1. Atkinson, D.S.A., Redo Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review. Fuel Cells, 2007. 7: p. 246-258.
2. J. L. Young, V. Vedahara, S. Kung, S. Xia and V. I. Birss, Understanding Nickel Oxidation and Reduction Processes in SOFC Systems. ECS Transactions, 2007. 7(1): p. 1511-1519.
3. Kašpar, J., P. Fornasiero, and N. Hickey, Automotive catalytic converters: current status and some perspectives. Catalysis Today, 2003. 77(4): p. 419-449.
4. de Vooys, A.C.A., G.L. Beltramo, B. van Riet, J.A.R. van Veen, M.T.M. Koper, Mechanisms of electrochemical reduction and oxidation of nitric oxide. Electrochimica Acta, 2004. 49(8): p. 1307-1314.
5. Roy, S. and A. Baiker, NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance. Chemical Reviews, 2009. 109: p. 4054-4091.
6. de Vooys, A.C.A., M. T. M. Koper, R. A. van Santen, J. A. R. van Veen, Mechanistic Study on the Electrocatalytic Reduction of Nitric Oxide on Transition-Metal Electrodes. Journal of Catalysis, 2001. 202(2): p. 387-394.
7. Eric D. Wachsman , Palitha Jayaweera , Gopala Krishnan , Angel Sanjurjo, Electrocatalytic reduction of NOx on La1−xAxB1−yB′yO3−δ: evidence of electrically enhanced activity. Solid State Ionics, 2000. 136-137(0): p. 775-782.
8. C. N. Costa, P. G. Savva, C. Andronikou, P. S. Lambrou, K.Polychronopoulou, V. C. Belessi, V. N. Stathopoulos, P. J. Pomonis, A. M. Efstathiou, An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective Pt/La0.7Sr0.2Ce0.1FeO3 Catalyst at Low Temperatures. Journal of Catalysis, 2002. 209(2): p. 456-471.
9. Solymosi, F., P. Tolmacsov, and T.S. Zakar, Dry reforming of propane over supported Re catalyst. Journal of Catalysis, 2005. 233(1): p. 51-59.
10. Granger, P. and V.I. Parvulescu, Catalytic NO(x) abatement systems for mobile sources: from three-way to lean burn after-treatment technologies. Chem Rev, 2011. 111(5): p. 3155-207.
11. M. Iwamoto, S. Yokoo, K. Sakai, S. Kagawa, Catalytic decomposition of nitric oxide over copper(II)-exchanged, Y-type zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1981. 77(7): p. 1629-1638.
12. William S. Epling, Larry E. Campbell, Aleksey Yezerets, Neal W. Currier, James E. Parks II, Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts. Catalysis Reviews, 2004. 46(2): p. 163-245.
13. Xu, L., G. Graham, and R. McCabe, A NOx trap for low-temperature lean-burn-engine applications. Catalysis Letters, 2007. 115(3-4): p. 108-113.
14. Cheng Fang, Dengsong Zhang, Sixiang Cai, Lei Zhang, Lei Huang, Hongrui Li, Phornphimon Maitarad, Liyi Shi, Ruihua Gao, Jianping Zhang, Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route. Nanoscale, 2013. 5(19): p. 9199-207.
15. Toops, T.J., A.B. Walters, and M.A. Vannice, The effect of CO2, H2O and SO2 on the kinetics of NO reduction by CH4 over La2O3. Applied Catalysis B: Environmental, 2002. 38(3): p. 183-199.
16. Smeets, P.J., Sels, B.F., Teeffelen, R.M. van, Leeman, H., Hensen, E.J.M., Schoonheydt, R.A., et al., The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO and H2O on recombination of oxygen. Journal of Catalysis, 2008. 256(2): p. 183-191.
17. M. Shimokawabe, H. Ono, S. Sasaki, N. Takezawa, Inhibition effect of H2O on decomposition of nitrogen monoxide over ion-exchanged copper zeolites. Applied Surface Science, 1997. 121-122: p. 400-403.
18. Hinshelwood, T.E.G.a.C.N., The Catalytic Decomposition of Nitric Oxide at the Surface of Platinum. J. Chem. Soc., 1926. 126: p. 1709-1713.
19. Imanaka, N. and T. Masui, Advances in direct NOx decomposition catalysts. Applied Catalysis A: General, 2012. 431–432(0): p. 1-8.
20. Winter, E.R.S., The Catalytic Decomposition of Nitric Oxide by Metallic Oxides. Journal of Catalysis, 1971. 22: p. 158-170.
21. Teraoka, Y., T. Harada, and S. Kagawa, Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides. Journal of the Chemical Society, Faraday Transactions, 1998. 94(13): p. 1887-1891.
22. Huang Ta-Jen, Wu Chung-Ying, Chiang De-Yi, Yu Chia-Chi, Ambient temperature NOx emission control for lean-burn engines by electro-catalytic tubes. Applied Catalysis A: General, 2012. 445-446: p. 153-158.
23. Huang, Ta-Jen. and Chung-Ying Wu, Kinetic behaviors of high concentration NOx removal from simulated lean-burn engine exhaust via electrochemical-catalytic cells. Chemical Engineering Journal, 2011. 178: p. 225-231.
24. Huang Ta-Jen, Wu Chung-Ying, Chiang De-Yi, Yu Chia-Chi, NOx emission control for automotive lean-burn engines by electro-catalytic honeycomb cells. Chemical Engineering Journal, 2012. 203: p. 193-200.
25. Huang, T.-J., C.-Y. Wu, and D.-Y. Chiang, Effect of H2O and CO2 on NOx emission control for lean-burn engines by electrochemical-catalytic cells. Journal of Industrial and Engineering Chemistry, 2013. 19(3): p. 1024-1030.
26. R. Schlögl, E. Wagner, T. Fetzer, J. Wagner, W. Nehb, J. Adlkofer, B. Pachaly, W. Keim, Inorganic Reactions, in Handbook of Heterogeneous Catalysis. 2008, Wiley-VCH Verlag GmbH. p. 1697-1799.
27. Stern, A.C., Fundamentals of air pollution. 1984: Academic Press.
28. ANNE PIÉPLU, ODETTE SAUR, JEAN-CLAUDE LAVALLEY, OLIVER LEGENDRE, CHRISTOPHE NÉDEZ, Claus Catalysis and H2S Selective Oxidation. Catalysis Reviews, 1998. 40(4): p. 409-450.
29. José A. Rodriguez, Josep M. Ricart, Anna Clotet, Francesc Illas, Density functional studies on the adsorption and decomposition of SO2 on Cu(100). The Journal of Chemical Physics, 2001. 115(1): p. 454-465.
30. Srivastava, R.K., W. Jozewicz, and C. Singer, SO2 scrubbing technologies: A review. Environmental Progress, 2001. 20(4): p. 219-228.
31. Jin S. Yoo, Alak A. Bhattacharyya, Cecelia A. Radlowski, John A. Karch, De-SOx catalyst: the role of iron in iron mixed solid solution spinels, MgO.cntdot.MgAl2-xFexO4. Industrial &; Engineering Chemistry Research, 1992. 31(5): p. 1252-1258.
32. Arturo Rodas-Grapaín, Jesús Arenas-Alatorre, Antonio Gómez-Cortés, Gabriela Díaz, Catalytic properties of a CuO–CeO2 sorbent-catalyst for de-SOx reaction. Catalysis Today, 2005. 107–108(0): p. 168-174.
33. J.A. Wang, L.F Chen, R. Limas-Ballesteros, A. Montoya, J.M. Dominguez, Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 catalysts. Journal of Molecular Catalysis A: Chemical, 2003. 194(1–2): p. 181-193.
34. Hibbert, D.B. and R.H. Campbell, Flue gas desulphurisation: Catalytic removal of sulphur dioxide by carbon monoxide on sulphided La1−xSrxCoO3: I. Adsorption of sulphur dioxide, carbon monoxide and their mixtures. Applied Catalysis, 1988. 41(0): p. 273-287.
35. Guang-jian Wang, Yong-ning Qin, Zhi Ma, Xiao-zhou Qi, Tong Ding, Study on the catalytic reduction mechanism of SO2 by CO over doped copper perovskite catalyst in presence of oxygen. Reaction Kinetics and Catalysis Letters, 2006. 89(2): p. 229-236.
36. Steijns, M., Koopman, P., Nieuwenhuijse, B., Mars, P., The mechanism of the catalytic oxidation of hydrogen sulfide: III. An electron spin resonance study of the sulfur catalyzed oxidation of hydrogen sulfide. Journal of Catalysis, 1976. 42(1): p. 96-106.
37. Zheming Shen, Xiaodong Zhu, Shiru Le, Wang Sun, Kening Sun, Co-sintering anode and Y2O3 stabilized ZrO2 thin electrolyte film for solid oxide fuel cell fabricated by co-tape casting. International Journal of Hydrogen Energy, 2012. 37(13): p. 10337-10345.
38. Satterfield, C.N., Heterogeneous Catalysis in Industrial Practice 2nd edition. 1996: McGraw-Hill.
39. II, J.E.P., Less Costly Catalysts for Controlling Engine Emissions. Science, 2010. 327.
40. Metkar, P.S., M.P. Harold, and V. Balakotaiah, Experimental and kinetic modeling study of NH3-SCR of NOx on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts. Chemical Engineering Science, 2013. 87: p. 51-66.
41. Sung Bong Kang, Hyuk Jae Kwon, In-Sik Nam, Activity Function for Describing Alteration of Three-Way Catalyst Performance over Palladium-Only Three-Way Catalysts by Catalyst Mileage. Industrial &; Engineering Chemistry Research, 2011. 50(9): p. 5499-5509.
42. S. Shimizu, T. Yamaguchi, T. Suzuki, Y. Fujishiro, M. Awano, Fabrication and Properties of Honeycomb-type SOFCs Accumulated with Multi Micro-cells. ECS Transactions, 2007. 7: p. 651-656.
43. T. Yamaguchi, S. Shimizu, T. Suzuki, Y. Fujishiro, M. Awano, Development of Honeycomb-type SOFCs with Accumulated Multi Micro-cells. ECS Transactions, 2007. 7: p. 657-662.
44. T. Yamaguchi, S. Shimizu, T. Suzuki, Y. Fujishiro, M. Awano, Development and Evaluation of a Cathode-Supported SOFC Having a Honeycomb Structure. Electrochemical and Solid-State Letters, 2008. 11(7): p. B117.
45. 許勝翔, 以電化學觸媒電池進行模擬廢氣中氮氧化物分解之陰極鑭鍶鈷氧化物摻雜之研究. 2012: 國立清華大學化工所博士論文.46. S. Shimizu, T. Yamaguchi, T. Suzuki, Y. Fujishiro, M. Awano, A Slurry Injection Method for the Fabrication of Multiple Microchannel SOFCs. Journal of the American Ceramic Society, 2009. 92(5): p. 1002-1005.
47. 施奇, 以(LaSr)MO3(M=Co, Mn)為電化學雙電池之陰極材料行二氧化硫及氮氧化物分解之研究. 2014: 國立清華大學化工所碩士論文.48. Ta-Jen Huang, Chung-Ying Wu, Sheng-Hsiang Hsu, Chi-Chang Wu, Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy &; Environmental Science, 2011. 4(10): p. 4061-4067.
49. F. Tietz, I. Arul Raj, M. Zahid, D. Stöver, Electrical conductivity and thermal expansion of La0.8Sr0.2(Mn,Fe,Co)O3-δ perovskites. Solid State Ionics, 2006. 177(19–25): p. 1753-1756.
50. Toshio Sato, Naoyuki Todo, Minoru Kurita, Hiroyuki Hagiwara, Akifumi Ueno, Akio Nishijima, Yoshimichi Kiyozumi, The development of catalysts for simultaneous control of NOx and SOx in flue gases. Chemistry Letters, 1978. 7(10): p. 1073-1076.