跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 20:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛弘仁
研究生(外文):Hong-Ren Syue
論文名稱:陽極改質冠醚基接枝聚茀系高分子系元件致高效能高分子發光二極體之研究
論文名稱(外文):Studies on Anode Modification for Polyfluorene Grafted with Crown-Ether Moiety Series Devices to Obtain High Performance in Polymer Light Emitting Diode
指導教授:陳壽安
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:114
中文關鍵詞:白光高分子發光二極體冠醚基接枝聚茀系高分子氯改質陽極
外文關鍵詞:Cl-ITOWPLEDPSBFpolyfluorene grafted with 18-crown-6 ether (PFCn6) chelating to K+polyspirobifluorene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來白光高分子發光二極體(WPLEDs)引起大家的注意由於它被看好應用於全彩平板顯示器、液晶顯示器的背光源和新世代固態照明光源。相較於白光有機小分子發光二極體(WOLEDs), 用濕式製程的WPLEDs有降低大面積顯示器製造成本的好處而且也有應用於可撓取基板的潛力。文獻上常用環境敏感金屬如Ba/Ag、Mg:Ag/Ag 、Ca/Ag、Ba/Al、Ca/Al、CsF/Al等當陰極,雖然其具有好的電子注入能力,但它們容易在界面上與氧氣和水氣反應而衰敗,而且這些在金屬-有機界面形成的金屬離子可能會跑進發光層中(EML)影響元件的穩定性。本研究引入polyfluorene grafted with 18-crown-6 ether (PFCn6) chelating to K+取代活性金屬,由於這層水-醇可溶之PFCn6 chelating to K+電子注入層的出現,允許我們只用高功函數的Al當作陰極,其優點為元件對空氣穩定,所以不需要在真空下封裝,進而節省製作成本。
本論文分為兩部份,茲於第四章和第五章分述。在第四章中,我們嘗試了不同的陽極改質方法增加冠醚基接枝聚茀系高分子元件的電洞注入,其中以Chlorinated Indium Tin Oxide(Cl-ITO)為陽極的測試效果最佳。此外,我們報導了一個新的元件結構Cl-ITO/PEDOT,並證明PEDOT的功函數可被Cl-ITO誘導而提升,而且Cl-ITO/PEDOT有界面偶極的效應可增加電洞的注入。在發光層為PSBF元件中的最大亮度可達35812 cd/m2、最大效率可達4.08 cd/A。至於發光層PSBF的EL光譜部份,我們觀察到隨著操作電壓的提高, 在波長500~525 nm的放光變得越來越強,我們認為這現象是電場誘導和PSBF的極性側鏈運動所形成的excimers,整體光色為藍綠光。
在第五章中,我們嘗試了許多的混摻物,其中以螢光的橘黃光小分子Rubrene最適合與PSBF混摻形成高效能的WPLED。在Cl-ITO/PEDOT搭配PFCn6:K+=1:3/Al的PSBF-Rubrene混摻元件中,我們得到白光亮度為61523 cd/m2、最大效率為10.3 cd/A,此亮度表現優於文獻上的WPLED紀錄(~56000 cd/m2);在Cl-ITO/PEDOT搭配CsF/Al的PSBF-Rubrene混摻元件中,我們得到白光亮度為87615 cd/m2、最大效率為11.1 cd/A,此亮度表現除了優於文獻上的WPLED紀錄(~56000 cd/m2),而且也可以媲美文獻上使用熱蒸鍍和多調控層的phosphorescent WOLED之記錄(~83000 cd/m2)。到目前為此,我們得到的白光亮度(~87615 cd/m2)是WPLED中最高的。

White polymer light-emitting diodes (WPLEDs) have gained great attention over the last few decades due to their promising applications in full color flat-panel displays, backlighting sources for liquid-crystal displays, and next-generation solid-state lighting sources. In comparison with white organic light-emitting diodes (WOLEDs), WPLEDs fabricated by solution-process have advantages of low-cost manufacture in large-area displays and potential for the use of flexible substrate. In previous literatures, environment-sensitive metals (such as Ba/Ag、Mg:Ag/Ag 、Ca/Ag、Ba/Al、Ca/Al、CsF/Al) were commonly used as cathodes. While they facilitated electron injection, they might undergo degradation by reaction with oxgen and moisture at the interfaces. Also, metal ions formed at the metal-organic interface tended to migrate into the emitting layer (EML) to affect the stability of devices. In this study, we substitute polyfluorene grafted with 18-crown-6 ether (PFCn6) chelating to K+ for environment-sentive metals, due to the presence of electron-injection layer (EIL) of water/methanol-soluble PFCn6 chelating to K+, allowing the use of environment-stable Al as the cathode only. The advantage is that the device is stable to air, and we don't need package in vacuum environment, therefore, saving costs for fabrication.
In this thesis, this contents are divided into two parts giving in chapters 4, 5. In chapter 4, we test many anode modifications in order to increase hole-injection in PFCn6-based devices. Among these modifications, using Chlorinated Indium Tin Oxide(Cl-ITO) is the best solution. Moreover, we demonstrate that the novel device configuration of Cl-ITO/PEDOT is reported for the first time, and we confirm that the raise of work function of PEDOT is induced by Cl-ITO. Also, Cl-ITO/PEDOT has interfacial dipole effect, which can increase hole-injection. The brightness and lumunous efficiency of PSBF-based devices are up to 35812 cd/m2 and 4.08 cd/A, respectively. As for EL spectra of PSBF, the emission at 500~525 nm becomes stronger with gradually increased voltage is observed. We owe this phenomenon to the excimer formation by electric field induction and polar side-chain motion in PSBF. Generally speaking, the whole color is blue-greenish.
In chapter 5, we test many dopant systems in order to find appropriate dye for high performance WPLED. Among these systems, fluorescent orange small molecule Rubrene is the best choice for blending with PSBF. By device combination of Cl-ITO/PEDOT and PFCn6:K+=1:3/Al, the brightness and lumunous efficiency of PSBF-Rubrene-blended devices are up to 61523 cd/m2 and 10.3 cd/A, respectively. In comparison with the record in WPLED literature (~56000 cd/m2), the brightness is much better. By device combination of Cl-ITO/PEDOT and CsF/Al, the brightness and lumunous efficiency PSBF-Rubrene-blended devices are up to 87615 cd/m2 and 11.1 cd/A, respectively. Surprisingly, the brightness is predominately superior to the record in WPLED literature (~56000 cd/m2), and it can compete with the record in phosphorescent WOLED literature by multilayer and vacuum evaporation (~83000 cd/m2). The resulting high white brightness (~87615 cd/m2), to the best of our knowledge, is the highest in WPLED so far.

目錄
第一章 緒論…………...………………….…………………………………...1
1-1 前言………………………………………………….…………………….1
1-2 共軛導電高分子之電子狀態……………………………..………………3
1-3 螢光理論……………………………………………………....…………..7
1-3-1 螢光的成因……………………………………………………..…….7
1-3-2 影響螢光的因素…………………………………………………..….8
1-3-3 螢光的能量轉移…………………………………………….............10
1-4 金屬半導體理論…………………………………………………............11
1-4-1 界面接合………………………………………………………….....11
1-4-2 電流傳遞過程……………………………………………….............12
1-5 高分子發光二極體的研究…………………………….………………...13
1-5-1 電荷注入/傳遞的機制…………………………………………...….16
1-5-2 電子的注入………………………………………………...……..…18
1-5-3 電洞的注入……………………………………………………….....20
1-5-4 發光層載子的傳遞特性…………….………………………………22
第二章 文獻回顧…………………………………….………………………25
2-1 藍光高分子發光二極體之文獻回顧…………………………………....25
2-2 單層發光的白光高分子發光二極體之文獻回顧…….………………...25
2-2-1 利用主體高分子混摻客體小分子的方式發白光………..………...25
2-2-2 利用polymer blend的方式發白光……………………………...….28
2-2-3 利用單一高分子材料發白光……………………………………..34
2-3 冠醚基接枝聚茀系高分子應用於高分子發光二極體之文獻回顧…....40
2-4提升電洞注入方法的文獻回顧…….…………........................................42
2-4-1 提升PEDOT:PSS導電度…………………………………..…...….42
2-4-2 具交聯性質的電洞傳輸材料應用於高分子發光二極體.................43
2-4-3 以Chlorinated Indium Tin Oxide(Cl-ITO)為陽極………………….45
2-5 文獻分析…………………………………………………………………46
第三章 實驗方法…………………………………………………………….48
3-1 藥品………………………………………………………………………48
3-2 合成………………………………………………………………..……..48
3-3 儀器設備…………………………………………………………………50
3-4 元件的製作………………………………………………………………51
3-4-1 高分子發光二極體元件製作……...………………………………..51
3-4-2 單一載子元件製作………………………………………………….52
3-4-3 元件特性之量測………...…………………………………………..53
第四章 藍光高分子發光二極體…………………………………………….55
4-1 前言………………………………………………………………………55
4-2 改變PEDOT導電度…………….……………………………….………56
4-3 陰極用PFCn6:K+取代CsF……………………………………………...58
4-4 PFCn6:K+的單一載子元件……………………………………….……..60
4-5 用甲醇處理PEDOT提高導電度增加電洞注入………………………..61
4-5-1 導電度測試……………………………………………………….…61
4-5-2 PEDOT浸泡甲醇前後的元件表現…………………………………62
4-6 引入具交聯性質的電洞傳輸層QUPD 增加電洞注入………………...63
4-6-1 交聯測試…………………………………………………………….63
4-6-2 引入電洞傳輸層QUPD的元件表現……………………………….64
4-6-2-1 以PFCn6:K+為陰極…………………..……………………….64
4-6-2-2 以CsF為陰極…………………………………………………..66
4-6-3 不同加熱時間對QUPD的hole電流之影響……………………….68
4-6-4 加入電洞阻擋層TPBI……………………………………………...69
4-7 在PSBF發光層中加入電洞傳輸材料TPD……………………………..71
4-8 陽極使用Cl-ITO提高電洞注入………………………………………...72
4-8-1 比較陽極使用ITO和Cl-ITO的差別……………………………....72
4-8-2 Cl-ITO的quenching effect…………………………………………..74
4-8-3 Cl-ITO的單一載子元件…………………………………………….75
4-8-4 元件光伏特性的量測…………………………………………….....76
4-8-5 改變PEDOT厚度………………………………………………...…77
4-8-6 用電子阻擋層PVK取代PEDOT………………………………..…79
4-8-7 在陰極PFCn6:K+中摻入PEO……………………………………...80
4-9 EL光譜探討………………………………………………………...…….82
4-10 結論……………………………………………………………………..83
第五章 白光高分子發光二極體…………………………………………….85
5-1 前言………………………………………………………………………85
5-2 PSBF混摻Ir(fbi)2acac之白光元件表現……………………………..…..86
5-3 PSBF混摻Rubrene在不同溶劑中之白光元件表現……………...……..87
5-4 用PFCn6:K+取代CsF之白光元件表現………………...………….…...89
5-5 陰極為PFCn6:K+/Al時改變發光層膜厚之白光元件表現……………91
5-6 PSBF混摻Rubrene和DPAVB之白光元件表現……………………...…92
5-7 引入電子阻擋層PVK並改變發光層膜厚之白光元件表現………...…94
5-8 引入Cl-ITO的白光元件表…………..…………………………….……95
5-9結論……………………………………………………………………….98
第六章 參考文獻…………………………………………………………….99
附錄一 功函數的量測和電荷注入機制圖...................................................110
附錄二 白光相關數據整理圖表……….…………………………………...111
圖目錄
Figure 1-1 The structure and abbreviation of conjugated polymers ............. 2
Figure 1-2 Comparison of electrical conductivities of metals, semi- conductors and insulators; d indicates the doped material............3
Figure 1-3 Band structure of semiconductor. IP: ionization potential, EA: electron affinity, EF: Femi level, E D: donor level, EA: acceptor level. .............................................................................................6
Figure 1-4 The representation of the energy levels of MOs with increasing size of the molecule for [CH]n.......................................................6
Figure 1-5 The energy levels of polaron and bipolaorn..................................7
Figure 1-6 The formation of fluorescence and phosphorescence of molecules.......................................................................................9
Figure 1-7 Barriers for semiconductors of different types and work functions. n-type: (a) Φm > Φs (Schottky) ; (b) Φm < Φs (Ohmic). p-type : (c) Φm < Φs (Schottky); (d) Φm > Φs (Ohmic).........................13
Figure 1-8 Schematic structure of polymer LED and carrier transport in PLED...........................................................................................14
Figure 1-9 Band diagram of singlet exciton formation in (a) PL and (b) EL process.........................................................................................15
Figure 1-10 Schematic structure of ITO/PPV/PBD:PMMA/Ca and carrier transport in this device.................................................................19
Figure 1-11 Hole mobility of spin-coated PFO film measured from time-of-flight technique at 300 K................................................24
Figure 1-12 Hole mobility for an aligned, quenched PFO film (filled circles) and for a spin-coated PFO film (open circles) measured from time-of-flight technique at room temperature.............................24
Figure 2-1 含電洞傳輸基團的sPF之化學結構和能階圖………………..25
Figure 2-2 TBH的化學結構………………….............................................26
Figure 2-3 PBD與Rubrene的化學結構......................................................26
Figure 2-4 SeBT、DBT、PBT及PFO-POSS的化學結構.............................27
Figure 2-5 EML為PFO:PBT (0.1%):SeBT (0.1%)時,在不同操作電壓下的EL光譜圖與相對應的CIE座標................................27
Figure 2-6 spiro-TPA50-diEHPF的化學結構………………......................28
Figure 2-7 PF-TPA-OXD、FFBFF及FTBTF的化學結構...........................29
Figure 2-8 MEH-PPV的化學結構...............................................................29
Figure 2-9 PFTO及PFTO-BSeD5的化學結構和合成路徑圖………...…30
Figure 2-10 PFTO混摻PFTO-BSeD5在不同電壓下的EL光譜圖……….30
Figure 2-11 PPF-3,7SO10及P-PPV的化學結構…………………………...31
Figure 2-12 The EL spectra of ITO/PEDOT/PVK/PPF-3,7SO10:P-PPV:MEH-PPV (100:0.8:0.5)/Ba/Al at (a) different current density, (b) annealed at different temperatures and hours, (c) under continuous operation at an initial luminance of 1500 cd/m2........32
Figure 2-13 發光層物種的化學結構: (a) LaPPS10, (b) P(MMA-co-MMAnt), (c) LaPPS16, (d) MEH-PPV………………………………….32
Figure 2-14 PPF-SO25、PPF-SO15-BT1、PPF-SO15-DHTBT1的化學結構和合成路徑圖………………………………………………….33
Figure 2-15 不同電流密度下的EL光譜圖及相對應的CRI………………33
Figure 2-16 CzPFR08的化學結構………………………………………….34
Figure 2-17 CzPFR08的PL與EL光譜圖…………………………………..34
Figure 2-18 WPF-G2R3的化學結構………………………………………..35
Figure 2-19 P3-0.5的化學結構……………………………………………..35
Figure 2-20 P3-0.5在不同操作電壓下的EL光譜圖………………………36
Figure 2-21 WPF-BT-3的化學結構………………...………………………36
Figure 2-22 WP-B5O3的化學結構………………………………………....37
Figure 2-23 WP-B5O3的PL光譜圖與不同操作電壓下的EL光譜圖…………………………………………………………….…37
Figure 2-24 WP-B5G5R2及PF-EP的化學結構……………………………38
Figure 2-25 S-WP-003在不同操作電壓下的EL光譜圖………………..…38
Figure 2-26 S-WP-x的合成路徑和化學結構…………………………..…..39
Figure 2-27 PF-DTBTA系列高分子的合成路徑和化學結構……………..39
Figure 2-28 S-WP-xTPA6和S-WP-xTPB6的化學結構……………………40
Figure 2-29 PFC及PF的化學結構和合成路徑圖…………………………41
Figure 2-30 元件工作機制圖…………………………………………….…42
Figure 2-31 The mechanism of conductivity enhancement of PEDOT:PSS films by film treatment with methanol. The core–shell structure is changed to a linear/coiled structure. The removal of PSS leads to the thickness reduction of the film and also brings about bigger and better connected PEDOT chains…………………………...43
Figure 2-32 含oxetane結構進行CROP的反應機構圖……………………44
Figure 2-33 x-PHTL、x-B、x-G、x-R的化學結構及合成路徑圖…………...44
Figure 2-34 SIPS隨加熱時間變化示意圖………………………………….45
Figure 2-35 Current density as a function of voltage for CBP-based OLEDs fabricated on Cl-ITO with different work function………….…46
Figure 3-2-1 電子傳輸層材料的單體合成路徑…………………………….49
Figure 3-2-2 電子傳輸層材料的聚合路徑………………………………….50
Figure 4-1 元件各層材料的化學結構和能階示意圖…………………….56
Figure 4-2 ITO/PEDOT/PSBF/CsF/Al (a)電流密度對電壓作圖 (b)效率對電壓作圖 (c) 電壓7V時的EL光譜和相對應的CIE座標 (Normalized at 430 nm)...............................................................58
Figure 4-3 ITO/PEDOT/PSBF/PFCn6:K+:PEO=1:3:x/Al的(a)電流密度對電壓作圖 (b)效率對電壓作圖………………………...…60
Figure 4-4 hole-only和electron-only元件的電流密度與電場關係……...61
Figure 4-5 ITO/PEDOT (dip MeOH 1min) (x nm)/PSBF/PFCn6:K+=1:3/Al的(a)電流密度對電壓作圖 (b)效率對電壓作圖……………………………………………………………….63
Figure 4-6 紫外光-可見光吸收光譜:(a) 未加熱交聯 (b)加熱140 ℃交聯 (c)加熱200 ℃交聯 (d)加熱250 ℃交聯………….……...….64
Figure 4-7 ITO/PEDOT/with or without QUPD/PSBF/ PFCn6: K+=1: 3/Al的(a)電流密度對電壓作圖 (b)效率對電壓作圖………….………………………………………………...….66
Figure 4-8 ITO/PEDOT/with or without QUPD/PSBF/CsF/Al 的(a)電流密度對電壓作圖 (b)效率對電壓作圖 (c)電流密度對電場作圖………………………………………………………...……..68
Figure 4-9 不同加熱時間下hole-only元件的電流密度對電場作圖…….69
Figure 4-10 (a)電流密度對電壓作圖 (b)效率對電壓作圖……………..…70
Figure 4-11 ITO/PEDOT/PSBF:TPD (x wt %)/PFCn6:K+ =1: 3 /Al的(a)電流密度對電壓作圖 (b)效率對電壓作圖……………………..……………………………………...…72
Figure 4-12 ITO or Cl-ITO/with PEDOT or without PEDOT/PSBF/PFCn6:K+ =1:3/Al的(a)電流密度對電壓作圖 (b)效率對電壓作圖……………………………………………………...……..…74
Figure 4-13 比較不同陽極的PL光譜圖………………………………...…75
Figure 4-14 hole-only和electron-only元件的電流密度與電場關係……...76
Figure 4-15 光電流密度對電壓作圖…………...……………………..……77
Figure 4-16 Cl-ITO/PEDOT (x nm)/PSBF/PFCN6:K+=1:3/Al 的(a)電流密度對電壓作圖 (b)效率對電壓作圖…...............………………78
Figure 4-17 Cl-ITO/with PEDOT or without PEDOT/with PVK or without PVK/PSBF/PFCn6:K+=1:3/Al (a)電流密度對電壓作圖 (b)效率對電壓作圖………………………...………………..……80
Figure 4-18 不同PEO摻雜量的(a)電流密度對電壓作圖 (b)效率對電壓作圖……………………………………………………………….81
Figure 4-19 (a) First round的EL光譜和相對應的CIE座標 (b) Second round的EL光譜和相對應的CIE座標 (c) Third round的EL光譜和相對應的CIE座標 (Normalized at 430 nm)…...……..83
Figure 5-1 各層材料的化學結構和能階示意圖…..........................................85
Figure 5-2 EL spectra and CIE coordinate of device:ITO/PEDOT/PSBF:Ir(fbi)2(acac) (1.00 wt%) (100 nm)/CsF (1.5 nm)/Al. (Normalized at 560 nm).........................................................................................87
Figure 5-3 EL spectra at 3000 cd/m2 and CIE coordinate of device:ITO/PEDOT/PSBF:Rubrene (x wt%) (100 nm)/CsF (1.5 nm)/Al. (a) In THF (b) In Toluene (Normalized at 550 nm)...............................................................................................89
Figure 5-4 EL spectra at 3000 cd/m2 and CIE coordinate of device:ITO/PEDOT/PSBF:Rubrene (0.2 wt%) (100 nm)/PFCn6: K+ (1:X) (20 nm)/Al with various ratio of PFCn6:K+. (Normalized at 550 nm)……………………………………...………………….90
Figure 5-5 EL spectra at 3000 cd/m2 and CIE coordinate of device:ITO/PEDOT/PSBF:Rubrene (0.2 wt%) (x nm)/PFCn6:K+ (1: 3) (20 nm)/Al with various thickness of EML (Normalized at 550 nm)…………………………………………………………...…92
Figure 5-6 EL spectra at 3000 cd/m2 and CIE coordinate of device: ITO/PEDOT/PSBF:DPAVB:Rubrene (100 nm)/CsF (1.5 nm)/Al with various ration of DPAVB:Rubrene (Normalized at 550 nm)………………………………………………………….......94
Figure 5-7 EL spectra at 3000 cd/m2 and CIE coordinate of device:ITO/PEDOT/PVK (30 nm)/PSBF:Rubrene (0.2 wt%) (x nm)/PFCn6: K+ (1:3) (20 nm)/Al with various thickness of EML (Normalized at 550 nm)………..…………………………….....95
Figure 5-8 不同陰極的(a)效率對亮度作圖 (b)不同陰極的EL光譜和相對應的CIE座標.…………………………………………….....…97
Figure A1 Cl-ITO、PEDOT atop ITO、PEDOT atop Cl-ITO的UPS圖.…110
Figure A2 電洞和電子注入機制示意圖……………………………………....110
Figure A3 Characteristic PLED curves of a) J-V and b) LE-L of devices: anode/PSBF (100 nm)/cathode. Where anodes are ITO/PEDOT and Cl-ITO/PEDOT, respectively. Where cathodes are PFCn6: K+ (1: 3) (20 nm)/Al and CsF (1.5 nm)/Al, respectively………....112



Figure A4 Normalized EL spectra of WPLEDs with various voltages in 5-8 V of a) Type IV device: ITO/PEDOT/PSBF: Rubrene (0.2 wt%) (100nm)/PFCn6: K+ (1: 3) (20 nm)/Al; b) Type V device: Cl-ITO/PEDOT/PSBF: Rubrene (0.2 wt%) (100 nm)/PFCn6: K+ (1: 3) (20 nm)/Al; c) Type VI device: ITO/PEDOT/PSBF: Rubrene (0.2 wt%) (100 nm)/CsF (1.5 nm)/Al; d) Type VII device: Cl-ITO/PEDOT/ PSBF: Rubrene (0.2 wt%) (100 nm)/CsF (1.5 nm)/Al…………………..…114































表目錄
Table 1-1 The effect of the different substituents on fluorescence properties…………………………………………………………10
Table 1-2 Device performance for ITO under various treatments…………..20
Table 4-1 改變PEDOT導電度的元件表現………………………...…...…57
Table 4-2 不同PEO摻雜量的元件表現……………………………..……..59
Table 4-3 PEDOT浸泡甲醇前後導電度的變化………………...…………61
Table 4-4 PEDOT浸泡甲醇前後的元件表現…………………………..….62
Table 4-5 引入電洞傳輸層QUPD的藍光元件表現………………………65
Table 4-6 引入電洞傳輸層QUPD的藍光元件表現…………………...….67
Table 4-7 引入QUPD和TPBI的藍光元件表現………………………..….70
Table 4-8 發光層摻雜不同比例TPD的藍光元件表現……………………71
Table 4-9 陽極用ITO和Cl-ITO的元件表現…………………………..…..73
Table 4-10 不同PEDOT膜厚的元件表現……………………………….….78
Table 4-11 引入PVK的元件表現……………………………………..…….79
Table 4-12 不同PEO摻雜量的元件表現…………………………...……….81
Table 5-1 Device performances of ITO/PEDOT/PSBF:Ir(fbi)2(acac) (x wt%) (100 nm)/CsF (1.5 nm)/Al with various Ir(fbi)2(acac) concentration..................................................................................86
Table 5-2 Device performances of ITO/PEDOT/PSBF:Rubrene (x wt%) (100 nm)/CsF (1.5 nm)/Al with various concentration of Rubrene in THF and in Toluene........................................................................88
Table 5-3 Device performances of ITO/PEDOT/PSBF:Rubrene (0.2 wt%) (100 nm)/PFCn6:K+ (1:X) (20 nm)/Al with various ratio of PFCn6: K+......................................................................................90
Table 5-4 Device performances of ITO/PEDOT/PSBF:Rubrene (0.2 wt%) (x nm)/PFCn6:K+ (1:3) (20 nm)/Al with various thickness of EML...............................................................................................91
Table 5-5 Device performances of ITO/PEDOT/PSBF:DPAVB:Rubrene (100 nm)/CsF (1.5 nm)/Al with various ratio of DPAVB: Rubrene………………………………………………………..…93
Table 5-6 Device performances of ITO/PEDOT/PVK (30 nm)/PSBF:Rubrene (0.2 wt%) (x nm)/PFCn6:K+ =1:3 (20 nm)/Al with various thickness of EML………………………………………..95
Table 5-7 不同陰極的元件表現……………………………………..……..96
Table A1 Work function of Cl-ITO, PEDOT atop ITO, PEDOT atop Cl-ITO…………..………………………………………………111
Table A2 Characteristic PLED performances of devices: anode/PSBF: Rubrene (0.2 wt%) (100 nm)/cathode, where anodes are ITO/PEDOT and Cl-ITO/PEDOT, respectively, and cathodes are PFCn6: K+ (1: 3) (20 nm)/Al and CsF (1.5 nm)/Al, respectively……………………………………………………...113

[1] J. C. W. Chien, “Polyacetylene:Chemistry, Physics, and Material Science”, Academic Press, Orlando (1984).
[2] A. S. Wood, “Tapping the power of intrinsic conductivity”, Modern Plastics Int., Aug. (1991) 33.
[3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature, 347 (1990) 539.
[4] J. Gmeiner, S. Karg, M. Meier, W. Rieb, P. Strohriegl, M. Schwoerer, “Synthesis, electrical conductivity and electro-luminescence of poly(p-phenylene vinylene) prepared by the precusor route”, Acta. Polym., 44 (1993) 201.
[5] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymer”, Nature, 357 (1992) 477.
[6] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers”, Nature, 397, (1999) 121.
[7] http://www.cdtltd.co.uk
[8] S. M. Sze, “Semiconductor Devices, Physics and Technology”, John Wiley &; Son, New York (1985).
[9] C. Kittel, “Introduction to Solid State Physics”, 6th edition, John Wiley &; Son, Singapore (1986).
[10] T. A. Skotheim, “Handbook of Conducting Polymers Vol. 1&;2”, Marcel Dekker, New York (1986).
[11] D. A. Skoog, D. M. West, F. J. Holler, “Fundamentals of Analytical Chemistry”, 5th edition, Saunders College Publishing (1988).
[12] N. J. Turro, “Modern Molecular Photochemistry”, Sausalito, Carlifonia, University Science Books (1991).
[13] E. H. Rhoderick, R. H. Williams, “Metal-Semiconductor Contact”, 2nd edition, Clarendon press, Oxford (1988).
[14] A. B. Holmes, D. D. C. Bradley, A. R. Brown, P. L. Burn, J. H. Burroughes, R. H. Friend, N. C. Greenham, R. W. Gymer, D. A. Halliday, R. W. Jackson, A. Kraft, J. H. F. Martens, K .Pichler, I. D. W. Samuel, “Photoluminescence and electroluminescence in conjugated polymeric systems”, Synth. Met., 55-57, (1993), 4031.
[15] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha and Z. V. Vardeny, “Formation cross-sections of singlet and triplet excitons in π-conjugated polymers”, Nature, 409, (2001), 494.
[16] G. G. Malliaras and J. C. Scott, “The roles of injection and mobility in organic light emitting diodes”, J. Appl. Phys., 83, (1998), 5399.
[17] I. D. Parker, A. J. Heeger, “Carrier tunneling and device characteristics in polymer light-emitting diodes”, J. Appl. Phys., 75, (1994), 1656.
[18] P. W. M. Blom, M. J. M. de Jone, J. J. M. Vleggaar, “Electron and hole transport in poly(p-phenylene) devices”, Appl. Phys. Lett., 68, (1996), 3308.
[19] A. R. Brown, D. D. C. Bradley, R. H. Friend, “Electroluminescence from multilayer conjugated polymer devices: spatial control of excition formation and emission”, Chem. Phys. Lett., 200, (1992), 46.
[20] A. R. Brown, D.D.C. Bradley, J.H. Burroughes, R.H. Friend, N.C. Greenham, P.L. Burn, A.B. Holmes, A. Kraft, “Poly(p-phenylene vinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement”, Appl. Phys. Lett., 61, (1992), 2793.
[21] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend and A. B. Holms, “Efficient light-emitting diodes based on polymers with high electron affinities”, Nature, 365, (1993), 628.
[22] Q. Pei, Y. Yang, “Bright blue electroluminescence from an oxadiazole-containing copolymer”, Adv. Mater., 6, (1995), 559.
[23] Q. Pei, Y. Yang, “1,3,4-Oxadiazole-containing polymers as electron-injection and blue electroluminescent materials in polymer light-emitting diodes”, Chem. Mater., 7, (1995), 1568.
[24] T. Osada, Th. Kugler, P. Broms, and W. R. Salaneck, “Polymer-based light-emitting devices: investigations on the role of the indium-tin oxide (ITO) electrode”, Synth. Met., 96, (1998), 77.
[25] C. C. Wu, C. I. Wu, J. C. Strum, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment:An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices”, Appl. Phys. Lett., 70, (1997), 1348.
[26] Y. Yang, A. J. Heeger, “Polyaniline as a transport electrode for polymer light-emitting diodes:low operating voltage and high efficent”, Appl. Phys. Lett., 64, (1994), 1245.
[27] Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, “Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode”, Synth. Met., 87, (1997), 171.
[28] 羅元宏,”水溶性自身酸摻雜聚苯胺作為電洞傳遞層之高分子發光二極體的特性及其破壞機構的探討”,國立清華大學化工系碩士論文,民國88年。
[29] 李中揚,” ITO電極表面處理對高分子發光二極體效能及壽命的影響”,國立清華大學化工系碩士論文,民國89年。
[30] D. J. Pinner, R. H. Friend, and N. Tessler, “Transit electroluminescence of polymer light emitting diodes using electrical pulses”, J. Appl. Phys., 86, (1999), 5116.
[31] A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, “Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes”, J. Appl. Phys., 82, (1997), 6326.
[32] H. Meyer, D. Haarer, H. Naarmann, H. H. Hörhold, “Trap distribution for charge carriers in poly(phenylene vinylene) (PPV) and its substituted derivative DPOP-PPV”, Phys. Rev. B, 52, (1995), 2587.
[33] E. Lebedev, Th. Dittrich, V. Petrove-Koch, S. Karg, W. Brütting, “Charge carrier mobility in poly(phenylene vinylene) studied by time-of-flight technique”, Appl. Phys. Lett., 71, (1997), 2686.
[34] H. M. Lee, D. K. Oh, C. H. Lee, C. E. Lee, D. W. Lee, J. I. Jin, “Time-of-flight measurements of charge-carrier mobilities in a poly(p-phenylene vinylene) derivative carrying an electron-transporting moiety”, Synth. Met., 119, (2001), 473.
[35] B. K. Crone, I. H. Campbell, P. S. Davids, D. L. Smith, “Charge injection and transport in single-layer organic light-emitting diodes”, Appl. Phys. Lett., 73, (1998), 3162.
[36] L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, P. J. Brock, “Temperature-and Field-dependent electron and hole mobilities in polymer light-emitting diodes”, Appl. Phys. Lett., 74, (1999), 1132.
[37] G. G. Malliaras, J. R. Salem, P. J. Brock, J. C. Scott, “Electrical characteristics and efficiency of single-layer organic light-emitting diodes”, Phys. Rev. B, 58, (1998), R13 411.
[38] G. G. Malliaras, J. C. Scott, “Numercal simulations of the electrical characteristics and the efficiencies of single-layer organic light emitting diodes” , J. Appl. Phys., 85, (1999), 7426.
[39] L. S. Roman, M. Berggren, O. Inganäs, “Polymer diodes with high rectification”, Appl. Phys. Lett., 75, (1999), 3557.
[40] I. H. Campbell, D. L. Smith, C. J. Neef, J. P. Ferraris, “Consistent time-of-flight mobility measurements and polymer light-emitting diode current-voltage characteristics”, Appl. Phys. Lett., 74, (1999), 2809.
[41] P. W. M. Blom, M. J. M. de Jone, J. J. M. Vleggaar, “Electron and hole transport in poly(p-phenylene) devices”, Appl. Phys. Lett., 68, (1996), 3308.
[42] P. W. M. Bolm, M. C. J. M. Vissenberg, “Charge ransport in poly(p-phenylene vinylene) light-emitting diodes”, Mater. Sci. Eng., 27, (2000), 53.
[43] H. C. F. Martens, J. N. Huiberts, P. W. M. Blom, “Simultaneous measurement of electron and hole mobilities in polymer light-emitting diodes”, Appl. Phys. Lett., 77, (2000), 1852.
[44] H. C. F. Martens, P. W. M. Bolm, H. F. M. Schoo, “Comparative study of hole transport in poly(p-phenylene vinylene) derivatives”, Phys. Rev. B, 61, (2000), 7489.
[45] M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Nondispersive hole transport in an electroluminescent polyfluorene”, Appl. Phys. Lett., 73, (1998), 1565.
[46] M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Mobility enhancement through homogeneous nematic alignment of a liquid-crystalline polyfluorene”, Appl. Phys. Lett., 74, (1999), 1400.
[47] C.-W. Huang, K.-Y. Peng, C.-Y. Liu, T.-H. Jen, N.-J. Yang, and S.-A. Chen, “Creating a Molecular-scale Graded Electronic Profile in a Single Polymer to Facilitate Hole Injection for Efficient Blue Electroluminescence”, Adv. Mater., (2008), 20, 3709.
[48] Q. F. Xu, H. M. Duong, F. Wudl, Y. Yang, “Efficient single-layer “twistacene”-doped polymer white light-emitting diodes”, Appl. Phys. Lett., 85, 3357, (2004).
[49] J. Huang, W.-J. Hou, J.-H. Li, G. Li, and Y. Yang, “Improving the power efficiency of white light-emitting diode by doping electron transport material”, Appl. Phys. Lett., 89, 133509, (2006).
[50] S. Fan, M. Sun, J. Wang, W. Yang, and Y. Cao, “Efficient white-light-emitting diodes based on polyfluorene doped with fluorescent chromophores”, Appl. Phys. Lett., 91, 213502, (2007).
[51] K.-Y. Peng, C.-W. Huang, C.-Y. Liu, and S.-A. Chen, “High brightness stable white and yellow light-emitting diodes from ambipolar polyspirofluorenes with high charge carrier mobility”, Appl. Phys. Lett., 91, 093502, (2007).
[52] J.-H. Kim, P. Herguth, M.-S. Kang, Alex K-Y. Jen, Y.-H. Tseng, “Bright white light electroluminescent devices based on a dye-dispersed polyfluorene derivative”, Appl. Phys. Lett., 85, 7, 1116, (2004).
[53] J. Huang, G. Li, E. Wu, Q. Xu, and Y. Yang, “Achieving high-efficiency polymer white-light-emitting devices”, Adv. Mater., (2006), 18, 114.
[54] P.-I Shih, Y.-H. Tseng, F.-I. Wu, A. K. Dixit, and C.-F. Shu, “Stable and efficient white electroluminescent devices based on a single emitting layer of polymer blends”, Adv. Funct. Mater., (2006), 16, 1582.
[55] J. Zou, J. Liu, H. Wu, W. Yang, J. Peng, Y. Cao, “High-efficiency and good color quality white light-emitting devices based on polymer blend”, Org. Electron., 10, (2009), 843.
[56] Jeferson Ferreira de Deus, Gregorio C. Faria, Eduardo T. Iamazaki, Roberto M. Faria,Teresa D.Z. Atvars, Leni Akcelrud, “Polyfluorene based blends for white light emission”, Org. Electron., 12, (2011), 1493.
[57] L. Yu , J. Liu , S. Hu , R. He , W. Yang , H. Wu , J. Peng , R. Xia , and Donal D. C. Bradley, “Red, Green, and Blue Light-Emitting Polyfluorenes Containing a Dibenzothiophene- S,S -Dioxide Unit and Effi cient High-Color-Rendering-Index White-Light-Emitting Diodes Made Therefrom”, Adv. Funct. Mater., (2013), 23, 4366.
[58] X. Chen, J.-L. Liao, Y. Liang, M. O. Ahmed, H.-En Tseng, and S.-A. Chen, “High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety”, J. am. Chem. Soc., (2003), 125, 636.
[59] J. Liu, Q. Zhou, Y. Cheng, Y. Geng, L. Wang, D. Ma, X. Jing, and F. Wang, “The first single polymer with simultaneous blue, green, and red emission for white electroluminescence”, Adv. Mater., (2005), 17, 2974.
[60] G. Tu, C. Mei, Q. Zhou, Y. Cheng, Y. Geng, L. Wang, D. Ma, X. Jing, and F. Wang, “Highly Efficient Pure-White-Light-Emitting Diodes from a Single Polymer: Polyfluorene with Naphthalimide Moieties”,Adv. Funct. Mater., (2006), 16, 101.
[61] J. Liu, Q. Zhou, Y. Cheng, Y. Geng, L. Wang, D. Ma, X. Jing, and F. Wang, “White electroluminescence from a single-polymer system with simultaneous two-color emission: polyfluorene as the blue host and a 2,1,3-benzothiadiazole derivative as the orange dopant on the main chain”, Adv. Funct. Mater., (2006), 16, 957.
[62] J. Liu, S. Shao, L. Chen, Z. Xie, Y. Cheng, Y. Geng, L. Wang, X. Jing, and F. Wang, “White electroluminescence from a single polymer system: improved performance by means of enhanced efficiency and red-shifted luminescence of the blue-light-emitting species”, Adv. Mater., (2007), 19, 1859.
[63] J. Liu, L. Chen, S. Shao, Z. Xie, Y. Cheng, Y. Geng, L. Wang, X. Jing, and F. Wang, “Three-color white electroluminescence from a single polymer system with blue, green and red dopant units as individual emissive species and polyfluorene as individual polymer host”, Adv. Mater., (2007), 19, 4224.
[64] B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-Performance All-Polymer White-Light-Emitting Diodes Using Polyfluorene Containing Phosphonate Groups as an Efficient Electron-Injection Layer”, Adv. Funct. Mater., (2010), 20, 2951.
[65] J. Liu, Y. Cheng, Z. Xie, Y. Geng, L. Wang, X. Jing, and F. Wang, “White Electroluminescence from a Star-like Polymer with an Orange Emissive Core and Four Blue Emissive Arms”, Adv. Mater., (2008), 20, 1357.
[66] L. Zhang, S. Hu, J. Chen, Z. Chen, H. Wu, J. Peng, and Yong Cao, “A Series of Energy-Transfer Copolymers Derived from Fluorene and 4,7-Dithienylbenzotriazole for High Efficiency Yellow, Orange, and White Light-Emitting Diodes”, Adv. Funct. Mater., (2011), 21, 3760.
[67] L. Chen, P. Li, Y. Cheng, Z. Xie, Lixiang Wang, X. Jing, and F. Wang, “White Electroluminescence from Star-like Single Polymer Systems: 2,1,3-Benzothiadiazole Derivatives Dopant as Orange Cores and Polyfluorene Host as Six Blue Arms”, Adv. Mater., (2011), 23, 2986.
[68] J.-M. Yu, Y. Chen, “Synthesis, Characterization, and Electroluminescent Performance of a Novel Copolyfluorene Containing Pendant Crown Ether Groups”, J. Polym. Sci., PartA: Polym.Chem., (2009), 47, 2985.
[69] H.-H. Lu, Y.-S. Ma, N.-J. Yang, G.-H. Lin, Y.-C. Wu, and S.-A Chen, “Creating a Pseudometallic State of K+ by Intercalation into 18-Crown-6 Grafted on Polyfluorene as Electron Injection Layer for High Performance PLEDs with Oxygen- and Moisture-Stable Al Cathode”, J. Am. Chem. Soc., (2011), 133, 9634.
[70] D. Alemu, H.-Y. Wei, K.-C. Hod and C.-W. Chu, “Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells”, Energy Environ. Sci., (2012), 5, 9662.
[71] A. Köhnen, N. Riegel, Jonas H.-W. M. Kremer, H. Lademann, David C. Müller, and K. Meerholz, “The Simple Way to Solution-Processed Multilayer OLEDs–Layered Block-Copolymer Networks by Living Cationic Polymerization”, Adv. Mater., (2009), 21, 879.
[72] A. Köhnen, N. Riegel, David C. Müller, and K. Meerholz, “Surface-Initiated Phase Separation–Fabrication of Two-Layer Organic Light-Emitting Devices in a Single Processing Step”, Adv. Mater., (2011), 23, 4301.
[73] M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility”, Science 332, 944, (2011).
[74] 廖金龍,”電荷傳輸機團改質之巨茀系高分子結構與物性及其在發光二極體上的應用”,國立清華大學化工系博士論文,民國95 年。
[75] A. P. Monkman, C. Rothe, and S. M. King, “Singlet Generation Yields in Organic Light-Emitting Diodes”, Proc. IEEE 97, 9, (2009).
[76] A. Cravino, P. Schilinsky, C. J. Brabec, “Characterization of Organic Solar Cells: the Importance of Device Layout”, Adv. Funct. Mater., (2007), 17, 3906.
[77] T.J. Whitcher, K.H. Yeoh, C.L. Chua, K.L. Woon, N. Chanlek, H. Nakajima, T. Saisopa, P. Songsiriritthigul, “The effect of carbon contamination and argon ion sputtering on the work function of chlorinated indium tin oxide”, Curr. Appl. Phys., 14, 472, (2014).
[78] J.-S. Kim, R. H. Friend, I. Grizzi, and J. H. Burroughes, “Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes”, Appl. Phys. Lett., 87, 023506-1 (2005).
[79] Sebastian Bange, Andriy Kuksov, and Dieter Nehera, “Sensing electron transport in a blue-emitting copolymer by transient electroluminescence”, Appl. Phys. Lett., 91, 143516 (2007).
[80] 吳允中,"冠醚基接枝之聚茀系高分子做為高分子發光二極體電子注入層之研究",國立清華大學化工系碩士論文,民國99 年。
[81] 盧信宏,"聚茀系高分子之分子堆疊結構與光電性質關係之研究:高效率穩定純藍光高分子發光二極體與光色調控方法之探討",國立清華大學化工系博士論文,民國95 年。
[82] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices”, Nature 440, 908 (2006) .
[83] J. Lee, J.-I. Lee, J. Y. Lee, and H. Y. Chu, “Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic light-emitting diodes with a mixed host structure”, Appl. Phys. Lett. 94, 193305, (2009).
[84] N. Li, S. Oida, G. S. Tulevski, S.-J. Han, J. B. Hannon, D. K. Sadana and T.-C. Chen, “Efficient and bright organic light-emitting diodes on single-layer graphene electrodes”, Nat. Commun., 4, 2294, (2013).
[85] C.-C. Ting, W.-L. Cheng, G.-C. Lin, “Structural and opto-electrical properties of the tin-doped indium oxide thin films fabricated by the wet chemical method with different indium starting materials”, Thin Solid Films, 519, (2011), 4286.
[86] Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids”, Nat. Photon., 2, 483, (2008).
[87] T. W. Koh, J. M. Choi, S. Lee, and S. Yoo, “Optical Outcoupling Enhancement in Organic Light-Emitting Diodes: Highly Conductive Polymer as a Low-Index Layer on Microstructured ITO Electrodes”, Adv. Mater., 22, 1849, (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊