|
1. Britton, G., S. Liaaen-Jensen, and H. Pfander, Carotenoids handbook. 2004, Basel ; Boston: Birkhäuser Verlag. 2. Delgado-Vargas, F., A.R. Jiménez, and O. Paredes-López, Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Critical reviews in food science and nutrition, 2000. 40(3): p. 173-289. 3. Goodwin, T.W.U.h.b.g.c.t.b.i.r., The biochemistry of the carotenoids. 1980: Chapman and Hall. 4. Riccioni, G., Carotenoids and cardiovascular disease. Curr Atheroscler Rep, 2009. 11(6): p. 434-9. 5. Block, G., et al., Validation of a self-administered diet history questionnaire using multiple diet records. J Clin Epidemiol, 1990. 43(12): p. 1327-35. 6. Mangels, A.R., et al., Carotenoid content of fruits and vegetables: an evaluation of analytic data. J Am Diet Assoc, 1993. 93(3): p. 284-96. 7. Ritenbaugh, C., et al., New carotenoid values for foods improve relationship of food frequency questionnaire intake estimates to plasma values. Cancer Epidemiol Biomarkers Prev, 1996. 5(11): p. 907-12. 8. Krinsky, N.I., et al., Structural and geometrical isomers of carotenoids in human plasma. The Journal of nutrition, 1990. 120(12): p. 1654-1662. 9. Krinsky, N.I. and E.J. Johnson, Carotenoid actions and their relation to health and disease. Molecular aspects of medicine, 2005. 26(6): p. 459-516. 10. Miller, N.J., et al., Antioxidant activities of carotenes and xanthophylls. FEBS Lett, 1996. 384(3): p. 240-2. 11. Stahl, W. and H. Sies, Antioxidant activity of carotenoids. Molecular aspects of medicine, 2003. 24(6): p. 345-351. 12. Di Mascio, P., S. Kaiser, and H. Sies, Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Archives of biochemistry and biophysics, 1989. 274(2): p. 532-538. 13. Foote, C.S., Y.C. Chang, and R.W. Denny, Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J Am Chem Soc, 1970. 92(17): p. 5216-8. 14. Di Mascio, P., S. Kaiser, and H. Sies, Lycopene as the Most Efficient Biological Carotenoid Singlet Oxygen Quencher. Archives of Biochemistry and Biophysics, 1989. 274(2): p. 532-538. 15. Shimidzu, N., M. Goto, and W. Miki, Carotenoids as singlet oxygen quenchers in marine organisms. Fisheries Science (Japan), 1996. 62(1):p.134-137. 16. Böhm, F., R. Edge, and T. George Truscott, Interactions of dietary carotenoids with singlet oxygen (1O2) and free radicals: potential effects for human health. Acta Biochimica Polonica, 2012. 59(1): p. 27. 17. Ambati, R.R., et al., Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review. Marine drugs, 2014. 12(1): p. 128-152. 18. Naguib, Y.M., Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem, 2000. 48(4): p. 1150-4. 19. Del Campo, J.A., M. Garcia-Gonzalez, and M.G. Guerrero, Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol, 2007. 74(6): p. 1163-74. 20. Higuera-Ciapara, I., L. Felix-Valenzuela, and F.M. Goycoolea, Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr, 2006. 46(2): p. 185-96. 21. Seabra, L.M.J. and L.F.C. Pedrosa, Astaxanthin: structural and functional aspects. Revista De Nutricao-Brazilian Journal of Nutrition, 2010. 23(6): p. 1041-1050. 22. Turujman, S.A., et al., Rapid liquid chromatographic method to distinguish wild salmon from aquacultured salmon fed synthetic astaxanthin. Journal of Aoac International, 1997. 80(3): p. 622-632. 23. Grewe, C., S. Menge, and C. Griehl, Enantioselective separation of all-E-astaxanthin and its determination in microbial sources. Journal of Chromatography A, 2007. 1166(1-2): p. 97-100. 24. Miki, W., Biological Functions and Activities of Animal Carotenoids. Pure and Applied Chemistry, 1991. 63(1): p. 141-146. 25. Egeland, E.S., H. Parker, and S. Liaaenjensen, Carotenoids in Combs of Capercaillie (Tetrao-Urogallus) Fed Defined Diets. Poultry Science, 1993. 72(4): p. 747-751. 26. Inborr, J., Haematococcus, the poultry pigmentor. Feed mix, 1998. 27. Hussein, G., et al., Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod, 2006. 69(3): p. 443-9. 28. Lorenz, R.T. and G.R. Cysewski, Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 2000. 18(4): p. 160-167. 29. Jyonouchi, H., et al., Astaxanthin, a Carotenoid without Vitamin-a Activity, Augments Antibody-Responses in Cultures Including T-Helper Cell Clones and Suboptimal Doses of Antigen. Journal of Nutrition, 1995. 125(10): p. 2483-2492. 30. Fassett, R.G. and J.S. Coombes, Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease. Marine Drugs, 2011. 9(3): p. 447-465. 31. Uchiyama, K., et al., Astaxanthin protects beta-cells against glucose toxicity in diabetic db/db mice. Redox Rep, 2002. 7(5): p. 290-3. 32. Otton, R., et al., Astaxanthin ameliorates the redox imbalance in lymphocytes of experimental diabetic rats. Chem Biol Interact, 2010. 186(3): p. 306-15. 33. Lu, Y.P., et al., Neuroprotective effect of astaxanthin on H2O2-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo. Brain Research, 2010. 1360: p. 40-48. 34. Yuan, J.P., et al., Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Molecular Nutrition &; Food Research, 2011. 55(1): p. 150-165. 35. Pashkow, F.J., D.G. Watumull, and C.L. Campbell, Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 2008. 101(10A): p. 58D-68D. 36. Ranga Rao, A., et al., In vivo bioavailability and antioxidant activity of carotenoids from microalgal biomass—A repeated dose study. Food Research International, 2013. 54(1): p. 711-717. 37. Rao, A.R., et al., Characterization of Microalgal Carotenoids by Mass Spectrometry and Their Bioavailability and Antioxidant Properties Elucidated in Rat Model. Journal of Agricultural and Food Chemistry, 2010. 58(15): p. 8553-8559. 38. Khodaiyan, F., S.H. Razavi, and S.M. Mousavi, Optimization of canthaxanthin production by Dietzia natronolimnaea HS-1 from cheese whey using statistical experimental methods. Biochemical Engineering Journal, 2008. 40(3): p. 415-422. 39. Haxo, F., Carotenoids of the mushroom Cantharellus cinnabarinus. Botanical Gazette, 1950: p. 228-232. 40. Nelis, H.J. and A.P. Deleenheer, Reinvestigation of Brevibacterium Sp Strain Ky-4313 as a Source of Canthaxanthin. Applied and Environmental Microbiology, 1989. 55(10): p. 2505-2510. 41. Tang, X.S., et al., Improvement of a CrtO-type of beta-carotene ketolase for canthaxanthin production in Methylomonas sp. Metab Eng, 2007. 9(4): p. 348-54. 42. Saperstein, S. and M.P. Starr, The ketonic carotenoid canthaxanthin isolated from a colour mutant of Corynebacterium michiganense. Biochem J, 1954. 57(2): p. 273-5. 43. Jayaraj, J., R. Devlin, and Z. Punja, Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Research, 2008. 17(4): p. 489-501. 44. Esfahani-Mashhour, M., et al., Evaluation of Coloring Potential of Dietzia natronolimnaea Biomass as Source of Canthaxanthin for Egg Yolk Pigmentation. Asian-Australasian Journal of Animal Sciences, 2009. 22(2): p. 254-259. 45. Katayama, T., et al., Carotenoids in the yellow-golden carp, Cyprinus carpio. Kagoshima Daigaku Suisan Gakubu Kiyo, 1973. 22(1): p. 39-45. 46. Gharibzahedi, S.M.T., S.H. Razavi, and S.M. Mousavi, Microbial canthaxanthin: Perspectives on biochemistry and biotechnological production. Engineering in Life Sciences, 2013. 13(4): p. 408-417. 47. Wennersten, G., Carotenoid treatment for light sensitivity: a reappraisal and six years' experience. Acta dermato-venereologica, 1979. 60(3): p. 251-255. 48. Sujak, A., et al., Studies on canthaxanthin in lipid membranes. Biochim Biophys Acta, 2005. 1712(1): p. 17-28. 49. Sajilata, M.G., R.S. Singhal, and M.Y. Kamat, The carotenoid pigment zeaxanthin—a review. Comprehensive reviews in food science and food safety, 2008. 7(1): p. 29-49. 50. Snodderly, D.M., Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. The American journal of clinical nutrition, 1995. 62(6): p. 1448S-1461S. 51. Moeller, S.M., P.F. Jacques, and J.B. Blumberg, The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr, 2000. 19(5 Suppl): p. 522S-527S. 52. Berry, A., et al., Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol, 2003. 53(Pt 1): p. 231-8. 53. Handelman, G.J., et al., Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. Am J Clin Nutr, 1999. 70(2): p. 247-51. 54. Chandler, L.A. and S.J. Schwartz, Hplc Separation of Cis-Trans Carotene Isomers in Fresh and Processed Fruits and Vegetables. Journal of Food Science, 1987. 52(3): p. 669-672. 55. Krinsky, N.I., et al., Structural and Geometrical-Isomers of Carotenoids in Human Plasma. Journal of Nutrition, 1990. 120(12): p. 1654-1662. 56. Patrick, L., Beta-carotene: the controversy continues. Altern Med Rev, 2000. 5(6): p. 530-45. 57. Schmitz, H.H., et al., Concentrations of selected carotenoids and vitamin A in human liver, kidney and lung tissue. J Nutr, 1991. 121(10): p. 1613-21. 58. Enger, S.M., et al., Dietary intake of specific carotenoids and vitamins A, C, and E, and prevalence of colorectal adenomas. Cancer Epidemiol Biomarkers Prev, 1996. 5(3): p. 147-53. 59. Cho, E., et al., Premenopausal intakes of vitamins A, C, and E, folate, and carotenoids, and risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 2003. 12(8): p. 713-20. 60. Wang, X.D. and R.M. Russell, Procarcinogenic and anticarcinogenic effects of beta-carotene. Nutr Rev, 1999. 57(9 Pt 1): p. 263-72. 61. Burton, G.W. and K.U. Ingold, Beta-Carotene - an Unusual Type of Lipid Antioxidant. Science, 1984. 224(4649): p. 569-573. 62. Rice-Evans, C.A., et al., Why do we expect carotenoids to be antioxidants in vivo? Free Radical Research, 1997. 26(4): p. 381-398. 63. Khachik, F., et al., Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Experimental Biology and Medicine, 2002. 227(10): p. 845-851. 64. Mackinnon, E.S., et al., Lycopene in the serum of postmenopausal women has interactive effects with the dietary components calcium and vitamin C on oxidative stress and bone turnover markers. Osteoporosis International, 2006. 17: p. S191-S192. 65. Clinton, S.K., Lycopene: Chemistry, biology, and implications for human health and disease. Nutrition Reviews, 1998. 56(2): p. 35-51. 66. Agarwal, A., et al., Lycopene Content of Tomato Products: Its Stability, Bioavailability and In Vivo Antioxidant Properties. J Med Food, 2001. 4(1): p. 9-15. 67. Chasse, G.A., et al., An ab initio computational study on selected lycopene isomers. Journal of Molecular Structure-Theochem, 2001. 571: p. 27-37. 68. Rao, A.V., N. Fleshner, and S. Agarwal, Serum and tissue lycopene and biomarkers of oxidation in prostate cancer patients: A case-control study. Nutrition and Cancer-an International Journal, 1999. 33(2): p. 159-164. 69. Chauhan, K., et al., LYCOPENE OF TOMATO FAME: ITS ROLE IN HEALTH AND DISEASE. International Journal of Pharmaceutical Sciences Review &; Research, 2011. 10. 70. Krinsky, N.I., Overview of lycopene, carotenoids, and disease prevention. Proc Soc Exp Biol Med, 1998. 218(2): p. 95-7. 71. Terao, J., Y. Minami, and N. Bando, Singlet molecular oxygen-quenching activity of carotenoids: relevance to protection of the skin from photoaging. J Clin Biochem Nutr, 2011. 48(1): p. 57-62. 72. Carocho, M. and I.C. Ferreira, A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol, 2013. 51: p. 15-25. 73. Palace, V.P., et al., Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radical Biology and Medicine, 1999. 26(5-6): p. 746-761. 74. Young, A.J. and G.M. Lowe, Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys, 2001. 385(1): p. 20-7. 75. Halliwell, B., Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 2006. 141(2): p. 312-322. 76. Scott, J., Pathophysiology and biochemistry of cardiovascular disease. Current Opinion in Genetics &; Development, 2004. 14(3): p. 271-279. 77. Korolainen, M.A., et al., Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brain. Neurobiology of Aging, 2006. 27(1): p. 42-53. 78. Montine, T.J., et al., Cerebrospinal fluid F2-isoprostanes are elevated in Huntington's disease. Neurology, 1999. 52(5): p. 1104-5. 79. Fasano, M., B. Bergamasco, and L. Lopiano, Modifications of the iron-neuromelanin system in Parkinson's disease. Journal of Neurochemistry, 2006. 96(4): p. 909-916. 80. Jay, D., H. Hitomi, and K.K. Griendling, Oxidative stress and diabetic cardiovascular complications. Free Radical Biology and Medicine, 2006. 40(2): p. 183-192. 81. Klaunig, J.E. and L.M. Kamendulis, The role of oxidative stress in carcinogenesis. Annual Review of Pharmacology and Toxicology, 2004. 44: p. 239-267. 82. Rahman, K., Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging, 2007. 2(2): p. 219-236. 83. Muller, F.L., et al., Trends in oxidative aging theories. Free Radic Biol Med, 2007. 43(4): p. 477-503. 84. Balaban, R.S., S. Nemoto, and T. Finkel, Mitochondria, oxidants, and aging. Cell, 2005. 120(4): p. 483-495. 85. Flora, S.J.S., Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative medicine and cellular longevity, 2009. 2(4): p. 191-206. 86. Arthur, J.R., The glutathione peroxidases. Cellular and Molecular Life Sciences, 2000. 57(13-14): p. 1825-1835. 87. Yin, H., L. Xu, and N.A. Porter, Free radical lipid peroxidation: mechanisms and analysis. Chem Rev, 2011. 111(10): p. 5944-72. 88. Reiter, R.J., et al., A review of the evidence supporting melatonin's role as an antioxidant. Journal of pineal research, 1995. 18(1): p. 1-11. 89. Chen, S.x. and P. Schopfer, Hydroxyl‐radical production in physiological reactions. European Journal of Biochemistry, 1999. 260(3): p. 726-735. 90. Briviba, K., L.O. Klotz, and H. Sies, Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biological Chemistry, 1997. 378(11): p. 1259-1265. 91. Terao, J., Y. Minami, and N. Bando, Singlet molecular oxygen-quenching activity of carotenoids: relevance to protection of the skin from photoaging. Journal of Clinical Biochemistry and Nutrition, 2011. 48(1): p. 57-62. 92. Cadenas, E. and H. Sies, Low-Level Chemi-Luminescence as an Indicator of Singlet Molecular-Oxygen in Biological-Systems. Methods in Enzymology, 1984. 105: p. 221-231. 93. Kiryu, C., et al., Physiological production of singlet molecular oxygen in the myeloperoxidase-H2O2-chloride system. Febs Letters, 1999. 443(2): p. 154-158. 94. Halliwell, B. and J.M.C. Gutteridge, Free radicals in biology and medicine. Vol. 3. 1999: Oxford university press Oxford. 95. Halliwell, B., Biochemistry of oxidative stress. Biochem Soc Trans, 2007. 35(Pt 5): p. 1147-50. 96. Khlebnikov, A.I., et al., Improved quantitative structure–activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorganic &; medicinal chemistry, 2007. 15(4): p. 1749-1770. 97. Mohdaly, A.A.A., et al., Antioxidant efficacy of potato peels and sugar beet pulp extracts in vegetable oils protection. Food Chemistry, 2010. 123(4): p. 1019-1026. 98. Elmastas, M., et al., Investigation of antioxidant properties of spearmint (Mentha spicata L.). Asian Journal of Chemistry, 2005. 17(1): p. 137-148. 99. Elmastas, M., et al., Antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta) from North Turkey. Comb Chem High Throughput Screen, 2006. 9(6): p. 443-8. 100. Koksal, E., et al., Antioxidant activity of Melissa officinalis leaves. Journal of Medicinal Plants Research, 2011. 5(2): p. 217-222. 101. Rodriguez-Amaya, D.B. and M. Kimura, HarvestPlus handbook for carotenoid analysis. 2004: International Food Policy Research Institute (IFPRI). 102. Taylor, R.F., Chromatography of carotenoids and retinoids. Advances in chromatography, 1983. 22: p. 157-213. 103. Miller, N.J., et al., A Novel Method for Measuring Antioxidant Capacity and Its Application to Monitoring the Antioxidant Status in Premature Neonates. Clinical Science, 1993. 84(4): p. 407-412. 104. Saeio, K., W. Chaiyana, and S. Okonogi, Antityrosinase and antioxidant activities of essential oils of edible Thai plants. Drug Discov Ther, 2011. 5(3): p. 144-9. 105. Miller, N.J., et al., A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond), 1993. 84(4): p. 407-12. 106. Re, R., et al., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 1999. 26(9-10): p. 1231-7. 107. Aliaga, C. and E.A. Lissi, Reactions of the radical cation derived from 2,2 '-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(.+)) with amino acids. Kinetics and mechanism. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 2000. 78(8): p. 1052-1059. 108. RiceEvans, C. and N. Miller, Measurement of the antioxidant status of dietary constituents, low density lipoproteins and plasma. Prostaglandins Leukotrienes and Essential Fatty Acids, 1997. 57(4-5): p. 499-505. 109. Miller, N.J., A.T. Diplock, and C.A. Rice-Evans, Evaluation of the total antioxidant activity as a marker of the deterioration of apple juice on storage. Journal of Agricultural and Food Chemistry, 1995. 43(7): p. 1794-1801. 110. Bartosz, G., et al., Simple determination of peroxyl radical-trapping capacity. Biochem Mol Biol Int, 1998. 46(3): p. 519-28. 111. Disalvo, E.A., et al., Surface changes induced by osmotic shrinkage on large unilamellar vesicles. Chem Phys Lipids, 1996. 84(1): p. 35-45. 112. Romay, C., C. Pascual, and E.A. Lissi, The reaction between ABTS radical cation and antioxidants and its use to evaluate the antioxidant status of serum samples. Braz J Med Biol Res, 1996. 29(2): p. 175-83. 113. Prior, R.L., X. Wu, and K. Schaich, Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem, 2005. 53(10): p. 4290-302. 114. Gil, M.I., et al., Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem, 2000. 48(10): p. 4581-9. 115. Proteggente, A.R., et al., The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Research, 2002. 36(2): p. 217-233. 116. Nielsen, I.L.F., et al., Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency. Journal of Agricultural and Food Chemistry, 2003. 51(20): p. 5861-5866. 117. Müller, L., K. Fröhlich, and V. Böhm, Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry, 2011. 129(1): p. 139-148. 118. Benzie, I.F.F. and J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of ''antioxidant power'': The FRAP assay. Anal Biochem, 1996. 239(1): p. 70-76. 119. Benzie, I.F.F. and J.J. Strain, Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Oxidants and Antioxidants, Pt A, 1999. 299: p. 15-27. 120. Benzie, I.F.F. and Y.T. Szeto, Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem, 1999. 47(2): p. 633-636. 121. Pulido, R., L. Bravo, and F. Saura-Calixto, Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem, 2000. 48(8): p. 3396-3402. 122. Müller, L., K. Fröhlich, and V. Böhm, Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry, 2011. 129(1): p. 139-148. 123. Tian, B., et al., Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence, 2004. 19(2): p. 78-84. 124. Muller, L., K. Theile, and V. Bohm, In vitro antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. Mol Nutr Food Res, 2010. 54(5): p. 731-42. 125. Marquette, C.A. and L.J. Blum, Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal Bioanal Chem, 2006. 385(3): p. 546-54. 126. Honzel, D., et al., Comparison of chemical and cell-based antioxidant methods for evaluation of foods and natural products: generating multifaceted data by parallel testing using erythrocytes and polymorphonuclear cells. J Agric Food Chem, 2008. 56(18): p. 8319-25. 127. Jensen, G.S., et al., In vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study. J Agric Food Chem, 2008. 56(18): p. 8326-33. 128. Buehler, P.W. and A.I. Alayash, Redox biology of blood revisited: the role of red blood cells in maintaining circulatory reductive capacity. Antioxid Redox Signal, 2005. 7(11-12): p. 1755-60. 129. Blasa, M., et al., The cellular antioxidant activity in red blood cells (CAA-RBC): A new approach to bioavailability and synergy of phytochemicals and botanical extracts. Food Chemistry, 2011. 125(2): p. 685-691. 130. Hampton, M.B. and S. Orrenius, Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett, 1997. 414(3): p. 552-6. 131. Creagh, E.M. and T.G. Cotter, Selective protection by hsp 70 against cytotoxic drug-, but not Fas-induced T-cell apoptosis. Immunology, 1999. 97(1): p. 36-44. 132. Oyama, Y., et al., Characterization of 2′, 7′-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide. Brain research, 1994. 635(1): p. 113-117. 133. Yang, Y., et al., Glutathione S-transferase-micro1 regulates vascular smooth muscle cell proliferation, migration, and oxidative stress. Hypertension, 2009. 54(6): p. 1360-8. 134. Trayner, I.D., et al., Quantitative multiwell myeloid differentiation assay using dichlorodihydrofluorescein diacetate (H2DCF-DA) or dihydrorhodamine 123 (H2R123). J Immunol Methods, 1995. 186(2): p. 275-84. 135. Wolfe, K.L. and R.H. Liu, Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem, 2007. 55(22): p. 8896-907. 136. Amer, J., A. Goldfarb, and E. Fibach, Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur J Haematol, 2003. 70(2): p. 84-90. 137. Rhee, S.G., et al., Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells, 2010. 29(6): p. 539-49. 138. Gomes, A., E. Fernandes, and J.L. Lima, Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods, 2005. 65(2-3): p. 45-80. 139. Crow, J.P., Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide, 1997. 1(2): p. 145-57. 140. Wang, H. and J.A. Joseph, Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med, 1999. 27(5-6): p. 612-6. 141. Kim, G.N. and H.D. Jang, Protective mechanism of quercetin and rutin using glutathione metabolism on HO-induced oxidative stress in HepG2 cells. Ann N Y Acad Sci, 2009. 1171: p. 530-7. 142. Amer, J., A. Goldfarb, and E. Fibach, Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells. Cytometry A, 2004. 60(1): p. 73-80. 143. Eruslanov, E. and S. Kusmartsev, Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol, 2010. 594: p. 57-72. 144. Cheli, F. and A. Baldi, Nutrition-based health: cell-based bioassays for food antioxidant activity evaluation. J Food Sci, 2011. 76(9): p. R197-205. 145. Yuan, J.P. and F. Chen, Isomerization of trans-astaxanthin to cis-isomers in organic solvents. J Agric Food Chem, 1999. 47(9): p. 3656-60. 146. Liu, X. and T. Osawa, Cis astaxanthin and especially 9- cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all- trans isomer. Biochemical and biophysical research communications, 2007. 357(1): p. 187-193. 147. Venugopalan, V., et al., Characterization of Canthaxanthin Isomers Isolated from a New Soil Dietzia sp. and Their Antioxidant Activities. J. Microbiol. Biotechnol, 2013. 23(2): p. 237-245. 148. El-Baky, H.H.A., F.K. El Baz, and G.S. El-Baroty, Enhancement of antioxidant production in Spirulina platensis under oxidative stress. Acta physiologiae plantarum, 2009. 31(3): p. 623-631. 149. Ambati, R.R., et al., Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review. Mar Drugs, 2014. 12(1): p. 128-52. 150. Huang, D., B. Ou, and R.L. Prior, The chemistry behind antioxidant capacity assays. J Agric Food Chem, 2005. 53(6): p. 1841-56. 151. Serrano, G.A., Y. Nishida, and V. Wood, Natural astaxanthin improves blood flow and fights high blood pressure. Agro Food Industry Hi-Tech, 2014. 25(2): p. 8-12.
|