跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/28 16:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張正馳
研究生(外文):cheng chih chang
論文名稱:馬祖地區PM2.5濃度時空分佈及化學成份分析
論文名稱(外文):Tempospatial Distribution and Chemical Composition of PM2.5 in the Matsu Islands
指導教授:袁中新袁中新引用關係
指導教授(外文):Chung-Shin Yuan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:176
中文關鍵詞:PM2.5懸浮微粒化學成份分析主成份分析受體模式傳輸路徑分析馬祖群島
外文關鍵詞:CMBtransportation route analysisMatsu IslandsPCAchemical analysisfine particles (PM2.5)
相關次數:
  • 被引用被引用:11
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:1
近年來,大陸地區經濟及工業快速發展,石化燃料消耗量及人為污染物的排放量均大幅增加,導致環境污染問題日益嚴重。馬祖地區位於閩江口,緊鄰大陸福州地區,島上並無大型經濟開發及人為污染,現今仍保有純淨的生態環境,然而其空氣品質卻不若台灣本島鄉村地區佳,甚至較部分都市空氣品質污染更為嚴重。
本研究於2013年夏季至2014年春季在馬祖群島設置四處PM2.5懸浮微粒採樣站,分別位於南竿島(NK)、北竿島(BG)、東引島(DY)及西莒島(CK)等四處,同步進行PM2.5懸浮微粒採樣,並進一步分析其化學成份(含離子成份、金屬元素成份、碳成份),藉以瞭解馬祖群島大氣PM2.5懸浮微粒時空分佈及化學成份特性。此外,本研究亦利用主成份分析、化學質量平衡受體模式配合逆軌跡模擬等不同方法,進行懸浮微粒污染來源種類及貢獻量之解析,並探討不同季節之差異性。
由PM2.5懸浮微粒濃度季節變化得知,除夏季期間馬祖地區之PM2.5懸浮微粒濃度較其他季節為低,而秋、冬、春季等東北季風吹襲期間,PM2.5懸浮微粒濃度亦普遍較高。就PM2.5懸浮微粒濃度空間分佈而言,則主要呈現由西逐漸向東遞減的趨勢。而東引島(DY)在不同季節的PM2.5懸浮微粒濃度均較其他採樣站為低,顯示馬祖地區除受到長程傳輸影響外,亦與福州地區背景濃度及大氣擴散條件有密切關係。
由化學成份分析結果顯示,各季節水溶性離子均以二次無機性氣膠(SIA)為主,約佔水溶性離子成份70%左右,其中又以SO42-及NO3-居多,導致馬祖地區PM2.5懸浮微粒中和比值(NR)均小於1;此結果顯示境外傳輸將上風區酸性污染物吹送至馬祖地區,使得PM2.5懸浮微粒呈現偏酸性。金屬元素則以Al、Ca、Fe、K、Mg為主要物種,而其他微量金屬元素(如:Cd、As、Ni及Cr)濃度在東北季風盛行期間均呈上升趨勢。不論在何種季節碳成份均以有機碳(OC)為主,OC/EC值普遍高於2.2。
就PM2.5懸浮微粒污染源種類及貢獻量而言,馬祖地區主要以逸散性土壤揚塵、二次衍生性氣膠、工業污染及農廢燃燒為主;而秋季過後及空氣品質劣化期間,傳輸路徑以北方傳輸型及高壓迴流型為主,污染源種類較多且貢獻率較高。密集採樣期間則以逸散性揚塵及二次衍生性氣膠為主,整體趨勢與冬季期間類似,除農廢燃燒在冬季採樣期間佔的比例較高(7.42~15.17%)外,整體馬祖地區境外輸入之貢獻率約佔66~84%,與夏季背景貢獻率差異甚大,顯示受到境外長程傳輸污染物移入之影響嚴重。
In recent years, due to rapid economic and industrial development of mainland China, significant increases of fossil fuel consumption and anthropogenic emissions of air pollutants cause increasing environmental pollution problems. The Matsu Islands is located at the Minjiang Estuary, facing Fuzhou City in the Southeast China. The Matsu Islands have no large-scale industries and pollution sources, which conserved the Islands as an ecological environment. However, the ambient air quality is generally worse than the rural areas of Taiwan, even more serious than urban air quality.
This study characterized the chemical composition of atmospheric fine particles (PM2.5) at the Matsu Islands. Four sites located at four offshore Islands (Nankan, Beigan, Donyin, and Chukuang) of the Matsu Islands were selected to simultaneously collect fine particles (PM2.5). Three chemical components (i.e. ionic species, metallic elements, carbon content) were analyzed to understand the seasonal variation of PM2.5’s chemical characteristics during the summer of 2013 to the spring of 2014. In order to clarify the region''s pollution sources and their contributions, this study applied principal component analysis (PCA), chemical mass balance (CMB) receptor model, and backward trajectory simulation to understand the source apportionment of fine particles, and to explore their temporal variation of sources in different seasons.
The results indicated that the lowest average concentration of fine particles (PM2.5) were observed in the summer. The PM2.5 concentration significantly increased during the northeastern monsoon periods. From the perspective of spatial distribution, it showed that PM2.5 concentration decreased from west to east, and NK site were generally higher than other sites in all seasons. Field measurement results showed that PM2.5 concentrations at the Donyin Islands (DY) in different seasons were always lower than other sampling sites. The results indicated that the PM2.5 concentration highly correlated to long-range transportation, local sources, and atmospheric dispersion condition.
Chemical composition analysis showed that the most abundant water-soluble ionic species of fine particles (PM2.5) were secondary inorganic aerosols (SO42-, NO3-, and NH4+) which accounted for 70% of total ions and mainly SO42-and NO3-, resulting in suspended particulate matter NR were less than unity in the Matsu Islands. The NR ratio of fine particles (PM2.5) were smaller than unity, indicating that atmospheric fine particles were mostly acidic. The metallic elements Al, Ca, Fe, K, Mg, dominated the chemical species of particles, other trace metals (eg, Cd, As, Ni, and Cr) concentration increased during the northeastern monsoon periods. Organic carbons (OC) were the main species in all seasons, and OC/EC value was generally higher than 2.2.
Results obtained from PCA and CMB receptor modeling showed that major sources of fine particles (PM2.5) in the Matsu Islands were soil dusts, secondary inorganic aerosols, industrial pollution, and agricultural burning. During the northeastern monsoon and poor air quality periods, the major transportation route was northern transportation (N-type) and anticyclonic outflow (AO-type), in which pollution sources and their contribution were higher during these period. The results of CMB receptor model during the intensive sampling periods were consistent very well with the soil dusts and secondary inorganic aerosols in the Matsu Islands. Agricultural burning in winter was generally higher than other sources, which contributed from 7.42% to 15.17% of fine particles (PM2.5) Overall speaking, cross-boundary transport accounted for 66~84%, showing that the Matsu Islands was significantly influenced by the cross-boundary transport.
學位論文審定書………………………………………………...…..…….… i
誌謝………………………………………………………………………….. ii
中文摘要………………………………………………...…..…….………… iii
英文摘要………………………………………...…..…….………………… v
目錄…………………………………….......................................................... vii
表目錄………………………………………………...…..…….…………… x
圖目錄……………………………………………………………………….. xii
第一章 前言………………………………………………..……..………… 1
1-1研究緣起……………….………………….………..….…….……... 1
1-2研究目的…………….…………………….………….…...………... 2
1-3研究範圍與架構………………………….………………………… 3
第二章 文獻回顧………………………………………..………..………… 5
2-1馬祖地理環境概況.......…………………………………………… 5
2-1-1地理位置及人口….…………..……..……………………… 6
2-1-2馬祖地區空氣品質概況.………………….………………... 6
2-2懸浮微粒物化特性…..…..…..…………………………...……….. 10
2-3懸浮微粒化學成份……................…………..…………………….. 13
2-3-1水溶性離子成份…..................………………….………….. 13
2-3-2金屬元素成份.……..……………………………………….. 17
2-3-3碳成份………………..…...…..…………………………….. 19
2-4海島地區氣膠微粒特性……………………………………......…... 22
2-5污染源解析方法.......………….…………………………………….. 24
2-5-1逆軌跡模式……...………………………………..…..…….. 24
2-5-2富集因子………………………………………..…..……… 27
2-5-3主成份分析….……..………………..…..…………….......... 28
2-5-4受體模式………………………....…………………………. 29
第三章 研究方法…………………………………………………………… 36
3-1細懸浮微粒採樣規劃……….……………………..….….................. 36
3-1-1 採樣地點……………………..…..…………....................... 36
3-1-2 採樣時間……………………....…………………………... 37
3-2細懸浮微粒採樣方法與原理……………………………………….. 37
3-3細懸浮微粒質量濃度與化學成份分析方法……………………….. 39
3-3-1質量濃度量測方法……………………………………….. 39
3-3-2水溶性離子成份分析方法…............…………..………… 40
3-3-3 金屬元素成份分析方法…............…………..……….….. 40
3-3-4 碳成份分析方法.…………..………………………….….. 41
3-4品保與品管……………………………..…..…………...................... 42
3-4-1採樣方法之品保品管………..…..…………....................... 42
3-4-2分析方法之品保品管……………..…..…………............... 43
3-5大氣懸浮微粒之污染源解析方法.…..……………………………... 45
3-5-1等濃度空間分佈…………………………........................... 45
3-5-2逆軌跡模式模擬…………………………........................... 46
3-5-3富集因子……………………………................................... 46
3-5-4主成份分析法………………………….............................. 47
3-5-5化學質量平衡受體模式………………………….............. 47
第四章 結果與討論………………….….………..………………………… 50
4-1例行性採樣期間馬祖地區氣象條件分析………………………..… 50
4-1-1風速及風向…………..………………..……..…………….. 50
4-1-2相對溼度…………..……..……..……………………….….. 52
4-2 PM2.5懸浮微粒濃度變化趨勢…………..………………………….. 53
4-3懸浮微粒化學成份分析…….……………………………..………... 62
4-3-1水溶性離子成份季節變化趨勢分析…………………..…... 62
4-3-2金屬元素成份季節變化趨勢分析…………………………. 72
4-3-3碳成份季節變化趨勢分析…………………….....………..... 76
4-4密集採樣期間懸浮微粒物化特性變化趨勢………………………. 82
4-5 PM2.5懸浮微粒傳輸路徑分析…....………………..…….…………. 95
4-6 PM2.5懸浮微粒污染來源解析結果…………….……..……………. 101
4-6-1富集因子分析…….…………………….……..……………. 101
4-6-2主成份分析.…………………………..…………………..… 104
4-6-3質量平衡受體模式解析.…....……….…….……..……….... 111
第五章 結論與建議………………………………………………………… 121
5-1結論…………………………………………………………………. 121
5-2建議…………………………………………………………….…… 124
參考文獻…………………………………………………………………….. 125
附錄A 採樣及分析方法之品保品管………………….…………………… 139
附錄B 分析儀器之檢量線…………………………….…………………… 153
Ackermann-Librich, U., Leuenberger, P., Schwartz, J., Schindler, C., SAPALDIA-team., “Lung function and long term exposure to air pollutants in Switzerland,” Journal of Respiratory and Critical Care Medicine, 155, 122-129, 1997.
Andreani-Aksoyoglu, S., Keller, J., Prevot, A.S.H., Baltensperger, U., and Flemming, J., “Modeling of secondary aerosols in Switzerland in summer 2003,” Developments in Environmental Sciences, 6, 75-84, 2007.
Appel, B.R., Hoffer, E.M., Kothny, E.L., Wall, S.M., Haik, M., and Knights, R.L., “Analysis of carbonaceous material in southern California atmospheric aerosols,” Environmental Science and Technology, 13, 98-104, 1979.
Cao, J.J., Shen, Z., Chow, J.C., Qi, G., and Watson, J.G., “Seasonal variations and sources of mass and chemical composition for PM10 aerosols in Hangzhou, China,” Particuology, 7, 161-168, 2009.
Chang, S.G., Brodzinsky, R., Gundel, L.A., Novakov, T., “Chemical and catalytic properties of elemental carbon, “Wolff, G.T., Klimisch, R.L. (Eds.),” Particulate carbon: atmospheric life cycle,” Plenum Press, New York, 158-181, 1982.
Cheng, Y.H. and Tsai, C.J., “Evaporation loss of ammonium nitrate particles during filter sampling,” Aerosol Science, 28(8), 1553-1567, 1997.
Cheng, Z.L., Lam, K.S., Chan, L.Y., Wang, T., and Cheng, K.K., “Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996” Atmospheric Environment, 34, 2771-2783, 2000.
Contini, D., Genga. A., Cesari, D., Siciliano, M., Donateo, A., Bove, M.C., and Guascito, M.R., “Characterization and source apportionment of PM10 in an urban background site in Lecce,” Atmospheric Research, 95, 40-54, 2010.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino, K.L., Ziman, S.D., Richards, L.W., “PM10 and PM2.5 compositions in California''s San Joaquin Valley,” Aerosol Science and Technology. 18, 105-128, 1993.
Chow, J.C., Watson, J.G., Fujita, E.M., Lu, Z., and Lawson, D.R., “Temporal and spatial variation of PM2.5 and PM10 aerosols in the Southern California Air Quality Study,” Atmospheric Environment, 28, 2061-2080, 1994.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., and Green, M.C., “Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational Study,” Chemosphere, 54, 185-208, 2004.
Colbeck, I. and Harrison, R.M., “Ozone-secondary aerosol-visibility relationships in northwest England,” Science of the Total Environment, 34, 87-100, 1984.
Diana, G.T., Arantza, E.F., Pablo, C.F., Marisela, M.F., Armando R.H., Rafael R.V., and Antonio, H.M., “Effects of meteorology on diurnal and nocturnal levels of priority polycyclic aromatic hydrocarbons and elemental and organic carbon in PM10 at a source and a receptor area in Mexico City,” Atmospheric Environment, 43, 2693-2699, 2009.
Dongarrà, G., Manno, E., Varrica, D., and Vultaggio, M., “Mass levels, crustal component and trace elements in PM10 in Palermo, Italy,” Atmospheric Environment, 41, 7977-7986, 2007.
Dongarrà, G, Manno, E., Varrica, D., Lombardo, M., and Vultaggio, M., “Study on ambient concentrations of PM10, PM10-2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates,” Atmospheric Environment, 44, 5244-5257, 2010.
Fang, G.C., Lee, S.C., Lee, W.J., Cheng, Y., and Lin, I.C., “Characteristics of carbonaceous aerosol at Taichung Harbor, Taiwan during summer and autumn period of 2005,” Environmental Monitoring &; Assessment, 131, 501-508, 2007.
Favez, O., Cachier, H., Sciare, J., Alfaro S.C., El-Araby, T.M., Harhash, M.A., and Abdelwahab, M.M., “Seasonality of major aerosol speciesand their transformations in Cairo megacity,” Atmospheric Environment, 42, 1503-1516, 2008.
Feeley, J.A. and Liljestrand, H.M., “Source contributions to acid precipitation in Texas,” Atmospheric Environment, 31, 295-300, 1983.
Fitzgerald, J.W., “Marine aerosols: A review,” Atmospheric Environment, 25A, 533-545, 1991.
Gao, X., Yang, L., Cheng, S., Gao, R., Zhou, Y., and Xue, L., “Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: temporal variations and source apportionments.” Atmospheric Environment, 45, 6048-6056, 2011.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., “Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles,” Environmental Science and Technology 20, 580-589, 1986.
He, Z., Kim, Y.J., Ogunjobi, K.O., and Hong, C.S., “Characteristics of PM2.5 species and long-range transport of air masses at Taean background station, South Korea,” Atmospheric Environment, 37, 219-230, 2003.
Hinds, W.C., “Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles,” John Willey &; Sons: New York, 1999.
Hopke, P.K., Casuccio, G.S., “Scanning Electron Microscopy”, Hopke, P.K., editor, “Receptor Modeling for Air Quality Management,” Elsevier Science Publishing Company Inc., New York, 149-212, 1991.
Huang, L.K., Yuan, C.S., Wang, G.Z., and Wang, K., “Chemical characteristics and source apportionment of PM10 during a brown haze episode in Harbin, China,” Particuology, 9(1), 32-38, 2011.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel M., Monn,C., and Vonmont, H. “Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland,” Atmospheric Environment, 39, 637-651, 2005.
Tao, J., Zhang, L., Ho, K., Zhang, R., Lin, Z., Zhang, Z and Wang, G., “Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou - the largest megacity in South China, ” Atmospheric Research, 48-58, 2014
Kaneyasu, N., Ohta, S., and Murao, N., “Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan,” Atmospheric Environment, 29, 1559-1568, 1995.
Kerminen, V.M., Teinilä, K., Hillamo, R., and Pakkanen, T., “Substitution of chloride in sea-salt particles by inorganic and organic anions,” Journal of Aerosol Science, 29, 929-942, 1998.
Kong, S.F., Han, B., Bai, Z.P., Chen, L., Shi, J.W., and Xu, Z., “Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China,” Science of the Total Environment, 408, 4681-4694, 2010.
Kim, B, G. and Park, S, U., “Transport and evolution of a winter-time Yellow sand observed in Korea.” Atmospheric Environment, 35, 3191-3201, 2001.
Kulmala, M., Keronen, P., Laaksonen, A., Vesala, T. and Korhonen, P. “The effect of HCl on cloud droplet formation,” Journal of Aerosol Science, 26, 413-414, 1995.
Kulshrestha, A., Satsangi, P.G., Masih, J., and Taneja, A., “Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India,” Science of the Total Environment, 407, 6196-6204, 2009.
Lee, C.G., Yuan, C.S., Chang, J.C., and Yuan, C., “Effects of aerosol species on atmospheric visibility in Kaohsiung City, Taiwan,” Journal of the Air &; Waste Management Association, 55, 1031-1041, 2005.
Lin, J.J., “Characterization of water-soluble ion species in urban particles,” Environment International, 28, 55-61, 2002.
Man, C.K. and Shih, M.Y., “Identification of sources of PM10 aerosols in Hong Kong by wind trajectory analysis,” Journal of Aerosol Science, 32, 1213-1223, 2001.
Mangelson, N.F., Lewis, L., Joseph, J.M., Cui, W., Machir, J., Williams, N.W., Eatough, D.J., Rees, L.B., Wilkerson, T., and Jensen, D.T., “The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley,” Journal of Air &; Waste Management Association, 47, 167-175,1997.
Manahan, S.E., “Environmental Chemistry,” 5th Edition, Lewis Publishers, Inc., Chelsea, 1991.
Marcazzan, G.M., Vaccaro, S., Valli, G., and Vecchi, R., “Characterization of PM10 and PM2.5 particulate matter in the ambient air of Milan, Italy,” Atmospheric Environment, 35, 4639-4650, 2001.
Masiol, M., Squizzato, S., Ceccato, D., Rampazzo, G., and Pavoni, B., “Determining the influence of different atmospheric circulation patterns on PM10 chemical composition in a source apportionment study,” Atmospheric Environment, 63, 117-124, 2012.
Mori, I., Nishikawa, M., Tanimura, T., and Quan, H., “Change in size distribution and chemical compostition of Kosa (Asian Dust) aerosol during long-range transporet,” Atmospheric Environment, 37, 4253-4263, 2003.
Mugica, V., Ortiz, E., Molina, L., Vizcaya-Ruiz, A.D., Nebot, A., Quintana, R., Aguilar, J., and Alcantara, E., “PM composition and source reconciliation in Mexico City,” Atmospheric Environment, 43, 5068-5074, 2009.
Na, K., Sawant, A.A., Song, C., and Cocker, III, D.R., “Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California,” Atmospheric Environment, 38, 1345-1355, 2004.
Novakov, T. “Soot in the atmosphere,” Wolff, G.T., Klimisch, R.L., (Eds.), “Particulate carbon: atmospheric life cycle,” Plenum, New York, 19-41, 1982.
Pakkanen, T.A., “Study of formation of coarse particle nitrate aerosol,” Atmospheric Environment, 30, 2475-2482, 1996.
Park, S.S., Kim, Y.J., and Fung, K., “Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, South Korea,” Atmospheric Environment, 35, 657-665, 2001.
Wang, Z.S., Wu, T., Shi, G.L., Tian, Y.Z., Feng, Y.Z. and Zhang, W.J., “Potential Source Analysis for PM10 and PM2.5 in Autumn in a Northern City in China,” Aerosol and Air Quality Research, 12, 39-48, 2012
Puxbaum, H. and Wopenka, B., “Chemical composition of nucleation and accumulation mode particles collected in Vienna, Austria,” Atmospheric Environment, 18, 573-580, 1984.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., and Simoneit, B.R.T., “Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation,” Atmospheric Environment, 27A, 1309-1330, 1993.
Schwartz, J., “Particulate air pollution and chronnic respiratory disease,” Environmental Research, 62, 7-13, 1994.
Seaton, A., MacNee, W., Donaldson, K., and Godden, D., “Particulate air pollution and acute health effects,” Lancet, 345, 176-178, 1995.
Seinfeld, J.H. and Pandis, S.N., “Atmospheric Chemistry and Physics: from Air Pollution to Climate Change,” Wiley-Interscience, New York, 2006.
Srimuruganandam, B. and Nagendra Shiva, S.M., “Source characterization of PM10 and PM2.5 mass using a chemical mass balance model at urban roadside,” Science of the Total Environment, 433, 8-19, 2012.
Solomon, P.A. and Moyers, J.L., “Use of a high volume dichotomous virtual impactor to estimate light extinction due to carbon and related species in the Phoenix haze,” Science of the Total Environment, 36, 169-175, 1984.
Pipalatkar, P., Khaparde, V.V., Gajghate1, D.G., and Bawase, M.A., “Source Apportionment of PM2.5 Using a CMB Model for a Centrally LocatedIndian City,” Aerosol and Air Quality Research, 14, 1089-1099, 2014.
Pillai, S.P., Babu, S.S., and Moorthy, K.K., “A study of PM, PM10 and PM2.5 concentration at a tropical coastal station,” Atmospheric Research, 61, pp146-167, 2002
Querol, X., Alastuey, A., Viana, M.M., Rodriguez, S., Artinano, B., Salvador, P., Garcia do Santos, S., Fernandez Patier, R., Ruiz, C.R., de la Rosa, J., Sanchezde-la-Campa, A., Menendez, M., and Gil, J.I., “Speciation and origin of PM10 and PM2.5 in Spain,” Aerosol Science, 35, 1151-1172, 2004.
Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., and Samara, C., “Chemical composition and mass closure of ambient PM10 at urban sites,” Atmospheric Environment, 44, 2231-2239, 2010.
Tsai, H.H., Yuan, C.S., Hung, C.H., and Lin, Y.C., “Comparing physicochemical properties of ambient particulate matter of hot spots in a highly polluted air quality zone,” Aerosol and Air Quality Research, 10, 331-344, 2010.
Tsai, Y.I. and Chen, C.L., “Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan,” Atmospheric Environment, 40, 4751-4763, 2006.
Turpin, B.J., Huntzicker, J.J., Larson, S.M., and Cass, G.R., “Los Angeles summer midday particulate organic carbon: primary and secondary aerosol,” Environmental Science &; Technology, 25, 1788-1793, 1991.
Turpin, B.J. and Huntzicker, J.J., “Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQR,” Atmospheric Environment, 29, 3527-3544, 1995.
Turias, I.J., González, F.J., Martín, M.L., and Galindo, P.L., “A competitive neural network approach form meteorological situation clustering,” Atmospheric Environment, 40, 532-541, 2006.
Wolf, G.T., Groblicki,P.S., Cadle, S.H., and Countess, R., “Particulate Carbon at Various Location in the United States,” In Pariculate Carbon Atmospheric Life Cycle New York, NY : Plenum, 297-315, 1982.
Wall, S.M., John, W., and Ondo, J.L., “Measurement of aerosol size distributions for nitrate and major ionic species,” Atmospheric Environment, 22, 1649-1656, 1988.
Wang, X., Bi, X., Sheng, G., and Fu, J., “Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China,” Environmental Monitoring and Assessment, 119, 425-439, 2006.
Watson, J.G., “Chemical element balance receptor model methodology for assessing the source of fine and total suspended partical matter in Portland, Oregon,” PhD. Thesis of Oregon Graduate Center, 1979.
Watson, J.G., “The science of fine particu Harrison and Pio late matter,” Workshop on Sampling, Regulation, and Light Scattering Effects of PM2.5, 1-14, 1998.
Wedepohl, K.H., “The composition of the continental-crust,” Geochimica etCosmochimica Acta, 59, 1217-1232, 1995.
Whitby, K.T. and Sverdrup, G.M. “California aerosols: their physical and chemical characteristics,” Environmental Science &; Technology, 9, 477-517, 1980.
Wu, L., Feng, Y., Wu, J., Zhu, T., Bi, X., Han, B., Yang, W., and Yang, Z., “Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China,” Journal of Environmental Sciences, 21, 1353-1362, 2009.
Wu, Y., Hao, J., Fu, J., Wang, Z., and Tang, U., “Chemical characteristics of airborne particulate matter near major roads and at background locations in Macao, China,” Science of the Total Environment, 317, 159-172, 2003.
Yttri, K.E., Aas, W., Bjerke, A., Cape, J.N., Cavalli, F., Ceburnis, D., Dye, C., Emblico, L., Facchini, M.C., Forster, C., Hanssen, J.E., Hansson, H.C., Jennings, S.G., Maenhaut, W., Putaud, J.P., and Tørseth, K., “Elemental and organic carbon in PM10: a one year measurement campaign within the European Monitoring and Evaluation Programme EMEP” Atmospheric Chemistry and Physics, 7, 5711-5725, 2007
Zhang, Q., Jimenez, J.L., Canagaratna, M.R., Allan, J.D., Coe, H., Ulbrich, I., Alfarra, M.R., Takami, A., Middlebrook, A.M., Sun, Y.L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P.F., Salcedo, D., Onasch, T., Jayne, J.T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin , R.J., Rautiainen, J., Sun, J.Y., Zhang, Y.M., and Worsnop, D.R. “Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes,” Geophysical Research Letters, 34, L13801, 2007.
Zhang, H., “An assessment of heavy metals contributed by industry in urban atmosphere from Nanjing, China,” Environmental Monitoring Assessment, 154, 451-458, 2009.
Zhang, K., Wang, Y., Wen, T., Meslmani, Y., and Murray, F., “Properties of nitrate, sulfate and ammonium in typical polluted atmospheric aerosols (PM10) in Beijing,”` Atmospheric Research, 84, 66-77, 2007.
Zhang, X. and McMurry, P.H., “Theoretical analysis of evaporative losses from impactor and filter deposits,” Atmospheric Environment, 21, 1779-1789, 1987.
Zhao, J.P., Zhang, F.W., Xu,Y., and Chen, J.S., “Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen,” Atmospheric Research, 99, 546-562, 2011.
Zhung H., Chen, C.K., Fang, M., and Wexler, A.S., “Formation of nitrate and non-sea-salt sulfate on coarse particles,” Atmospheric Environment, 33, 4223-4233, 1999.
Zhu, L., Chen, Y., Guo, L., and Wang, F., “Estimate of dry deposition fluxes of nutrients over the East China Sea: The implication of aerosol ammonium to non-sea-salt sulfate ratio to nutrient deposition of coastal oceans,” Atmospheric Environment, 69, 131-138, 2013.
黃宗正、李正綱、曾錦富,“台中發電廠南方空氣中懸浮微粒特性研究”,第九屆空氣污染控制技術研討會論文集,1992。
鄭淳志,“北桃地區懸浮微粒特性分析”,國立台灣大學環境工程研究所碩士論文,1992。
袁中新、袁景嵩、張瑞正、袁菁、張章堂,“台灣南部地區PM2.5及PM10之時空分佈趨勢探討”,第十五屆空氣汙染控制技術研討會論文集,1998。
楊靖民,“營建工地懸浮微粒重金屬元素之特徵”,國立成功大學環境工程學系碩士論文,1998。
賴順安,“鋼鐵廠煙道排放多環芳香烴化合物及金屬元素之特徵”,國立成功大學環境工程學系碩士論文,1999。
鄭曼婷,“台中沿海及都會區氣膠特性及來源分析”,國科會/環保署科技合作研究計劃期末報告,1999。
徐玉眉,“海鹽氣膠氯損失之研究”,國立台灣大學環境工程研究所碩士論文,2000。
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
王証權,“亞洲氣膠特性實驗-台灣北海岸春季氣膠化學特性”,國立中央大學環境工程研究所碩士論文,2001。
蔡士鳴,“大氣中懸浮微粒含碳成分之分佈與來源”,國立成功大學環境工程學系碩士論文,2002。
蔡瀛逸,“懸浮微粒之成份來源解析及管制策略探討”,高雄縣環境保護局研究計畫,2003。
邱嘉斌,“台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究”,國立中興大學環境工程學系碩士論文,2005。
黃元勳,“屏東郊區大氣微粒化學組成特性探討”,國立屏東科技大學環境工程與科學研究所碩士論文,2006。
袁中新、蔡協宏、林勳佑、黃明合、林志逢,“高污染空品區室外空氣污染熱區解析與暴露特性分析”,行政院國家科學委員會研究計劃報告,2006。
劉乙琦、蔡協宏、覃偉民、袁中新,“2002~2005年台灣地區沙塵暴長程傳輸路徑及沙塵物化特徵比較分析”,第二十五空氣污染控制技術研討會論文集,2007。
底宗鴻,“高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討”,國立中山大學環境工程研究所碩士論文,2008。
劉育甫、蔡協宏、袁中新、洪崇軒、林啟燦、錢立行,“海島地區懸浮微粒物化特性分析-以琉球嶼為例”,第六屆海峽兩岸氣膠技術研討會論文,2009。
鄭曼婷,“台中及南海地區大氣懸浮微粒的化學組成及其污染源貢獻量解析”,中華民國環境工程學會空氣污染控制技術研討會,2010。
李宗璋,“金廈地區懸浮微粒物化特性分析及污染源解析探討”,國立中山大學環境工程研究所碩士論文,2009。
蔡協宏,“南台灣陸域及鄰近海域受海陸風及東北季風影響之空氣污染物傳輸及擴散研究”,國立中山大學環境工程研究所博士論文,2010。
蕭雅文,“台中地區大氣懸浮微粒的金屬元素特性及其可能來源分析”,國立中興大學環境工程研究所碩士論文,2010。
林聖達,“台西地區大氣懸浮微粒化學組成分析及特性之研究”,環球科技大學環境資源管理研究所碩士論文,2011。
吳仲翼,“廈門灣大氣懸浮微粒濃度日夜變化趨勢分析及污染源指紋特徵探討”,國立中山大學環境工程研究所碩士論文,2011。
林育群,“以主成分分析探討大氣懸浮微粒中水溶性有機氮之研究”,國立臺灣海洋大學海洋環境資訊研究所碩士論文,2012。
温樵誼,“以逐時監測資料與最小有機碳/元素碳比值法推估二次有機碳含量之研究”,國立高雄第一科技大學環境與安全衛生工程研究所碩士論文,2012。
丁育頡,“台中都會區大氣懸浮微粒與氣象因子對盛行能見度之影響”,國立中興大學環境工程研究所碩士論文,2012。
謝政廷,“雲林地區河川揚塵及沙塵暴事件懸浮微粒之化學組成特性”,環球科技大學環境資源管理研究所碩士論文,2013。
廖建欽,“閩江口海島及陸域大氣懸浮微粒濃度季節變化趨勢分析及污染源貢獻量解析探討” 國立中山大學環境工程研究所碩士論文,2013。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊