跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李維哲
研究生(外文):Wei-Zhe Lee
論文名稱:感知無線電網路中考慮部份通道資訊之多層功率分配
論文名稱(外文):Multi-level Power Allocation for Secondary Users in Cognitive Radio Networks with Partial Channel State Information
指導教授:黃婉甄黃婉甄引用關係
指導教授(外文):Wan-Jen Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:43
中文關鍵詞:梯度搜尋功率分配感知無線電網路失真測量
外文關鍵詞:distortion measuregradient searchpower allocationcognitive radio networks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文討論在隱藏式(Underlay)感知無線電網路(Cognitive radio network)架構中,針對次用戶(Secondary user, SU)的傳送功率設計,有別於傳統的單一或是兩種傳送功率的選擇,我們利用多層功率分配的策略,使得次用戶在因應不同的偵測結果,能有一個更彈性的傳送機制。我們的系統架構分為兩個階段:在第一個階段為偵測週期,次用戶偵測主用戶(Primary user, PU)頻帶的訊號能量大小,並將此能量從小至大量化成多個區間,且各個區間會對應至不同的傳送功率大小;在第二個階段為傳送週期,次用戶根據第一階段偵測的結果,以分配到的傳送功率大小,在第二階段做傳輸。本篇論文的目的為次用戶必須滿足主用戶的服務品質(Quality of service, QoS)要求下,針對能量量化區間以及傳送功率分配做最佳化,透過梯度搜尋(Gradient search)、失真測量(distortion measure)以及迭代演算法,找出最佳的量化區間以及多層功率分配,以達到提升次用戶的整體傳輸效能。在通道的假設中,我們考慮了實際通道狀況對我們設計的影響,在次用戶間的通道狀況假設為完美已知;另外,由於次用戶要知道主用戶間的通道資訊是有困難的,因此在次用戶與主用戶間的通道狀況,我們假設次用戶知道通道的統計特性。模擬結果顯示,最佳的量化區間會收斂至兩個區間,也就是說,若在第一階段獲取準確的主用戶傳輸狀態資訊,那麼我們可以直接將多層功率分配策略簡化為雙層功率分配策略,如此一來可以較低的複雜度得到最佳的功率傳輸策略。
This thesis investigates power allocation strategy in underlay cognitive radio networks. Different from the conventional strategies that assign the secondary transmitter with single or binary power levels, we adopt multi-level power allocation strategy at secondary transmitter according to the sensing results of the primary spectrum. The secondary transmitter takes two slots to accomplish the transmission: sensing and data transmission slot. The secondary transmitter first evaluates energy of signal received over the primary spectrum during sensing slot, and quantizes the sensing results. During the data transmission slot, the secondary transmitter will send message with a power level which depends on the quantization of sensing results. We assume that secondary transmitter has perfect CSI of those links connected to the secondary transmitter, and statistical CSI of other links. The proposed transmission strategy aims to boost secondary receiver’s SNR (signal-to-noise radio) subject to satisfying the outage constraint of the primary user. We adopt gradient search and distortion measure to find the local optimum of power levels and quantization regions recursively. Simulation results show that the optimal quantization region will eventually converge to the result of two intervals. It implies that if we can obtain reliable sensing result during the first slot, the multi-level power allocation strategy can be simplified to a binary power allocation results with comparable performance of the secondary’s transmission.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vi
第一章 簡介 1
第二章 相關背景 6
2.1 感知無線電 6
2.2 前人相關研究 9
2.2.1 機會式頻譜擷取 9
2.2.2 根據偵測結果之頻譜共享 10
2.2.3 多層功率分配 11
第三章 系統模型 13
第四章 多層功率分配設計 18
4.1次用戶對主用戶QoS的保證 19
4.2 多層功率分配 21
4.3 能量量化區間 24
4.4 迭代演算法 26
第五章 模擬結果與討論 28
第六章 結論 33
參考文獻 34
[1]National Telecommunications and Information Administration (NTIA), “FCC Frequency Allocation Chart,” 2003. [Online]. Available: http://www.ntia.doc.gov /osmhome/allochrt.pdf.
[2]I. Akyildiz, W. Lee, M. Vuran and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey,” Elsevier Computer Networks, vol. 50, pp.2127–2159, 2006
[3]I. J. Mitola and J. G. Q. Maguire, “Cognitive radio: making software radios more personal,” IEEE Personal Commun. Mag., vol. 6, no. 4, pp. 13-18, 1999.
[4]S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb. 2005.
[5]M. Song, C. Xin, Y. Zhao, and X. Cheng, “Dynamic spectrum access: from cognitive radio to network radio,” IEEE Wireless Commun., vol. 19, no. 1, pp. 23–29, Feb. 2012.
[6]Q. Zhao and A. Swami, “A decision-theoretic framework for opportunistic spectrum access,” IEEE Wireless Commun. Mag., vol. 14, no. 4, pp. 14–20, Aug. 2007.
[7]S. Stotas and A. Nallanathan, “On the throughput and spectrum sensing enhancement of opportunistic spectrum access cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 11, no. 1, pp. 97-107, Jan. 2012.
[8]A. Ghasemi and E. S. Sousa, “Fundamental limits of spectrum-sharing in fading environments,” IEEE Trans. Wireless Commun., vol. 6, no. 2,pp. 649–658, Feb. 2007.


[9]R. Etkin, A. Parekh, and D. Tse, “Spectrum sharing for unlicensed bands,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 517–528, Apr. 2007.
[10]X. Kang, Y. C. Liang, H. K. Garg, L. Zhang, “Sensing-based spectrum sharing in cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 4649-4654, Oct. 2009.
[11]Z. Chen, F. Gao, X. Zhang, James C. F. Li and M. Lei, &;quot;Multiple-Level Power Allocation Strategy for Secondary Users in Cognitive Radio Networks,&;quot; arXiv preprint arXiv:1307.1508 (2013).
[12]V. Lau, Y. Liu, T. -A. Chen, “On the design of MIMO blockfading hannels with feedback-link capacity constraint,” IEEE Trans. Commun., vol. 52, no. 1, pp. 62-70, Jan. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top