[1] A. Derevianko and S. G. Porsev, "Theoretical overview of atomic parity violation ", Eur. Phys. J. A 32, 517 (2007).
[2] T. H. Dinh, A. Duning, A. Dunning, V. A. Dzuba and V. V. Flambaum, "Sensitivity of hyperfine structure to nuclear radius and quark mass variation", Phys. Rev. A 79, 054102 (2009).
[3] B. de Beauvoir, C. Schwob, O. Acef, L. Jozefowski, L. Hilco, F. Nez, L. Julien, A. Clairon, and F. Biraben, Eur. Phys. J. D 12, 61 (2000).
[4] O. Arnoult, F. Nez, C. Schwob, L. Julien, and P. Biraben, Can. J. Phys. 83, 273 (2005).
[5] Y. Y. Chen, T. W. Liu, C. M. Wu, C. C. Lee, C. K. Lee and W. Y. Cheng, "High-resolution 133Cs 6S-6D, 6S-8S two-photon spectroscopy using an intracavity scheme", Opt. Lett. 36, 76 (2011).
[6] M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley and P. Gill, "Measurement of the 2S1/2-2D5/2 clock transition in a single 171Yb+ ion", Phys. Rew. A 60, 2867 (1999).
[7] P. Fendel, S. D. Bergeson, Th. Udem, and T. W. Hänsch, "Two-photon frequency comb spectroscopy of the 6s–8s transition in cesium", Opt. Lett. 32, 701 (2007).
[8] D. W. Preston , "Doppler-free saturated absorption: Laser spectroscopy", Amer. J. of Phys. 64, 1432-1436 (1996).
[9] T.W. Hänsch, I.S. Shahin, and A.L. Schawlow, "High Resolution Saturation Spectroscopy of the Sodium D lines with a Pulsed Tunable Dye Laser", Phip. Rev. Letters, 27, 707 (1971).
[10] T. W. Hänsch, I. S. Shahin, and A. L. Schowlow, Optical resolution of the Lamb shift in atomic hydrogen by laser saturation spectroscopy, Nature 235, 63 (1972).
[11] A. L. Schawlow and C. H. Townes, "Infrared and optical masers", Phys. Rev. 112, 6, 1940 (1958).
[12] T. W. Hänsch and B. Couillaud, "Laser Frequency Stabilization By Polarization Spectroscopy of a Reflecting Reference Cavity", Opt. Commun. 35, 441(1980).
[13] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser Phase and Frequency Stabilization Using an Optical Resonator", Appl. Phys. B 31, 97 (1983).
[14] T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedilli, M. Weitz, and T. W. Hänsch, "Phase-Coherent Measurement of the Hydrogen 1S-2S Transition Frequency with an Optical Frequency Interval Divider Chain", Phys. Rev. Lett. 79, 2646 (1997).
[15] A. Arie and R. L. Byer, "Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm: errata," J. Opt. Soc. Am. B 11, 866 (1994).
[16] D. A. Jennings, C. R. Pollock, F. R. Petersen, R. E. Drullinger, K. M. Evenson, J. S. Wells, J. L. Hall, and H. P. Layer, "Direct frequency measurement of the I2-stabilized He–Ne 473-THz (633-nm) laser" Opt. Lett. 8, 3, 136-138 (1983).
[17] H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, "First Phase-Coherent Frequency Measurement of Visible Radiation", Phys. Rev. Lett. 76, 18–21 (1996).
[18] L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, and B. G. Whitford, "Precision frequency measurement of the 2S1/2-2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity", IEEE Trans. Instrum. Meas. 46,169-173 (1997).
[19] Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, "Towards an accurate frequency standard at λ778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium",Opt. Commun. 108, 91-96 (1994).
[20] K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi, "Accurate optical frequency atlas of 1.5 mm band of acetylene", J. Opt. Soc. Am. B, 13, 12, 2708 (1996).
[21] V. A. Alekseev, M. A. Gubin, and E. D. Protsenko, "High-Precision Optical Frequency Standards", Laser Phys. 1, 221–260 (1991).
[22] A. Clairon, B. Dahmani, A. Filimon, and J. Rutman, "Precise Frequenccy Measurements of CO2/OsO4 and HeNe/CH4-Stabilized Lasers", IEEE Trans. Instrum. Meas. 34, 265–268 (1985).
[23] K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson, G. W. Day, R. L. Barger and J. L. Hall, "Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser" Phys. Rev. Lett. 29, 1346–1349 (1972).
[24] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser", Phys. Rev. Lett. 82, 3568 (1999).
[25] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Accurate measurement of large optical frequency differences with a mode-locked laser", Opt. Lett. 24, 881 (1999).
[26] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff , "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis", Science 288, 635 (2000).
[27] S. T. Cundiff, J. Ye, and J. L. Hall, "Optical frequency synthesis based on mode-locked lasers", Rev. Sci. Instrum. 72, 3749 (2001).
[28] C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency Comb Vernier Spectroscopy for Broadband, High-Resolution, High-Sensitivity Absorption and Dispersion Spectra", Phys. Rev. Lett. 99, 263902 (2007).
[29] J. Hoffnagle, L.Ph. Roesch, N. Schlumpf, and A. Weis, Opt. Commun. 42, 267 (1982).
[30] P. P. Herrmann, J. Hoffnagle, A. Pedroni, N. Schlumpf, and A. Weis, "Doppler-free spectroscopy of the 8s state of Cs", Opt. Commun. 55, 22-24 (1985).
[31] M. Bellini, A. Bartoli, and T. W. Hänsch, "Two-photon Fourier spectroscopy with femtosecond light pulses", Opt. Lett. 22, 8 (1997).
[32] G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, "Accurate measurement of the frequency of the 6S–8S two-photon transitions in cesium", Opt. Commun. 160, 1(1999).
[33] O. S. Heavens, "Radiative Transition Probabilities of the Lower Excited States of the Alkali Metals", JOSA, 51, 10 (1961)..
[34] K. Sasaki, K. Sugiyama, V. Barychev, and A. Onae, "Two-Photon Spectroscopy of the 6S-8S Transitions in Cesium using an Extended-Cavity Diode Laser", Jpn. J. Appl. Phys., Part 1 39, 5310 (2000).
[35] A. Sieradzan, M. D. Havey, and M. S. Safranova, "Combined experimental and theoretical study of the 6p2Pj→8s2S1/2 relative transition matrix elements in atomic Cs", Phys. Rev. A 69, 022502 (2004).
[36] C. Y. Cheng, C. M. Wu, G. B. Liao, and W. Y. Cheng, "Cesium 6S1/2→8S1/2 two-photon-transition-stabilized 822.5nm diode laser", Opt. Lett. 32, 563 (2007).
[37] Y. C. Lee, Y. H. Chang, Y. Y. Chen, C. C. Tsai, and H. C. Chui, "Polarization and pressure effects in caesium 6S–8S two-photon spectroscopy", J. Phys. B: At. Mol. Opt. Phys, 43, 235003 (2010).
[38] Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, "Effects of light on cesium 6S–8S two-photon transition", Opt. Commun. 283, 1788-1791 (2010).
[39] T. Uehara, K. Sugiyama, and M. Kitano, "Frequency stabilization of laser diode to the 6S-8S two-photon transitions in cesium atoms in a vapor cell placed in an external cavity", 2012 Conference on Precision Electromagnetic Measurements (CPEM). IEEE (2012).
[40] D. A. Steck , "Cesium D Line Data", http://steck.us/alkalidata/ (2002).
[41] G. Grynberg, "Doppler-free multi-photon excitation : light shift and saturation", J. Phys. France 40, 657-664 (1979).
[42] B. J. Sussman, "Five ways to the nonresonant dynamic Stark effect", Am. J. Phys. 79, 5, 477 (2011).
[43] T. Halfmann, T. Rickes, N.V. Vitanov1, and K. Bergmann, "Lineshapes in coherent two-photon excitation", Opt. Commun. 220, 353 (2003).
[44] G Grynberg and B Cagnac, "Doppler-free multiphotonic spectroscopy", Rep. Prog. Phys. 40 791 (1977).
[45] D. L. Moskovkin and V. M. Shabaev, "Zeeman effect of the hyperfine structure levels in hydrogenlike ions", Phys. Rev. A 73, 052506 (2006).
[46] W. Demtröder, "Laser Spectroscopy", Springer, 3rd Edition, Ch3 (2002).
[47] B. Cagnac, G. Grynberg, and F. Biraben, "Multiphoton absorption spectroscopy without Doppler broadening", J. Phys. 34, 845–858 (1973).
[48] N. K. Dutta and G. P. Agrawal, "Semiconductor Lasers", Van Nostrad Reinhold, 2nd Edition (1993).
[49] C. E. Wieman and L. W. Hollberg, "Using diode lasers for atomic physics", Rev. Sci. Instrum. 62 (l), January (1991).
[50] K. G. Libbrecht and J. L. Hall, "A low-noise high-speed diode laser current controller ", Rev. Sci. Instrum. 64, 2133 (1993).
[51] Richard W. Fox, Chris W. Oates, and L. W. Hollberg, "Stabilizing diode lasers to high-finesse cavities", Exp. Methods in the Phys. Sci. Cavity-Enhanced Spectroscopies, Ch. 1, 40, 46, (2001).
[52] C. J. Hawthorn, K. P. Weber, and R. E. Scholten, "Littrow configuration tunable external cavity diode laser with fixed direction output beam", Rev. Sci. Instrum. 72 (12), 4477 (2001).
[53] K. Liu and M. G. Littman, "Novel geometry for single-mode scanning of tunable lasers", Opt. Lett. 6 (3), 117 (1981).
[54] A.S. Arnold, J.S. Wilson and M.G. Boshier, "A simple extended-cavity diode laser", Rev. Sci. Instrum. 69, 3, 1236 (1998).
[55] M. W. Fleming and A. Mooradian, "Spectral characteristics of external-cavity controlled semiconductor lasers", IEEE J. Quantum Electron. 17, 44–59 (1981).
[56] C. Henry, "Theory of the linewidth of semiconductor lasers", IEEE J. Quantum Electron. 18, 259–264 (1982).
[57] S. D. Saliba and R. E. Scholten, "Linewidths below 100 kHz with external cavity diode lasers", Apl. Opt. 48, 36, 6961 (2009).
[58] C. J. Erickson, M. Van Zijll, G. Doermann, and D. S. Durfee, "An ultrahigh stability, low-noise laser current driver with digital control", Rev. Sci. Instrum. 79, 073107 (2008).
[59] D. L. Troxel, C. J. Erickson, and D. S. Durfeea, "Note: Updates to an ultra-low noise laser current driver", Rev. Sci. Instrum. 82, 096101 (2011).
[60] Eric D. Black, "An introduction to Pound–Drever–Hall laser frequency stabilization", Am. J. Phys. 69, 1,79 (2001).
[61] R. V. Pound, "Electronic frequency stabilization of microwave oscillators", Rev. Sci. Instrum. 17, 490-505 (1946).
[62] D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogeneous laser-part I: theory," IEEE J. Quantum Electron. QE6, 694-708 (1970).
[63] H. W. Mocker and R. J. Collins, "Mode competition and self-locking effects in a Q-switched ruby laser", Appl. Phys. Lett. 7, 270-272 (1965).
[64] D. E. Spence, P. N. Kean, and W. Sibbett, "60 fsec pulse generation by a dispersion-compensated, coupled-cavity, mode-locked Ti:sapphire laser", Opt. Lett. 16, 42-44 (1991).
[65] 李明翰, "飛秒光頻梳的改進", 清華大學物理所碩士論文 (2008).[66] R. Ramaswami, K. Sivarajan, "Optical Networks: A Practical Perspective", Elsevier Science & Technology Books (1998).
[67] F. Salin, A. Brun, "Dispersion compensation for femtosecond pulses using high index prisms", J. Appl. Phys. 61, 10 (1987).
[68] H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, "Astigmatically Compensated Cavities for CW Dye Lasers", IEEE Journal of Quantum Elecronics QE-8, NO. 3, 373-379 (1972).
[69] "Construction of a femtosecond mode-locked laser", http://www.df.unipi.it/~fisapp/Gruppi/Metrologia/spiegazioni/boris.pdf
[70] M. C. Stowe, "Direct Frequency Comb Spectroscopy and High-Resolution Coherent Control", Doctor of Philosophy thesis, Department of Physics, University of Colorado (2008).
[71] H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, "Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb", Opt. Express 14, 12, 5223 (2006).
[72] L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements", IEEE J. Sel. Top. Quantum Electron. 9, 1066 (2003).
[73] J.-L. Peng and R.-H. Shu, "Determination of absolute mode number using two mode-locked laser combs in optical frequency metrology", Opt. Exp. 15, 4485 (2007).
[74] J.-L. Peng, T.-A. Liu, and R.-H. Shu, "Optical frequency counter based on two mode-locked fiber laser combs" Appl. Phys. B 92, 4, 513 (2008).
[75] The website of Stanford Research Systems.
http://www.thinksrs.com/products/PRS10.htm
[76] K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, "Intensity-related dynamics of femtosecond frequency combs", Opt. Lett. 28, 10, 851 (2003).
[77] D.R. Walker, Th. Udem, Ch. Gohle, B. Stein, and T.W. Hänsch, "Frequency dependence of the fixed point in a fluctuating frequency comb." App. Phy. B, 89, 4, 535-538 (2007).
[78] F. Biraben, M. Bassini, and B. Cagnac, "Line-shapes in Doppler-free two-photon spectroscopy. The effect of finite transit time", J. Phys. France 40, 445-455 (1979).
[79] B. Girard, G. O. Sitz, R. N. Zare, N. Billy, and J. Vigué, "Polarization dependence of the ac Stark effect in multiphoton transitions of diatomic molecules", J. Chem. Phys. 97, 26-41 (1992).
[80] A. N. Nesmeyanov, and R. Gary, "Vapor Pressure of the Chemical Elements" Elsevier, Amsterdam, (1963).
[81] J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, "Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor" Phy. Rev. A 81, 043840 (2010).
[82] Li Jin, Y. C. Zhang, S. S. Xiang, L. R. Wang, L. Ma, Y. T. Zhao, L. T. Xiao, and S. T. Jia, "Experimental Measurement of the Absolute Frequencies and Hyperfine Coupling Constants of 133Cs Using a Femtosecond Optical Frequency Comb" Chin. Phys. Lett. 30, 10, 103201 (2013).
[83] C. M. Wu, T. W. Liu, M. H. Wu, R. K. Lee, and W. Y. Cheng, "Absolute frequency of cesium 6S-8S 822-nm two-photon transition by a high-resolution scheme", Opt. Lett. 38, 3186 (2013).
[84] A. Marian, M. C. Stowe, D. Felinto, and J. Ye, "Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics", Phys. Rev. Lett. 95, 023001, 1-4 (2005).
[85] S. Reinhardt, E. Peters, T. W. Hänsch, and Th. Udem, "Two-photon direct frequency comb spectroscopy with chirped pulses" Phy. Rev. A 81, 033427 (2010).
[86] E. Peters, D. C. Yost, A. Matveev, T. W. Hänsch, and T. Udem, "Frequency-comb spectroscopy of the hydrogen 1S-3S and 1S-3D transitions", Ann. Phys. (Berlin) 525, 7, 29–34 (2013).
[87] P. Morzynski, P. Wcislo, P. Ablewski, R. Gartman, W. Gawlik, P. Maslowski, B. Nagórny, F. Ozimek, C. Radzewicz, M. Witkowski, R. Ciurylo, and M. Zawada, "Absolute frequency measurement of rubidium 5S–7S two-photon transitions", Opt. Lett. 38, 22, 4581 (2013).
[88] I. Barmes, S. Witte, and K. S. E. "Eikema, High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses", Phys. Rev. Lett. 111, 023007 (2013).
[89] W. Y. Cheng, T. H. Wu, S. W. Huang, S. Y. Lin, and C. M. Wu, "Stabilizing the frequency of femtosecond Ti:sapphire comb laser by novel scheme", Appl. Phys. B 92, 13-18 (2008).
[90] A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, "Direct frequency comb spectroscopy in the extreme ultraviolet", Nature, 482, 68 (2012).
[91] A. Schliesser, N. Picqué, and T. W. Hänsch, "Mid-infrared frequency combs", Nature Photonics, 6, 440, (2012).
[92] I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent multiheterodyne spectroscopy using stabilized optical frequency combs", Phys. Rev. Lett. 100, 013902 (2008).
[93] L. Gausset, G. Herzberg, A. Lagerqvist and B. Rosen, "Spectrum of the C3 molecule", Discuss. Faraday Soc. 35, 113 (1963).