petri, M. Crimi, H. Mos bÆk, R.L. Siegrist, and P. Bjerg, “In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review,” Critical Reviews in Environmental Science and Technology, Vol. 40, No. 1, pp. 55-91 (2010).
USEPA, “Remediation Case Studies: In Situ Soil Treatment Technologies (Soil Vapor Extraction, Thermal Processes),” EPA 542-R-98-012, 6-10 (1998).
Vanýsek, P., “Electrochemical Series,” in CRC Handbook of Chemistry and Physics, Internet Version 2005, David R. Lide, ed., pp. 8-23~8-33, CRC Press, Boca Raton, FL, USA (2005).
Virkutyte, J. M. Sillanpää, and P. Latostenmaa, “Electrokinetic Soil Remediation–Critical Overview,” Science of the Total Environment, Vol. 289, No. 1-3, pp. 97-121 (2002).
Virkutyte, J., M. Sillanpää, P. Latostenmaa, and J. Martisius, “Electrode Layout and Process Kinetics of Electroremoval of Copper from Sand,” International Journal of Surface Mining, Reclamation and Environment, Vol. 18, No. 3, pp. 220-231 (2004).
Waldemer, R.H., P.G. Tratnyek, R.L. Johnson, and J.T. Nurmi, “Oxidation of Chlorinated Ethenes by Heat-Activated Persulfate: Kinetics and Products,” Environmental Science &; Technology, Vol. 41, No. 3, pp. 1010-1015 (2007).
Wang, F., X. Xia, and Y. Sha, “Distribution of Phthalic Acid Esters in Wuhan Section of the Yangtze River, China,” Journal of Hazardous Materials, Vol. 154, No. 1-3, pp. 317-324 (2008).
Wang, Z., D. Deng, and L. Yang, “Degradation of Dimethyl Phthalate in Solutions and Soil Slurries by Persulfate at Ambient Temperature,” Journal of Hazardous Materials, Vol. 271, No. 25, pp. 202-209 (2014).
Wijesekara, S., R.R. Navarro, H.Z. Bo, and M. Matsumura, “Simultaneous Treatment of Dioxins and Heavy Metals in Tagonoura Harbor Sediment by Two-Step Pyrolysis,” Soil and Sediment Contamination: An International Journal, Vol. 16, No. 6, pp. 569-584 (2007).
Wikipedia, “Electrophoresis,” http://en.wikipedia.org/wiki/Electrophoresis (2013).
Xu, X.R., H.B. Li, and J.D. Gu, “Biodegradation of an Endocrine-Disruption Chemical Di-n-butyl Phthalate Ester by Pseudomonas Fluorescens B-1,” International Biodeterioration &; Biodegradation, Vol. 55, No. 1, pp. 9-15 (2005).
Xu, B., N.Y. Gao, X.F. Sun, S.J. Xia, M. Rui, M.O. Simonnot, C. Causserand, and J.F. Zhao, “Photochemical Degradation of Diethyl Phthalate with UV/H2O2,” Journal of Hazardous Materials, Vol. 139, No. 1, pp. 132-139 (2007).
Xu, X., Q. Ye, T. Tang, and D. Wang, “Hg0 Oxidative Absorption by K2S2O8 Solution Catalyzed by Ag+ and Cu2+,” Journal of Hazardous Materials, Vol. 158, No. 2-3, pp. 410-416 (2008).
Xu, X.R. and X.Z. Li, “Degradation of Azo Dye Orange G in Aqueous Solutions by Persulfate with Ferrous Ion,” Separation and Purification Technology, Vol. 72, No. 1, pp. 105-111 (2010).
Yang, S., P. Wang, X. Yang, L. Shan, W. Zhang, X. Shao, and R. Niu, “Degradation Efficiencies of Azo Dye Acid Orange 7 by the Interaction of Heat, UV and Anions with Common Oxidants: Persulfate, Peroxymonosulfate and Hydrogen Peroxide,” Journal of Hazardous Materials, Vol. 179, No. 1-3, pp. 552-558 (2010).
Yang, G.C.C. and S.L. Lin, “Removal of Lead from a Silt Loam Soil by Electrokinetic Remediation,” Journal of Hazardous Materials, Vol. 58, No. 1-3, pp. 285-299 (1998).
Yang, G.C.C. and Y.W. Long, “Removal and Degradation of Phenol in a Saturated Flow by In-Situ Electrokinetic Remediation and Fenton-like Process,” Journal of Hazardous Materials, Vol. 69, No. 3, pp. 259-271 (1999).
Yang, G.C.C. and C.Y. Liu, “Remediation of TCE Contaminated Soils by In-Situ EK-Fenton Process,” Journal of Hazardous Materials, Vol. 85, No. 3, pp. 317-331 (2001).
Yang, G.C.C. and M.Y. Wu, “Injection of Nanoscale Fe3O4 Slurry Coupled with the Electrokinetic Process for Remediation of NO3– in Saturated Soil: Remediation Performance and Reaction Behavior,” Separation and Purification Technology, Vol. 79, No. 2, pp. 272-277 (2011).
Yang, G.C.C. and C.F. Yeh, “Enhanced Nano-Fe3O4/S2O82– Oxidation of Trichloroethylene in a Clayey Soil by Electrokinetics,” Separation and Purification Technology, Vol. 79, No. 2, pp. 264-271 (2011).
Yao, K.F., Z. Peng, Z.H. Liao, and J.J. Chen, “Preparation and Photocatalytic Property of TiO2-Fe3O4 Core-Shell Nanoparticles,” Journal of Nanoscience and Nanotechnology, Vol. 9, No. 2, pp. 1458-1461 (2009).
Yuan, B.L., X.Z. Li, and N. Graham, “Reaction Pathways of Dimethyl Phthalate Degradation in TiO2−UV−O2 and TiO2−UV−Fe(Ⅵ) Systems,” Chemosphere, Vol. 72, No. 2, pp. 197-204 (2008).
Yuan, C., C.H. Hung, and K.C. Chen, “Electrokinetic Remediation of Arsenate Spiked Soil Assisted by CNT-Co Barrier – The Effect of Barrier Position and Processing Fluid,” Journal of Hazardous Materials, Vol. 171, No. 1-3, pp. 563-570 (2009).
Yuan, S.Y., I.C. Huang, and B.V. Chang, “Biodegradation of Dibutyl Phthalate and Di-(2-ethylhexyl) Phthalate and Microbial Community Changes in Mangrove Sediment,” Journal of Hazardous Materials, Vol. 184, No. 1-3, pp. 826-831 (2010).
Yukselen-Aksoy, Y. and K.R. Reddy, “Effect of Soil Composition on Electrokinetically Enhanced Persulfate Oxidation of Polychlorobiphenyls,” Electrochimica Acta, Vol. 86, No. 26, pp. 164-169 (2012).
Zarull, M.A., J.H. Hartig, and G. Krantzberg, “Ecological Benefits of Contaminated Sediment Remediation,” Reviews of Environmental Contamination and Toxicology, Vol. 174, pp. 1-18, Eds. G.W. Ware, Springer-Verlag, New York (2002).
Zeng, F., K. Cui, Z. Xie, M. Liu, Y. Li, Y. Lin, Z. Zeng, and F. Li, “Occurrence of Phthalate Esters in Water and Sediment of Urban Lakes in a Subtropical City, Guangzhou, South China,” Environment International, Vol. 34, No. 3, pp. 372-380 (2008).
Zheng, X., B.T. Zhang, and Y. Teng, “Distribution of Phthalate Acid Esters in Lakes of Beijing and Its Relationship with Anthropogenic Activities,” Science of the Total Environment, Vol. 476-477, No. 14, pp. 107-113 (2014).
Zhang, Y.Q., X.F. Xie, W.L. Huang, and S.B. Huang, “Degradation of Aniline by Fe2+-Activated Persulfate Oxidation at Ambient Temperature,” Journal of Central South University, Vol. 20, No. 4, pp. 1010-1014 (2013).
Zhou, W., G. Anitescu, P.A. Rice, and L.L. Tavlarides, “Supercritical Fluid Extraction-Oxidation Technology to Remediate PCB-Contaminated Soils/Sediments: An Economic Analysis,” Environmental Progress &; Sustainable Energy, Vol. 23, No. 3, pp. 222-231 (2004).


中文部分:
王立仁,“自磁種凝絮污泥回收再利用奈米磁性顆粒─以化學機械研磨廢水為例”,碩士學位論文,國立中央大學環境工程研究所,桃園縣 (2005)。
台灣電力公司, “電價表”, http://www.taipower.com.tw/UpFile/_userfiles/file/1021001單張電價表(中文).pdf (2013)。
邱浚祐、呂昕如,“氣泡塔及攪拌槽中臭氧化處理程序之研究”,國立臺灣大學「台大工程」學刊,第82期,第77-91頁 (2001)。
行政院環境保護署,“底泥品質指標之分類管理及用途限制辦法”, http://ivy5.epa.gov.tw/epalaw/docfile/140250.pdf,台北市 (2012)。
行政院環境保護署,“毒性化學物質環境流布調查成果手冊-100年版”, 行政院環境保護署成果報告 (2011)。
交通部中央氣象局,“2013年高雄氣象站逐日雨量資料”,http://www.cwb.gov.tw/V7/climate/dailyPrecipitation/dP.htm (2014)。
吳明諺,“奈米級Fe3O4及[Fe3O4]MgO 懸浮液注入結合電動力法整治飽和土壤中NO3-及Cr6+之反應行為探討”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
沈耀庭,“以微波加熱四氧化三鐵去除二氯甲烷之研究”,碩士學位論文,大仁技術學院環境管理研究所,屏東縣 (2005)。
李根政, “工業喝好水,農業喝毒水!” http://e-info.org.tw/node/22628 (2007)。
周宗享,“同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化去除水溶液中之環境荷爾蒙及藥物”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2011)。
林晉卿、楊秋忠、林宏誌、黃山內,“三種綠肥在浸水土壤可溶性有機碳的變化”,台南區研究改良場農業彙報,第47期,第17-30頁 (2006)。
林秉寬,“河川底泥放線菌對鄰苯二甲酸酯類之降解”,碩士學位論文,東吳大學微生物學系,臺北市 (2005)。
美商傑明工程顧問 (股) 台灣分公司, “土壤及地下水重金屬與無機陰離子污染物污染場址之整治技術選取、系統設計要點與操作維護注意事項參考手冊”,營運中含鉛製程事業之土壤污染潛勢調查計畫,行政院環境保護署 (2011)。
夏風毅、鄭平、周琪、馮孝善,“鄰苯二甲酸酯的搖瓶生物降解規律研究”,環境科學學報,第22卷第3期,第379-384頁 (2002)。
梁振儒,”淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法”,台灣土壤及地下水環境保護協會簡訊,第23期,第13-20頁 (2007)。
陳政德,“電動力–Fenton法結合生物分解現地處理受五氯酚污染土壤之研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2000)。
陳子奇,“奈米級零價鐵懸浮液注入結合電動力法產生類–Fenton反應整治模擬地下環境中As(Ⅲ) 之研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
陳中, “普通化學”,第六章,化學動力學與平衡,第93-110頁 (2010)。
陳珮蓉,“利用酸氧化前後奈米碳管吸附鄰苯二甲酸酯類之特性研究”,碩士學位論文,國立中央大學環境工程研究所,桃園縣 (2010)。
張柏偉,“鄰苯二甲酸二丁酯在後勁溪底泥中的生物降解”,碩士學位論文,義守大學土木與生態工程學系,高雄市 (2010)。
楊金鐘、王智龍、邱鈺涵,“藥物及鄰苯二甲酸酯類於典寶溪之流布調查”,中華民國環境工程學會第二十四屆年會及2012年廢水處理技術研討會論文摘要集,第WAT–61頁,2012年9月23日,中原大學,桃園縣 (2012)。
楊金鐘、王智龍、邱鈺涵、林彥融, “利用電動力法現地整治汞污染土壤先期研究”,行政院環境保護署成果報告 (2012)。
楊喜男、王漢泉、劉鎮山、王世冠、彭瑞華、郭季華、楊禮源、李俊宏、徐美榕,“台灣河川水體、底泥及生物監測分析研究”,行政院環境保護署成果報告 (2002)。
葉峮甫,“電動力法輔助奈米Fe3O4/S2O82-程序整治受TCE及1,2-DCA污染土壤”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
廖健森、張碧芬、袁紹英,“環境荷爾蒙-塑膠添加物(鄰苯二甲酸酯類)之環境流布&;quot;, Website: http://www.niea.gov.tw/analysis/newtech/month/38/38th2-2.htm (2008)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊