跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 16:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江德一
研究生(外文):Chiang, De-Yi
論文名稱:以電化學雙電池/電觸媒蜂巢促進分解二氧化硫及氮氧化物至實用之研究
論文名稱(外文):A study of practical applications of promoted decomposition of sulfur dioxide and nitric oxides via electrochemical double cell/electro-catalytic honeycomb
指導教授:黃大仁黃大仁引用關係
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:115
中文關鍵詞:脫硝反應脫硫反應電化學電池觸媒轉化器富氧燃燒廢氣
外文關鍵詞:deNOxdeSO2electrochemical cellcatalyst converterlean-burn exhaust
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1275
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:3
基於空氣汙染所造成之危害以及日漸短少之石化燃料問題,應將引擎燃燒效率提升:例如富氧燃燒引擎。但由於引擎燃燒效率提升,雖然減少懸浮微粒排放,但廢氣中所含氮氧化物濃度將大幅提升,此現象稱為權衡效應(trade-off)。受限於現有氮氧化物處理技術尚無法處理高濃度氮氧化物,造成引擎燃燒效率必須配合現有氮氧化物處理技術以及權衡效應來進行調整。目前已出現電催化處理氮氧化物之技術,且支持其相關理論之實驗皆已取得很大的成果。因此本研究之主要目的,在於將電觸媒之幾何結構改變為現有處理技術所泛用之蜂巢型結構,並將此電觸媒蜂巢以50cc機車排放廢氣進行催化效果測試。
此外,由於空氣汙染物並非僅限於氮氧化物,當中所含有之二氧化硫之危害性亦不下於氮氧化物。然而現有處理技術設備體積龐大,僅適用於工廠或發電廠等具有較大土地面積的廠房使用,對於交通運輸工具或小型的燃燒器而言,僅能使用價格較高昂的低硫燃料油以減少排放;且在其反應過程需要加入其他添加劑,額外增加了處理成本。因此本研究團隊藉由二氧化硫分解之相關原理,嘗試以電催化電池進行二氧化硫直接分解,希望藉由此技術降低現有方法之操作成本,結果發現其反應效果及趨勢與氮氧化物分解之情況十分相近。
在此兩部份的實驗結果中,均顯示在低濃度下之反應速率可維持穩定,造成其轉化率可隨進料濃度的降低而增加,顯示以電觸媒促進氮氧化物或二氧化硫分解之處理技術,具有將此兩汙染物質達到零排放之潛力。

摘要 I
Abstract II
誌謝 IV
目錄 VII
圖目錄 X
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 富氧燃燒引擎 3
第二章 文獻回顧與原理 5
2.1 氮氧化物簡介 5
2.2 氮氧化物處理技術 7
2.2.1 一氧化碳還原法[4]: 7
2.2.2 H2與NH3還原法[6]: 9
2.2.3 選擇性觸媒還原法(Selective Catalytic Reduction,SCR): 11
2.2.4 氮氧化物儲存還原法(NSR) 14
2.3 氮氧化物直接分解 17
2.3.1 金屬氧化物催化分解氮氧化物 19
2.3.2 氮氧化物於電觸媒陰極直接分解 23
2.4 二氧化硫之廢氣處理 31
2.4.1 二氧化硫處理技術 31
2.4.2 二氧化硫直接分解 35
2.5 電解質層煅燒 37
第三章 研究構想 40
第四章 實驗方法與步驟 43
4.1 實驗藥品 43
4.2 分析儀器 44
4.3 粉體合成 45
4.3.1 La0.6Sr0.4CoO3-δ (LSC) 45
4.3.2 複合陰極材料製備 45
4.4 陽極支撐型蜂巢結構: 47
4.5 電觸媒蜂巢電極塗佈煅燒 50
4.6 陽極還原及蜂巢電觸媒封裝 53
4.7 廢氣取樣系統 56
4.8 電化學雙電池(Electrochemical double cell,EDC)製作 58
4.9 EDC脫硫及脫硝反應實驗系統 62
第五章 結果與討論 67
5.1 ECH測試 69
5.2 氧濃度實驗結果 74
5.3 燃燒室廢氣測試 81
5.3.1 高低濃度流速影響 82
5.3.2 氮氧化物濃度影響 84
5.3.3 ECH與觸媒比較 87
5.4 EDC 脫硝及脫硫反應 89
5.4.1 鑭鍶鈷(LSC)及鑭鍶錳(LSM)為EDC陰極材料行脫硝反應 90
5.4.2鑭鍶鈷及鑭鍶錳為EDC陰極材料行脫硫反應 96
5.4.3 脫硫反應中固體硫之生成 106
第六章 結論 107
6.1 電催化蜂巢處理真實廢氣中氮氧化物 107
6.2 電化學雙電池行二氧化硫及氮氧化物直接分解 109
參考文獻 111


1. Atkinson, D.S.A., Redo Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review. Fuel Cells, 2007. 7: p. 246-258.
2. J. L. Young, V. Vedahara, S. Kung, S. Xia and V. I. Birss, Understanding Nickel Oxidation and Reduction Processes in SOFC Systems. ECS Transactions, 2007. 7(1): p. 1511-1519.
3. Kašpar, J., P. Fornasiero, and N. Hickey, Automotive catalytic converters: current status and some perspectives. Catalysis Today, 2003. 77(4): p. 419-449.
4. de Vooys, A.C.A., G.L. Beltramo, B. van Riet, J.A.R. van Veen, M.T.M. Koper, Mechanisms of electrochemical reduction and oxidation of nitric oxide. Electrochimica Acta, 2004. 49(8): p. 1307-1314.
5. Roy, S. and A. Baiker, NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance. Chemical Reviews, 2009. 109: p. 4054-4091.
6. de Vooys, A.C.A., M. T. M. Koper, R. A. van Santen, J. A. R. van Veen, Mechanistic Study on the Electrocatalytic Reduction of Nitric Oxide on Transition-Metal Electrodes. Journal of Catalysis, 2001. 202(2): p. 387-394.
7. Eric D. Wachsman , Palitha Jayaweera , Gopala Krishnan , Angel Sanjurjo, Electrocatalytic reduction of NOx on La1−xAxB1−yB′yO3−δ: evidence of electrically enhanced activity. Solid State Ionics, 2000. 136-137(0): p. 775-782.
8. C. N. Costa, P. G. Savva, C. Andronikou, P. S. Lambrou, K.Polychronopoulou, V. C. Belessi, V. N. Stathopoulos, P. J. Pomonis, A. M. Efstathiou, An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective Pt/La0.7Sr0.2Ce0.1FeO3 Catalyst at Low Temperatures. Journal of Catalysis, 2002. 209(2): p. 456-471.
9. Solymosi, F., P. Tolmacsov, and T.S. Zakar, Dry reforming of propane over supported Re catalyst. Journal of Catalysis, 2005. 233(1): p. 51-59.
10. Granger, P. and V.I. Parvulescu, Catalytic NO(x) abatement systems for mobile sources: from three-way to lean burn after-treatment technologies. Chem Rev, 2011. 111(5): p. 3155-207.
11. M. Iwamoto, S. Yokoo, K. Sakai, S. Kagawa, Catalytic decomposition of nitric oxide over copper(II)-exchanged, Y-type zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1981. 77(7): p. 1629-1638.

12. William S. Epling, Larry E. Campbell, Aleksey Yezerets, Neal W. Currier, James E. Parks II, Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts. Catalysis Reviews, 2004. 46(2): p. 163-245.
13. Xu, L., G. Graham, and R. McCabe, A NOx trap for low-temperature lean-burn-engine applications. Catalysis Letters, 2007. 115(3-4): p. 108-113.
14. Cheng Fang, Dengsong Zhang, Sixiang Cai, Lei Zhang, Lei Huang, Hongrui Li, Phornphimon Maitarad, Liyi Shi, Ruihua Gao, Jianping Zhang, Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route. Nanoscale, 2013. 5(19): p. 9199-207.
15. Toops, T.J., A.B. Walters, and M.A. Vannice, The effect of CO2, H2O and SO2 on the kinetics of NO reduction by CH4 over La2O3. Applied Catalysis B: Environmental, 2002. 38(3): p. 183-199.
16. Smeets, P.J., Sels, B.F., Teeffelen, R.M. van, Leeman, H., Hensen, E.J.M., Schoonheydt, R.A., et al., The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO and H2O on recombination of oxygen. Journal of Catalysis, 2008. 256(2): p. 183-191.
17. M. Shimokawabe, H. Ono, S. Sasaki, N. Takezawa, Inhibition effect of H2O on decomposition of nitrogen monoxide over ion-exchanged copper zeolites. Applied Surface Science, 1997. 121-122: p. 400-403.
18. Hinshelwood, T.E.G.a.C.N., The Catalytic Decomposition of Nitric Oxide at the Surface of Platinum. J. Chem. Soc., 1926. 126: p. 1709-1713.
19. Imanaka, N. and T. Masui, Advances in direct NOx decomposition catalysts. Applied Catalysis A: General, 2012. 431–432(0): p. 1-8.
20. Winter, E.R.S., The Catalytic Decomposition of Nitric Oxide by Metallic Oxides. Journal of Catalysis, 1971. 22: p. 158-170.
21. Teraoka, Y., T. Harada, and S. Kagawa, Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides. Journal of the Chemical Society, Faraday Transactions, 1998. 94(13): p. 1887-1891.
22. Huang Ta-Jen, Wu Chung-Ying, Chiang De-Yi, Yu Chia-Chi, Ambient temperature NOx emission control for lean-burn engines by electro-catalytic tubes. Applied Catalysis A: General, 2012. 445-446: p. 153-158.
23. Huang, Ta-Jen. and Chung-Ying Wu, Kinetic behaviors of high concentration NOx removal from simulated lean-burn engine exhaust via electrochemical-catalytic cells. Chemical Engineering Journal, 2011. 178: p. 225-231.
24. Huang Ta-Jen, Wu Chung-Ying, Chiang De-Yi, Yu Chia-Chi, NOx emission control for automotive lean-burn engines by electro-catalytic honeycomb cells. Chemical Engineering Journal, 2012. 203: p. 193-200.
25. Huang, T.-J., C.-Y. Wu, and D.-Y. Chiang, Effect of H2O and CO2 on NOx emission control for lean-burn engines by electrochemical-catalytic cells. Journal of Industrial and Engineering Chemistry, 2013. 19(3): p. 1024-1030.
26. R. Schlögl, E. Wagner, T. Fetzer, J. Wagner, W. Nehb, J. Adlkofer, B. Pachaly, W. Keim, Inorganic Reactions, in Handbook of Heterogeneous Catalysis. 2008, Wiley-VCH Verlag GmbH. p. 1697-1799.
27. Stern, A.C., Fundamentals of air pollution. 1984: Academic Press.
28. ANNE PIÉPLU, ODETTE SAUR, JEAN-CLAUDE LAVALLEY, OLIVER LEGENDRE, CHRISTOPHE NÉDEZ, Claus Catalysis and H2S Selective Oxidation. Catalysis Reviews, 1998. 40(4): p. 409-450.
29. José A. Rodriguez, Josep M. Ricart, Anna Clotet, Francesc Illas, Density functional studies on the adsorption and decomposition of SO2 on Cu(100). The Journal of Chemical Physics, 2001. 115(1): p. 454-465.
30. Srivastava, R.K., W. Jozewicz, and C. Singer, SO2 scrubbing technologies: A review. Environmental Progress, 2001. 20(4): p. 219-228.
31. Jin S. Yoo, Alak A. Bhattacharyya, Cecelia A. Radlowski, John A. Karch, De-SOx catalyst: the role of iron in iron mixed solid solution spinels, MgO.cntdot.MgAl2-xFexO4. Industrial &; Engineering Chemistry Research, 1992. 31(5): p. 1252-1258.
32. Arturo Rodas-Grapaín, Jesús Arenas-Alatorre, Antonio Gómez-Cortés, Gabriela Díaz, Catalytic properties of a CuO–CeO2 sorbent-catalyst for de-SOx reaction. Catalysis Today, 2005. 107–108(0): p. 168-174.
33. J.A. Wang, L.F Chen, R. Limas-Ballesteros, A. Montoya, J.M. Dominguez, Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 catalysts. Journal of Molecular Catalysis A: Chemical, 2003. 194(1–2): p. 181-193.
34. Hibbert, D.B. and R.H. Campbell, Flue gas desulphurisation: Catalytic removal of sulphur dioxide by carbon monoxide on sulphided La1−xSrxCoO3: I. Adsorption of sulphur dioxide, carbon monoxide and their mixtures. Applied Catalysis, 1988. 41(0): p. 273-287.
35. Guang-jian Wang, Yong-ning Qin, Zhi Ma, Xiao-zhou Qi, Tong Ding, Study on the catalytic reduction mechanism of SO2 by CO over doped copper perovskite catalyst in presence of oxygen. Reaction Kinetics and Catalysis Letters, 2006. 89(2): p. 229-236.

36. Steijns, M., Koopman, P., Nieuwenhuijse, B., Mars, P., The mechanism of the catalytic oxidation of hydrogen sulfide: III. An electron spin resonance study of the sulfur catalyzed oxidation of hydrogen sulfide. Journal of Catalysis, 1976. 42(1): p. 96-106.
37. Zheming Shen, Xiaodong Zhu, Shiru Le, Wang Sun, Kening Sun, Co-sintering anode and Y2O3 stabilized ZrO2 thin electrolyte film for solid oxide fuel cell fabricated by co-tape casting. International Journal of Hydrogen Energy, 2012. 37(13): p. 10337-10345.
38. Satterfield, C.N., Heterogeneous Catalysis in Industrial Practice 2nd edition. 1996: McGraw-Hill.
39. II, J.E.P., Less Costly Catalysts for Controlling Engine Emissions. Science, 2010. 327.
40. Metkar, P.S., M.P. Harold, and V. Balakotaiah, Experimental and kinetic modeling study of NH3-SCR of NOx on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts. Chemical Engineering Science, 2013. 87: p. 51-66.
41. Sung Bong Kang, Hyuk Jae Kwon, In-Sik Nam, Activity Function for Describing Alteration of Three-Way Catalyst Performance over Palladium-Only Three-Way Catalysts by Catalyst Mileage. Industrial &; Engineering Chemistry Research, 2011. 50(9): p. 5499-5509.
42. S. Shimizu, T. Yamaguchi, T. Suzuki, Y. Fujishiro, M. Awano, Fabrication and Properties of Honeycomb-type SOFCs Accumulated with Multi Micro-cells. ECS Transactions, 2007. 7: p. 651-656.
43. T. Yamaguchi, S. Shimizu, T. Suzuki, Y. Fujishiro, M. Awano, Development of Honeycomb-type SOFCs with Accumulated Multi Micro-cells. ECS Transactions, 2007. 7: p. 657-662.
44. T. Yamaguchi, S. Shimizu, T. Suzuki, Y. Fujishiro, M. Awano, Development and Evaluation of a Cathode-Supported SOFC Having a Honeycomb Structure. Electrochemical and Solid-State Letters, 2008. 11(7): p. B117.
45. 許勝翔, 以電化學觸媒電池進行模擬廢氣中氮氧化物分解之陰極鑭鍶鈷氧化物摻雜之研究. 2012: 國立清華大學化工所博士論文.
46. S. Shimizu, T. Yamaguchi, T. Suzuki, Y. Fujishiro, M. Awano, A Slurry Injection Method for the Fabrication of Multiple Microchannel SOFCs. Journal of the American Ceramic Society, 2009. 92(5): p. 1002-1005.
47. 施奇, 以(LaSr)MO3(M=Co, Mn)為電化學雙電池之陰極材料行二氧化硫及氮氧化物分解之研究. 2014: 國立清華大學化工所碩士論文.
48. Ta-Jen Huang, Chung-Ying Wu, Sheng-Hsiang Hsu, Chi-Chang Wu, Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy &; Environmental Science, 2011. 4(10): p. 4061-4067.
49. F. Tietz, I. Arul Raj, M. Zahid, D. Stöver, Electrical conductivity and thermal expansion of La0.8Sr0.2(Mn,Fe,Co)O3-δ perovskites. Solid State Ionics, 2006. 177(19–25): p. 1753-1756.
50. Toshio Sato, Naoyuki Todo, Minoru Kurita, Hiroyuki Hagiwara, Akifumi Ueno, Akio Nishijima, Yoshimichi Kiyozumi, The development of catalysts for simultaneous control of NOx and SOx in flue gases. Chemistry Letters, 1978. 7(10): p. 1073-1076.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊