|
[1] S. Abraham and K. Padmanabhan, The twisted cube topology for multiproces- sors: a study in network asymmetry, J. Parallel Distrib. Comput., 13 (1991) 104–110. [2] F. Bao, Y. Funyu, Y. Hamada and Y. Igarashi, Reliable broadcasting and secure distributing in channel networks, in: Proc. of 3rd International Symposium on Parallel Architectures, Algorithms and Networks, ISPAN’97, Taipei, December 1997, 472–478. [3] ] C.-P. Chang, J.-N. Wang, L.-H. Hsu, Topological properties of twisted cubes, Inform. Sci., 113 (1999) 147–167. [4] X.-B. Chen, Parallel construction of optimal independent spanning trees on Cartesian product of complete graphs, Inform. Process. Lett., 111 (2011) 235– 238. [5] B. Cheng, J. Fan, X. Jia, and J. Jia, Parallel construction of independent spanning trees and an application in diagnosis on Möbius cubes, J. Supercomput., 65 (2013) 1279–1301. [6] B. Cheng, J. Fan, X. Jia, and J. Wang, Dimension-adjacent trees and parallel construction of independent spanning trees on crossed cubes, J. Parallel Distrib. Comput., 73 (2013) 641–652. [7] B. Cheng, J. Fan, X. Jia, and S. Zhang, Independent spanning trees in crossed cubes, Inform. Sci., 233 (2013) 276–289. [8] B. Cheng, J. Fan, X. Jia, S. Zhang, and B. Chen, Constructive algorithm of independent spanning trees on M ̈obius cubes, Comput. J., 56 (2013) 1347–1362. [9] J. Cheriyan and S.N. Maheshwari, Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs, Journal of Algorithms, 9 (1988) 507–537. [10] P. Cull and S.M. Larson, The Mo ̈bius cubes, IEEE Trans. Comput., 44 (1995) 647–659. [11] S. Curran, O. Lee and X. Yu, Finding four independent trees, SIAM Journal on Computing, 35 (2006) 1023–1058. [12] J. Fan, X. Jia, X. Lin, Optimal embeddings of paths with various lengths in twisted cubes, IEEE Trans. Parallel Distrib. Syst., 18 (2007) 511–521. [13] J. Fan, X. Jia, X. Lin, Embedding of cycles in twisted cubes with edge-pancyclic, Algorithmica, 51(2008) 264–282. [14] J. Fan, X. Lin, Y. Pan, X. Jia, Optimal fault-tolerant embedding of paths in twisted cubes, IEEE Trans. Parallel Distrib. Syst., 67 (2007) 205–214. [15] J.-S. Fu, Fault-free Hamiltonian cycles in twisted cubes with conditional link faults, Theoret. Comput. Sci., 407 (2008) 318–329. [16] P.A.J. Hilbers, M.R.J. Koopman, J.L.A. van de Snepscheut, The twisted cube, in: PARLE: Parallel Architectures and Languages Europe, Vol. 1: Parallel Architectures, Lecture Notes in Computer Science, Vol. 258, 1987, pp. 152-159 [17] W.-T. Huang, J.-M. Tan, C.-N. Hung, L.-H. Hsu, Fault-tolerant Hamiltonicity of twisted cubes, J. Parallel Distrib. Comput., 62 (2002) 591–604. [18] A. Huck, Independent trees in graphs, Graphs Combin., 10 (1994) 29–45. [19] A. Huck, Independent trees in planar graphs, Graphs Combin., 15 (1999) 29–77. [20] A. Itai and M. Rodeh, The multi-tree approach to reliability in distributed networks, Inform. Comput., 79 (1988) 43–59. [21] Y. Iwasaki, Y. Kajiwara, K. Obokata, and Y. Igarashi, Independent spanning trees of chordal rings, Inform. Process. Lett., 69 (1999) 155–160. [22] J.-S. Kim, H.-O. Lee, E. Cheng, and L. Lipt ́ak, Optimal independent spanning trees on odd graphs, J. Supercomputing, 56 (2011) 212–225. [23] J.-S. Kim, H.-O. Lee, E. Cheng, and L. Lipta ́k, Independent spanning trees on even networks, Inform. Sci., 181 (2011) 2892–2905. [24] P.D. Kulasinghe and S. Bettayeb, Multiply-twisted hypercube with 5 or more dimensions is not node transitive, Inform. Process. Lett., 53 (1995) 33–36. [25] C.-J. Lai, C.-H. Tsai, Embedding a family of meshes into twisted cubes, Inform.Process. Lett., 108 (2008) 326–330. [26] P.-L. Lai, C.-H. Tsai, Embedding of tori and grids into twisted cubes, Theoret. Comput. Sci., 411 (2010) 3763–3773. [27] Y-J. Liu, J.K. Lan, W.Y. Chou, and C. Chen, Constructing independent spanning trees for locally twisted cubes, Theoret. Comput. Sci., 412 (2011) 2237–2252. [28] K. Miura, S. Nakano, T. Nishizeki, and D. Takahashi, A linear-time algorithm to find four independent spanning trees in four connected planar graphs, Internat. J. Found. Comput. Sci., 10 (1999) 195–210. [29] S. Nagai and S. Nakano, A linear-time algorithm to find independent spanning trees in maximal planar graphs, IEICE Trans. Fund. Electron. Comm. Comput. Sci., E84-A (2001) 1102–1109. [30] K. Obokata, Y. Iwasaki, F. Bao, and Y. Igarashi, Independent spanning trees of product graphs and their construction, IEICE Trans. Fund. Electron. Comm. Comput. Sci., E79-A (1996) 1894–1903. [31] T.M. Pinkston and J. Duato, Interconnection Networks, Retrieved from Massachusetts Institute of Technology, Institute for Learning Technologies Web site: http://web.mit.edu/6.173/www/currentsemester/readings/R07- interconnection-networks-hennessy-patterson.pdf [32] A.A. Rescigno, node-disjoint spanning trees of the star network with applica- tions to fault-tolerance and security, Inform. Sci., 137 (2001) 259–276. [33] Y. Saad and M.H. Schultz, Topological properties of hypercubes, IEEE Trans. Comput., 37 (1988) 867–872. [34] S.-M. Tang, Y.-L. Wang, and Y.-H. Leu, Optimal independent spanning trees on hypercubes, J. Inform. Sci. Eng., 20 (2004) 143–155. [35] S.-M. Tang, J.-S. Yang, Y.-L. Wang, and J.-M. Chang, Independent spanning trees on multidimensional torus networks, IEEE Trans. Comput., 59 (2010) 93–102. [36] Y. Wang, J. Fan, G. Zhou, and X. Jia, Independent spanning trees on twisted cubes, J. Parallel Distrib. Comput., 72 (2012) 58–69. [37] Y. Wang, J. Fan, X. Jia, and H. Huang, An algorithm to construct independent spanning trees on parity cubes, Theoret. Comput. Sci., 465 (2012) 61–72. [38] J. Werapun, S. Intakosum, and V. Boonjing, An efficient parallel construction of optimal independent spanning trees on hypercubes, J. Parallel Distrib. Comput., 72 (2012) 1713–1724. [39] J.-S. Yang, H.-C. Chan, and J.-M. Chang, Broadcasting secure messages via optimal independent spanning trees in folded hypercubes, Discrete Appl. Math., 159 (2011) 1254–1263. [40] J.-S. Yang and J.-M. Chang, Independent spanning trees on folded hyper-stars, Networks, 56 (2010) 272–281. [41] J.-S. Yang and J.-M. Chang, Optimal independent spanning trees on Cartesian product of hybrid graphs, Comput. J., 57 (2014) 93–99. [42] J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-L. Wang, Reducing the height of independent spanning trees in chordal rings, IEEE Trans. Parallel Distrib. Syst., 18 (2007) 644–657. [43] J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-L. Wang, On the independent spanning trees of recursive circulant graphs G(cdm,d) with d > 2, Theoret. Comput. Sci., 410 (2009) 2001–2010. [44] J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-L. Wang, Constructing multiple independent spanning trees on recursive circulant graphs G(2m,2), Int. J. Found. Comput. Sci., 21 (2010) 73–90. [45] J.-S. Yang, S.-M. Tang, J.-M. Chang, and Y.-L. Wang, Parallel construction of optimal independent spanning trees on hypercubes, Parallel Comput., 33 (2007) 73–79. [46] M.-C. Yang, Constructing edge-disjoint spanning trees in twisted cubes Inform. Sci., 180 (2010) 4075–4083. [47] M.-C. Yang, T.-K. Li, J.-M. Tan, L.-H. Hsu, On embedding cycles into faulty twisted cubes, Inform. Sci., 67 (2007) 205–214. [48] M.-C. Yang, Edge-fault-tolerant node-pancyclicity of twisted cubes, Inform. Process. Lett., 109 (2009) 1206–1210. [49] X. Yang, Q. Dong, E. Yang, J. Cao, Hamiltonian properties of twisted hypercube-like networks with more faulty elements, Theoret. Comput. Sci., 412 (2011) 2409–2417. [50] A. Zehavi and A. Itai, Three tree-paths, J. Graph Theory, 13 (1989) 175–188.
|