跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/14 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳建明
論文名稱:光頻梳雷射系統與銫原子6S-8S雙光子躍遷光譜
論文名稱(外文):Optical frequency comb laser system and Cesium 6S-8S two-photon transition spectroscopy
指導教授:李瑞光李瑞光引用關係鄭王曜
學位類別:博士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:124
中文關鍵詞:光頻梳雷射半導體雷射銫原子雙光子躍遷絕對頻率穩頻雷射
相關次數:
  • 被引用被引用:2
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:1
銫原子6S-8S雙光子躍遷是個相當優質的譜線,它不受一階磁場效應的干擾,也可以很輕易的消除一階都卜勒效應。在研究價值上,它可以用來驗證與研究相當多的物理定律,如宇稱不守恆與夸克質量是否會改變等。在應用方面,它有潛力成為一個可靠且輕巧的光頻率標準源。
本篇論文建立了穩頻半導體雷射系統與光頻梳雷射系統來研究此躍遷,透過一個電光調制器我們同時達成了鎖頻兼掃頻的任務,在Pound-Drever- Hall的技術下我們縮減了雷射線寬而一步一步描繪出高解析的光譜,透過函數擬合光譜訊號以及以銫原子鐘為基準的光頻梳雷射測量掃頻雷射的頻率,我們得出5 kHz量測不準度的躍遷頻率中心值,但是我們的量測結果與德國Max Planck研究所的Hänsch團隊有著4σ的差異。為了找出這個差異的原因,我們檢驗了10支實驗室裡的銫原子氣室之躍遷絕對頻率,其中有些氣室來自不同的製造公司,修正了已知的頻率偏移效應後,我們發現這些氣室所量測到的躍遷絕對頻率可以差距到400 kHz,而且絕對頻率的差距與螢光線寬有高度正相關性。我們最終選取兩個線寬最窄也最接近理論計算的氣室,以其量測值的平均來決定出躍遷絕對頻率,並且將不準度保守評估為10 kHz。這個成果發表在2013年的Optics Letters期刊上,並且獲得美國光學學會選為8月份的Spotlight on Optics。
此外,我們藉著調制雷射相位,進行了雙光子躍遷量子干涉的觀測。我們觀察到原本單純的雙光子光譜出現了許多新的光譜訊號,這些訊號不僅強度隨著調制深度而有變化外還伴隨著干涉的效應,因此在適當的條件下,即使載波的雷射頻率仍存在,但螢光訊號卻幾乎消失,證實了破壞性量子干涉的存在。

誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表格目錄 xi
Chapter 1 簡介 1
1.1 研究動機 1
1.2 穩頻雷射與頻率標準 2
1.3 光頻測量與光頻梳雷射的發明 3
1.4 銫原子6S-8S雙光子躍遷重要歷史文獻 6
1.5 本論文的導覽 8
Chapter 2 銫原子與雙光子躍遷原理 10
2.1 銫原子的性質與能階介紹 10
2.1.1 銫原子的性質 10
2.1.2 超精細結構 11
2.1.3 銫原子6S-8S雙光子躍遷 12
2.2 Doppler-free雙光子躍遷理論 13
2.2.1 雙光子譜線增寬效應 14
2.2.2 頻率偏移 16
2.3 雙光子躍遷干涉 20
Chapter 3 半導體穩頻雷射系統 25
3.1 半導體雷射簡介 25
3.2 外腔式半導體雷射 31
3.3 共振腔與Pound-Drever-Hall穩頻法 36
3.3.1 自製共振腔 37
3.3.2 PDH穩頻法 39
3.3.3 半導體雷射鎖頻數據分析 45
Chapter 4 光頻梳雷射系統與光頻率量測 49
4.1 鎖模脈衝雷射 49
4.2 鈦藍寶石鎖模雷射實驗架設 56
4.3 光頻梳雷射系統 63
4.4 雷射頻率量測 68
4.5 光頻梳雷射實驗數據分析 74
4.5.1 光頻梳雷射運作性質 74
4.5.2 光頻梳雷射鎖頻分析 75
Chapter 5 雙光子光譜實驗與絕對頻率量測 81
5.1 干涉光譜實驗 81
5.1.1 螢光強度隨調制深度的改變 82
5.1.2 頻率調制與調制偏移 85
5.2 雙光子高解析光譜實驗 88
5.2.1 實驗架設 88
5.2.2 光譜訊號與函數擬合 92
5.2.3 譜線增寬分析 98
5.2.4 躍遷頻率偏移數據 100
5.3 雙光子躍遷絕對頻率量測 104
5.4 絕對頻率數據之比較 108
Chapter 6 總結 112
6.1 總結與討論 112
6.2 未來工作與應用 114
6.2.1 可攜式光頻梳雷射 114
6.2.2 多重外差光梳光譜 115
參考資料: 118

[1] A. Derevianko and S. G. Porsev, "Theoretical overview of atomic parity violation ", Eur. Phys. J. A 32, 517 (2007).
[2] T. H. Dinh, A. Duning, A. Dunning, V. A. Dzuba and V. V. Flambaum, "Sensitivity of hyperfine structure to nuclear radius and quark mass variation", Phys. Rev. A 79, 054102 (2009).
[3] B. de Beauvoir, C. Schwob, O. Acef, L. Jozefowski, L. Hilco, F. Nez, L. Julien, A. Clairon, and F. Biraben, Eur. Phys. J. D 12, 61 (2000).
[4] O. Arnoult, F. Nez, C. Schwob, L. Julien, and P. Biraben, Can. J. Phys. 83, 273 (2005).
[5] Y. Y. Chen, T. W. Liu, C. M. Wu, C. C. Lee, C. K. Lee and W. Y. Cheng, "High-resolution 133Cs 6S-6D, 6S-8S two-photon spectroscopy using an intracavity scheme", Opt. Lett. 36, 76 (2011).
[6] M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley and P. Gill, "Measurement of the 2S1/2-2D5/2 clock transition in a single 171Yb+ ion", Phys. Rew. A 60, 2867 (1999).
[7] P. Fendel, S. D. Bergeson, Th. Udem, and T. W. Hänsch, "Two-photon frequency comb spectroscopy of the 6s–8s transition in cesium", Opt. Lett. 32, 701 (2007).
[8] D. W. Preston , "Doppler-free saturated absorption: Laser spectroscopy", Amer. J. of Phys. 64, 1432-1436 (1996).
[9] T.W. Hänsch, I.S. Shahin, and A.L. Schawlow, "High Resolution Saturation Spectroscopy of the Sodium D lines with a Pulsed Tunable Dye Laser", Phip. Rev. Letters, 27, 707 (1971).
[10] T. W. Hänsch, I. S. Shahin, and A. L. Schowlow, Optical resolution of the Lamb shift in atomic hydrogen by laser saturation spectroscopy, Nature 235, 63 (1972).
[11] A. L. Schawlow and C. H. Townes, "Infrared and optical masers", Phys. Rev. 112, 6, 1940 (1958).
[12] T. W. Hänsch and B. Couillaud, "Laser Frequency Stabilization By Polarization Spectroscopy of a Reflecting Reference Cavity", Opt. Commun. 35, 441(1980).
[13] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser Phase and Frequency Stabilization Using an Optical Resonator", Appl. Phys. B 31, 97 (1983).
[14] T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedilli, M. Weitz, and T. W. Hänsch, "Phase-Coherent Measurement of the Hydrogen 1S-2S Transition Frequency with an Optical Frequency Interval Divider Chain", Phys. Rev. Lett. 79, 2646 (1997).
[15] A. Arie and R. L. Byer, "Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm: errata," J. Opt. Soc. Am. B 11, 866 (1994).
[16] D. A. Jennings, C. R. Pollock, F. R. Petersen, R. E. Drullinger, K. M. Evenson, J. S. Wells, J. L. Hall, and H. P. Layer, "Direct frequency measurement of the I2-stabilized He–Ne 473-THz (633-nm) laser" Opt. Lett. 8, 3, 136-138 (1983).
[17] H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, "First Phase-Coherent Frequency Measurement of Visible Radiation", Phys. Rev. Lett. 76, 18–21 (1996).
[18] L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, and B. G. Whitford, "Precision frequency measurement of the 2S1/2-2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity", IEEE Trans. Instrum. Meas. 46,169-173 (1997).
[19] Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, "Towards an accurate frequency standard at λ778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium",Opt. Commun. 108, 91-96 (1994).
[20] K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi, "Accurate optical frequency atlas of 1.5 mm band of acetylene", J. Opt. Soc. Am. B, 13, 12, 2708 (1996).
[21] V. A. Alekseev, M. A. Gubin, and E. D. Protsenko, "High-Precision Optical Frequency Standards", Laser Phys. 1, 221–260 (1991).
[22] A. Clairon, B. Dahmani, A. Filimon, and J. Rutman, "Precise Frequenccy Measurements of CO2/OsO4 and HeNe/CH4-Stabilized Lasers", IEEE Trans. Instrum. Meas. 34, 265–268 (1985).
[23] K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson, G. W. Day, R. L. Barger and J. L. Hall, "Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser" Phys. Rev. Lett. 29, 1346–1349 (1972).
[24] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser", Phys. Rev. Lett. 82, 3568 (1999).
[25] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Accurate measurement of large optical frequency differences with a mode-locked laser", Opt. Lett. 24, 881 (1999).
[26] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff , "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis", Science 288, 635 (2000).
[27] S. T. Cundiff, J. Ye, and J. L. Hall, "Optical frequency synthesis based on mode-locked lasers", Rev. Sci. Instrum. 72, 3749 (2001).
[28] C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency Comb Vernier Spectroscopy for Broadband, High-Resolution, High-Sensitivity Absorption and Dispersion Spectra", Phys. Rev. Lett. 99, 263902 (2007).
[29] J. Hoffnagle, L.Ph. Roesch, N. Schlumpf, and A. Weis, Opt. Commun. 42, 267 (1982).
[30] P. P. Herrmann, J. Hoffnagle, A. Pedroni, N. Schlumpf, and A. Weis, "Doppler-free spectroscopy of the 8s state of Cs", Opt. Commun. 55, 22-24 (1985).
[31] M. Bellini, A. Bartoli, and T. W. Hänsch, "Two-photon Fourier spectroscopy with femtosecond light pulses", Opt. Lett. 22, 8 (1997).
[32] G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, "Accurate measurement of the frequency of the 6S–8S two-photon transitions in cesium", Opt. Commun. 160, 1(1999).
[33] O. S. Heavens, "Radiative Transition Probabilities of the Lower Excited States of the Alkali Metals", JOSA, 51, 10 (1961)..
[34] K. Sasaki, K. Sugiyama, V. Barychev, and A. Onae, "Two-Photon Spectroscopy of the 6S-8S Transitions in Cesium using an Extended-Cavity Diode Laser", Jpn. J. Appl. Phys., Part 1 39, 5310 (2000).
[35] A. Sieradzan, M. D. Havey, and M. S. Safranova, "Combined experimental and theoretical study of the 6p2Pj→8s2S1/2 relative transition matrix elements in atomic Cs", Phys. Rev. A 69, 022502 (2004).
[36] C. Y. Cheng, C. M. Wu, G. B. Liao, and W. Y. Cheng, "Cesium 6S1/2→8S1/2 two-photon-transition-stabilized 822.5nm diode laser", Opt. Lett. 32, 563 (2007).
[37] Y. C. Lee, Y. H. Chang, Y. Y. Chen, C. C. Tsai, and H. C. Chui, "Polarization and pressure effects in caesium 6S–8S two-photon spectroscopy", J. Phys. B: At. Mol. Opt. Phys, 43, 235003 (2010).
[38] Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, "Effects of light on cesium 6S–8S two-photon transition", Opt. Commun. 283, 1788-1791 (2010).
[39] T. Uehara, K. Sugiyama, and M. Kitano, "Frequency stabilization of laser diode to the 6S-8S two-photon transitions in cesium atoms in a vapor cell placed in an external cavity", 2012 Conference on Precision Electromagnetic Measurements (CPEM). IEEE (2012).
[40] D. A. Steck , "Cesium D Line Data", http://steck.us/alkalidata/ (2002).
[41] G. Grynberg, "Doppler-free multi-photon excitation : light shift and saturation", J. Phys. France 40, 657-664 (1979).
[42] B. J. Sussman, "Five ways to the nonresonant dynamic Stark effect", Am. J. Phys. 79, 5, 477 (2011).
[43] T. Halfmann, T. Rickes, N.V. Vitanov1, and K. Bergmann, "Lineshapes in coherent two-photon excitation", Opt. Commun. 220, 353 (2003).
[44] G Grynberg and B Cagnac, "Doppler-free multiphotonic spectroscopy", Rep. Prog. Phys. 40 791 (1977).
[45] D. L. Moskovkin and V. M. Shabaev, "Zeeman effect of the hyperfine structure levels in hydrogenlike ions", Phys. Rev. A 73, 052506 (2006).
[46] W. Demtröder, "Laser Spectroscopy", Springer, 3rd Edition, Ch3 (2002).
[47] B. Cagnac, G. Grynberg, and F. Biraben, "Multiphoton absorption spectroscopy without Doppler broadening", J. Phys. 34, 845–858 (1973).
[48] N. K. Dutta and G. P. Agrawal, "Semiconductor Lasers", Van Nostrad Reinhold, 2nd Edition (1993).
[49] C. E. Wieman and L. W. Hollberg, "Using diode lasers for atomic physics", Rev. Sci. Instrum. 62 (l), January (1991).
[50] K. G. Libbrecht and J. L. Hall, "A low-noise high-speed diode laser current controller ", Rev. Sci. Instrum. 64, 2133 (1993).
[51] Richard W. Fox, Chris W. Oates, and L. W. Hollberg, "Stabilizing diode lasers to high-finesse cavities", Exp. Methods in the Phys. Sci. Cavity-Enhanced Spectroscopies, Ch. 1, 40, 46, (2001).
[52] C. J. Hawthorn, K. P. Weber, and R. E. Scholten, "Littrow configuration tunable external cavity diode laser with fixed direction output beam", Rev. Sci. Instrum. 72 (12), 4477 (2001).
[53] K. Liu and M. G. Littman, "Novel geometry for single-mode scanning of tunable lasers", Opt. Lett. 6 (3), 117 (1981).
[54] A.S. Arnold, J.S. Wilson and M.G. Boshier, "A simple extended-cavity diode laser", Rev. Sci. Instrum. 69, 3, 1236 (1998).
[55] M. W. Fleming and A. Mooradian, "Spectral characteristics of external-cavity controlled semiconductor lasers", IEEE J. Quantum Electron. 17, 44–59 (1981).
[56] C. Henry, "Theory of the linewidth of semiconductor lasers", IEEE J. Quantum Electron. 18, 259–264 (1982).
[57] S. D. Saliba and R. E. Scholten, "Linewidths below 100 kHz with external cavity diode lasers", Apl. Opt. 48, 36, 6961 (2009).
[58] C. J. Erickson, M. Van Zijll, G. Doermann, and D. S. Durfee, "An ultrahigh stability, low-noise laser current driver with digital control", Rev. Sci. Instrum. 79, 073107 (2008).
[59] D. L. Troxel, C. J. Erickson, and D. S. Durfeea, "Note: Updates to an ultra-low noise laser current driver", Rev. Sci. Instrum. 82, 096101 (2011).
[60] Eric D. Black, "An introduction to Pound–Drever–Hall laser frequency stabilization", Am. J. Phys. 69, 1,79 (2001).
[61] R. V. Pound, "Electronic frequency stabilization of microwave oscillators", Rev. Sci. Instrum. 17, 490-505 (1946).
[62] D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogeneous laser-part I: theory," IEEE J. Quantum Electron. QE6, 694-708 (1970).
[63] H. W. Mocker and R. J. Collins, "Mode competition and self-locking effects in a Q-switched ruby laser", Appl. Phys. Lett. 7, 270-272 (1965).
[64] D. E. Spence, P. N. Kean, and W. Sibbett, "60 fsec pulse generation by a dispersion-compensated, coupled-cavity, mode-locked Ti:sapphire laser", Opt. Lett. 16, 42-44 (1991).
[65] 李明翰, "飛秒光頻梳的改進", 清華大學物理所碩士論文 (2008).
[66] R. Ramaswami, K. Sivarajan, "Optical Networks: A Practical Perspective", Elsevier Science & Technology Books (1998).
[67] F. Salin, A. Brun, "Dispersion compensation for femtosecond pulses using high index prisms", J. Appl. Phys. 61, 10 (1987).
[68] H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, "Astigmatically Compensated Cavities for CW Dye Lasers", IEEE Journal of Quantum Elecronics QE-8, NO. 3, 373-379 (1972).
[69] "Construction of a femtosecond mode-locked laser", http://www.df.unipi.it/~fisapp/Gruppi/Metrologia/spiegazioni/boris.pdf
[70] M. C. Stowe, "Direct Frequency Comb Spectroscopy and High-Resolution Coherent Control", Doctor of Philosophy thesis, Department of Physics, University of Colorado (2008).
[71] H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, "Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb", Opt. Express 14, 12, 5223 (2006).
[72] L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements", IEEE J. Sel. Top. Quantum Electron. 9, 1066 (2003).
[73] J.-L. Peng and R.-H. Shu, "Determination of absolute mode number using two mode-locked laser combs in optical frequency metrology", Opt. Exp. 15, 4485 (2007).
[74] J.-L. Peng, T.-A. Liu, and R.-H. Shu, "Optical frequency counter based on two mode-locked fiber laser combs" Appl. Phys. B 92, 4, 513 (2008).
[75] The website of Stanford Research Systems.
http://www.thinksrs.com/products/PRS10.htm
[76] K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, "Intensity-related dynamics of femtosecond frequency combs", Opt. Lett. 28, 10, 851 (2003).
[77] D.R. Walker, Th. Udem, Ch. Gohle, B. Stein, and T.W. Hänsch, "Frequency dependence of the fixed point in a fluctuating frequency comb." App. Phy. B, 89, 4, 535-538 (2007).
[78] F. Biraben, M. Bassini, and B. Cagnac, "Line-shapes in Doppler-free two-photon spectroscopy. The effect of finite transit time", J. Phys. France 40, 445-455 (1979).
[79] B. Girard, G. O. Sitz, R. N. Zare, N. Billy, and J. Vigué, "Polarization dependence of the ac Stark effect in multiphoton transitions of diatomic molecules", J. Chem. Phys. 97, 26-41 (1992).
[80] A. N. Nesmeyanov, and R. Gary, "Vapor Pressure of the Chemical Elements" Elsevier, Amsterdam, (1963).
[81] J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, "Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor" Phy. Rev. A 81, 043840 (2010).
[82] Li Jin, Y. C. Zhang, S. S. Xiang, L. R. Wang, L. Ma, Y. T. Zhao, L. T. Xiao, and S. T. Jia, "Experimental Measurement of the Absolute Frequencies and Hyperfine Coupling Constants of 133Cs Using a Femtosecond Optical Frequency Comb" Chin. Phys. Lett. 30, 10, 103201 (2013).
[83] C. M. Wu, T. W. Liu, M. H. Wu, R. K. Lee, and W. Y. Cheng, "Absolute frequency of cesium 6S-8S 822-nm two-photon transition by a high-resolution scheme", Opt. Lett. 38, 3186 (2013).
[84] A. Marian, M. C. Stowe, D. Felinto, and J. Ye, "Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics", Phys. Rev. Lett. 95, 023001, 1-4 (2005).
[85] S. Reinhardt, E. Peters, T. W. Hänsch, and Th. Udem, "Two-photon direct frequency comb spectroscopy with chirped pulses" Phy. Rev. A 81, 033427 (2010).
[86] E. Peters, D. C. Yost, A. Matveev, T. W. Hänsch, and T. Udem, "Frequency-comb spectroscopy of the hydrogen 1S-3S and 1S-3D transitions", Ann. Phys. (Berlin) 525, 7, 29–34 (2013).
[87] P. Morzynski, P. Wcislo, P. Ablewski, R. Gartman, W. Gawlik, P. Maslowski, B. Nagórny, F. Ozimek, C. Radzewicz, M. Witkowski, R. Ciurylo, and M. Zawada, "Absolute frequency measurement of rubidium 5S–7S two-photon transitions", Opt. Lett. 38, 22, 4581 (2013).
[88] I. Barmes, S. Witte, and K. S. E. "Eikema, High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses", Phys. Rev. Lett. 111, 023007 (2013).
[89] W. Y. Cheng, T. H. Wu, S. W. Huang, S. Y. Lin, and C. M. Wu, "Stabilizing the frequency of femtosecond Ti:sapphire comb laser by novel scheme", Appl. Phys. B 92, 13-18 (2008).
[90] A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, "Direct frequency comb spectroscopy in the extreme ultraviolet", Nature, 482, 68 (2012).
[91] A. Schliesser, N. Picqué, and T. W. Hänsch, "Mid-infrared frequency combs", Nature Photonics, 6, 440, (2012).
[92] I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent multiheterodyne spectroscopy using stabilized optical frequency combs", Phys. Rev. Lett. 100, 013902 (2008).
[93] L. Gausset, G. Herzberg, A. Lagerqvist and B. Rosen, "Spectrum of the C3 molecule", Discuss. Faraday Soc. 35, 113 (1963).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top