(3.236.222.124) 您好!臺灣時間:2021/05/14 16:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林志豪
研究生(外文):Lin, Chih-Hao
論文名稱:遭外部擾動量子點半導體雷射之本質參數量測 與穩定性分析
論文名稱(外文):Intrinsic Parameter Extraction and Stability Analysis on Quantum Dot Semiconductor Lasers with External Perturbations
指導教授:林凡異
指導教授(外文):Lin, Fan-Yi
學位類別:博士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:104
中文關鍵詞:本質參數線寬增益係數穩態分析四波混頻分析量子點雷射外部擾動
外文關鍵詞:Intrinsic parameterLinewidth enhancement factorStability analysisFour-wave mixing analysisQuantum dot laserExternal perturbations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是利用穩態分析以及四波混頻分析來探討雷射的鬆弛震盪特性以及遭外界微小干擾時的行為。其中四波混頻分析還能用來量測本質參數,進而探討半導體雷射動態行為。藉由量測外界擾動對本質參數的影響,我們能夠更深入地研究雷射動態行為在有外界擾動時的改變。
在這篇論文中,我們將線性穩態分析套用在量子點雷射和量子井雷射上。光注入下以及未受外界擾動的情形也分別加以探討。藉由從內部微擾推導出的特徵方程式,我們可以得知雷射的鬆弛震盪頻率以及衰減係數。從不同偏壓電流、線寬增益係數、光注入強度、以及調頻頻率下的衰減係數可以得知量子點雷射有比量子井雷射更好的穩定性。另外,光回饋下量子點雷射的穩定性及動態行為也有用數值模擬的方式探討。
為了探討在四波混頻分析的過程中雷射對外部微擾的反應,我們推導了光注入下以及未受外界擾動的量子點雷射和量子井雷射模型並得出其解析解。另外,我們也有推導光回饋下的量子點雷射模型的四波混頻分析。這些理論模型都有仔細地和數值模擬的結果作驗證比對。
我們已經將四波混頻分析成功地套用在量子點雷射上,並且同時求出線寬增益係數等本質參數。在不同的調頻頻率下,藉由將實驗得出的再生訊號強度和調幅訊號強度與理論算出的強度作擬合,我們可以同時得到線寬增益係數、量子點內的載子衰減率、微分增益、以及光子衰減率等本質參數。我們也討論了用這個方法所求出的各個本質參數的精準度。另外,我們也研究了各個參數對再生訊號頻譜和調幅訊號頻譜的影響。
另外,我們用一個簡化的速率方程式模型進行光注入下量子點雷射的四波混頻分析。我們討論了不同本質參數和不同注入條件下再生訊號頻譜和調幅訊號頻譜的變化。藉由擬合實驗得出的再生訊號頻譜和調幅訊號頻譜,我們得到不同注入條件下單模量子點雷射的本質參數。我們也展示了光注入下的線寬增益係數能夠降低到原來六成左右。當注入強度增加時,線寬增益係數可以降得更低。這個現象可以用在減緩光通訊的啾頻效應。
為了完整地研究量子點雷射遭外界干擾時的變化,我們建立了光回饋下量子點雷射的四波混頻模型。我們研究了不同回饋條件下再生訊號頻譜和調幅訊號頻譜的變化。另外,我們也討論了本質參數對再生訊號頻譜和調幅訊號頻譜的影響。基於這些理論預測的結果,我們成功地量測出光回饋下量子點雷射的本質參數,其中光回饋下的線寬增益係數會增加。
In the dissertation, stability analysis and four-wave mixing (FWM) analysis are applied to investigate the characteristics of the relaxation oscillation of the quantum dot (QD) and the quantum well (QW) semiconductor lasers and their responses to the weak external perturbation, respectively. The FWM analysis can also be utilized to extract the intrinsic parameters of the semiconductor lasers, which apparently influence the dynamical behaviors. Through the modifications of strong external perturbations on the intrinsic parameters, the dynamical behaviors of the lasers can be investigated thoroughly.
The linear stability analysis has been applied on the solitary and injection-locked lasers of QD and QW structures. By deriving the characteristic equations from the small internal fluctuations, the relaxation frequencies and the damping rate can be obtained. From the damping rates of the lasers with different bias currents, linewidth enhancement factors, injection strengths, and detuning frequencies, the QD lasers show better stability than the QW lasers. Moreover, the stability and excitability of the QD laser subject to optical feedback are also numerically discussed.
To investigate the responses on small external perturbations in the FWM analysis, the rate equations of the solitary and injection-locked lasers of QD and QW structures are derived for the analytical solutions. Moreover, the FWM mixing analysis on the QD lasers subject to optical feedback is also derived. All the analytical models are carefully verified with the numerical simulations.
FWM analysis has been applied on a QD laser to simultaneously obtain the linewidth enhancement factor and other intrinsic laser parameters. By fitting the experimentally obtained regenerative and amplitude modulation spectra at different detuning frequencies with the respective curves analytically calculated from the rate equations, parameters including the linewidth enhancement factor, the carrier decay rate in the dots, the differential
gain, and the photon decay rate can be determined simultaneously under the same operating conditions. The sensitivity and accuracy of the parameter extracted by the FWM analysis are presented. Moreover, how each parameter alters the shapes of the regenerative and amplitude modulation spectra is also discussed.
Moreover, a simplified rate equation model is utilized for the FWM analysis on QD lasers subject to optical injection. The regenerative and amplitude modulation spectra of the QD laser with different intrinsic laser parameters and external injection conditions are investigated. By curve fitting the regenerative and amplitude modulation spectra experimentally, the intrinsic laser parameters of a commercial single-mode QD laser under different injection conditions are extracted. The linewidth enhancement factor at different injection levels and detuning frequencies are shown, where a reduction of about 40% from its free-running value is demonstrated. By increasing the injection strength, the linewidth enhancement factor can be further reduced to minimize the chirp in optical communications.
To comprehensively investigate the characteristics of QD laser subject to external perturbations, the model for the FWM analysis on the QD laser subject to optical feedback is also developed analytically. The modifications with different feedback conditions on the regenerative and amplitude modulation spectra are discussed. Also, how the regenerative and amplitude modulation spectra vary with each intrinsic parameter is discussed. Based on the theoretical prediction, we successfully extract the intrinsic parameters of the QD laser subject to optical feedback experimentally and the linewidth enhancement factor is found to increase with optical feedback.
1 Introduction
1.1 Energy Levels in Quantum Dot Structures
1.2 Laser Rate Equation Models
1.3 Stability Analysis
1.4 Methods of Measuring Laser Parameters
1.5 Four-Wave Mixing Analysis
1.6 Motivation
1.7 Outline of Dissertation

2 Stability Analysis
2.1 External Perturbations
2.2 Solitary QW Rate Equations
2.3 Injection-locked QW Rate Equations
2.4 Solitary QD Rate Equations
2.5 Injection-locked QD Rate Equations
2.6 Relaxation Oscillations of Injection-locked QD and QW Lasers
2.7 Stability of QD Lasers with OF

3 Theory of FWM Analysis
3.1 Solitary QW Rate Equation Model
3.2 QW Rate Equation Model with OI
3.3 Solitary QD Rate Equation Model
3.4 Simplified QD Rate Equation Model with OI
3.5 Simplified QD Rate Equation Model with OF
3.6 Theoretical FWM Spectra of QD and QW Lasers

4 Experimental Setup and the Principle of FWM Analysis
4.1 Schematic Setup of Experiments
4.2 Heterodyning Measurement for Optical Spectrum
4.3 Acquiring the FWM Spectra
4.4 Fitting of Experimental Data

5 FWM Analysis on Solitary QD Lasers
5.1 Experimental Spectra and Extracted Parameters
5.2 Accuracy of Extracted Parameters
5.3 Impacts from each Intrinsic Parameter

6 FWM Analysis on QD Lasers with External Perturbations
6.1 FWM Analysis on QD Lasers with OI
6.1.1 Theoretical FWM Spectra of QD Lasers with OI
6.1.2 Experimental Spectra and Extracted Parameters
6.1.3 Variations on Linewidth Enhancement Factor
6.2 FWM Analysis on QD Lasers with OF
6.2.1 Characteristics of QD Lasers with OF
6.2.2 Experimental Spectra and Extracted Parameters

7 Conclusion
7.1 Summary
7.2 Future Research
[1] M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo,and Y. Nakata, “Theory of optical signal amplification and processing by quantumdotsemiconductor optical amplifiers,” Phys. Rev. B, vol. 69, no. 23, p. 235332, 2004.
[2] E. Kapon, “Quantum Wire and Quantum Dot Lasers,” in Semiconductor lasers I:fundamentals, pp. 291–360, San Diego Academic Press, 1999.
[3] M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp inquantum-dot semiconductor lasers,” IEEE J. Quantum Electron., vol. 43, no. 10,pp. 941–949, 2007.
[4] D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dotsemiconductor lasers to optical feedback,” Opt. Lett., vol. 29, no. 10, pp. 1072–1074,2004.
[5] O. Carroll, I. O’Driscoll, S. P. Hegarty, G. Huyet, J. Houlihan, E. A. Viktorov, andP. Mandel, “Feedback induced instabilities in a quantum dot semiconductor laser,”Opt. Express, vol. 14, no. 22, pp. 10831–10837, 2006.
[6] D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G.McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductorlaser with optical injection,” Phys. Rev. Lett., vol. 98, no. 15, p. 153903,2007.
[7] T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet,“Optically injected quantum-dot lasers,” Opt. Lett., vol. 35, no. 7, pp. 937–939,2010.
[8] B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, E. A. Viktorov, and T. Erneux,“Optically injected single-mode quantum dot lasers,” in Quantum Dot Devices,pp. 1–22, Springer, 2012.
[9] H. J. Metcalf and P. V. der Straten, Laser Cooling and Trapping. Springer, 1999.
[10] H. Haken, Laser theory, vol. 984. Springer, 1984.
[11] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductorinjection laser properties,” IEEE J. Quantum Electron., vol. 16, no. 3, pp. 347–355,1980.
[12] K. J. Vahala and M. A. Newkirk, “Parasitic-free modulation of semiconductorlasers,” IEEE J. of Quantum Electron., vol. 25, no. 6, pp. 1393–1398, 1989.
[13] M. P. V. Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectralsignature of relaxation oscillations in semiconductor lasers,” IEEE J. of QuantumElectron., vol. 28, no. 6, pp. 1470–1478, 1992.
[14] T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degeneratefour-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys.,vol. 73, no. 5, pp. 2587–2589, 1993.
[15] J. M. Liu and T. B. Simpson, “Characterization of fundamental parameters ofa semiconductor laser with an injected optical probe,” IEEE Photonic. Tech. L.,vol. 5, no. 4, pp. 380–382, 1993.
[16] J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in asemiconductor laser,” IEEE J. Quantum Electron., vol. 30, no. 4, pp. 957–965,1994.
[17] L. V. Asryan, M. Grundmann, N. N. Ledentsov, O. Stier, R. A. Suris, and D. Bimberg,“Effect of excited-state transitions on the threshold characteristics of a quantumdot laser,” IEEE J. of Quantum Electron., vol. 37, no. 3, pp. 418–425, 2001.
[18] M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantumdotlaser performance,” Appl. Phys. Lett., vol. 71, no. 19, pp. 2791–2793, 1997.
[19] S. M. Kim, Y. Wang, M.Keever, and J. S. Harris, “High-frequency modulationcharacteristics of 1.3-μm InGaAs quantum dot lasers,” IEEE Photonic. Tech. L.,vol. 16, no. 2, pp. 377–379, 2004.
[20] L. V. Asryan and R. A. Suris, “Inhomogeneous line broadening and the thresholdcurrent density of a semiconductor quantum dot laser,” Semicond. Sci. Tech.,vol. 11, no. 4, p. 554, 1996.
[21] N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y.Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain anddifferential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl.Phys. Lett., vol. 69, no. 9, pp. 1226–1228, 1996.
[22] W. W. Chow and S. W. Koch, “Theory of semiconductor quantum-dot laser dynamics,”IEEE J. Quantum Electron., vol. 41, no. 4, pp. 495–505, 2005.
[23] S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor α of quantumdot semiconductor lasers,” Opt. Express, vol. 14, no. 7, pp. 2950–2955, 2006.
[24] Y. Su, Y. Ho, W. C. Chang, and C. F. Lin, “Investigation of phonon bottleneckeffect on QD lasers,” in SPIE Physics and Simulation of Optoelectronic DevicesXIV, p. 61151G, 2006.
[25] C. Otto, B. Globisch, K. Ludge, E. Scholl, and T. Erneux, “Complex dynamicsof semiconductor quantum dot lasers subject to delayed optical feedback,” Int. J.Bifurcat. Chaos, vol. 22, no. 10, p. 1250246, 2012.
[26] S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injectedsemiconductor laser,” Opt. Commun., vol. 183, no. 1-4, pp. 195–205, 2000.
[27] C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. of QuantumElectron., vol. 18, no. 2, pp. 259–264, 1982.
[28] M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–Anoverview,” IEEE J. of Quantum Electron., vol. 23, no. 1, pp. 9–29, 1987.
[29] S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on periodoneoscillations of optically injected semiconductor lasers,” Appl. Phys. Lett.,vol. 89, no. 6, p. 061120, 2006.
[30] Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental observation of chirpreduction in bandwidth-enhanced semiconductor lasers subject to strong opticalinjection,” Opt. Commun., vol. 219, no. 1, pp. 357–364, 2003.
[31] D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kopev, andV. M. Ustinov, “InGaAs-GaAs quantum-dot lasers,” IEEE J. of Sel. Top. QuantumElectron., vol. 3, no. 2, pp. 196–205, 1997.
[32] T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester,“Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEEPhotonic. Tech. L., vol. 11, no. 12, pp. 1527–1529, 1999.
[33] B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou,J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor andpurely frequency modulated emission from quantum dot laser,” Electron. Lett.,vol. 41, no. 6, pp. 323–324, 2005.
[34] A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of thecarrier induced refractive index, gain, and linewidth enhancement factor in quantumdot and quantum well lasers,” Appl. Phys. Lett., vol. 84, no. 7, pp. 1058–1060, 2004.
[35] D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, J. G. Provost, O. L. Gouezigou,M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factorfor quantum dot InAs/GaAs fabry-perot lasers emitting at 1.3 μm,” Electron. Lett.,vol. 43, no. 4, pp. 222–224, 2007.
[36] A. V. Uskov, I. Magnusdottir, B. Tromborg, J. Mork, and R. Lang, “Line broadeningcaused by Coulomb carrier–carrier correlations and dynamics of carrier captureand emission in quantum dots,” Appl. Phys. Lett., vol. 79, no. 11, pp. 1679–1681,2001.
[37] F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, “Gain compression andabove-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dotlasers,” IEEE J. Quantum Electron., vol. 44, no. 10, pp. 946–951, 2008.
[38] K. Kechaou, F. Grillot, J. G. Provost, B. Thedrez, and D. Erasme, “Self-injectedsemiconductor distributed feedback lasers for frequency chirp stabilization,” Opt.Express, vol. 20, no. 23, pp. 26062–26074, 2012.
[39] M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo,and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm selfassembledInAs/GaAs quantum-dot lasers: Homogeneous broadening of opticalgain under current injection,” J. Appl. Phys., vol. 97, no. 4, p. 043523, 2005.
[40] B. Lingnau, K. Ludge, W. W. Chow, and E. Scholl, “Failure of the α factor indescribing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E,vol. 86, no. 6, p. 2065201, 2012.
[41] L. F. Lester, F. Grillot, N. A. Naderi, and V. Kovanis, “Differential gain enhancementin a quantum dash laser using strong optical injection,” in SPIE Physics andSimulation of Optoelectronic Devices XXI, p. 861907, 2013.
[42] N. A. Naderi, F. Grillot, V. Kovanis, and L. F. Lester, “Simultaneous low linewidthenhancement factor and high bandwidth quantum-dash injection-locked laser,” inPhotonics Conference (PHO), 2011 IEEE, pp. 115–116, 2011.
[43] V. Kovanis, A. Gavrielides, T. B. Simpson, and J. M. Liu, “Instabilities and chaos inoptically injected semiconductor lasers,” Appl. Phys. Lett., vol. 67, no. 19, pp. 2780–2782, 1995.
[44] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Perioddoublingroute to chaos in a semiconductor laser subject to optical injection,” Appl.Phys. Lett., vol. 64, no. 26, pp. 3539–3541, 1994.
[45] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tang, “Nonlinear dynamics inducedby external optical injection in semiconductor lasers,” Quantum Semiclass. Opt.,vol. 9, no. 5, pp. 765–784, 1997.
[46] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Perioddoublingcascades and chaos in a semiconductor laser with optical injection,” Phys.Rev. A, vol. 51, no. 5, pp. 4181–4185, 1995.
[47] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulationcharacteristics in a semiconductor laser subject to strong optical injection,” IEEEJ. Quantum Electron., vol. 32, no. 8, pp. 1456–1468, 1996.
[48] S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillationsin semiconductor lasers subject to optical injection,” IEEE J. of Sel. Top. QuantumElectron., vol. 10, no. 5, pp. 974–981, 2004.
[49] S. C. Chan, “Analysis of an optically injected semiconductor laser for microwavegeneration,” IEEE J. Quantum Electron., vol. 46, no. 3, pp. 421–428, 2010.
[50] J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with opticalfeedback: theory and experiment,” IEEE J. of Quantum Electron., vol. 28, no. 1,pp. 93–108, 1992.
[51] A. Hohl and A. Gavrielides, “Experimental control of a chaotic semiconductorlaser,” Opt. Lett., vol. 23, no. 20, pp. 1606–1608, 1998.
[52] A. Hohl and A. Gavrielides, “Bifurcation cascade in a semiconductor laser subjectto optical feedback,” Phys. Rev. Lett., vol. 82, no. 6, pp. 1148–1151, 1999.
[53] A. Tabaka, K. Panajotov, I. Veretennicoff, and M. Sciamanna, “Bifurcation studyof regular pulse packages in laser diodes subject to optical feedback,” Phys. Rev.E, vol. 70, no. 3, p. 036211, 2004.
[54] F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayednegative optoelectronic feedback,” IEEE J. of Quantum Electron., vol. 39, no. 4,pp. 562–568, 2003.
[55] A. Argyris, D. S. adn L. Larger adn V. Annovazzi-Lodi, P. Colet, I. Fischer,J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communicationsat high bit rates using commercial fibre-optic links,” Nature, vol. 438,no. 7066, pp. 343–346, 2005.
[56] F. Mogensen, H. Olesen, and G. Jacobsen, “FM noise suppression and linewidth reductionin an injection-locked semiconductor laser,” Electron. Lett., vol. 21, no. 16,pp. 696–697, 1985.
[57] K. Inoue and K. Oda, “Noise suppression in wavelength conversion using a lightinjectedlaser diode,” IEEE Photonic. Tech. L., vol. 7, no. 5, pp. 500–501, 1995.
[58] A. Takada and W. Imajuku, “Linewidth narrowing and optical phase control ofmode-locked semiconductor ring laser employing optical injection locking,” IEEEPhotonic. Tech. L., vol. 9, no. 10, pp. 1328–1330, 1997.
[59] J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulationbandwidth of laser diodes by injection locking,” IEEE Photonic. Tech. L., vol. 8,no. 1, pp. 34–36, 1996.
[60] X. J. Meng, T. Chau, and M. C. Wu, “Experimental demonstration of modulationbandwidth enhancement in distributed feedback lasers with external light injection,”Electron. Lett., vol. 34, no. 21, pp. 2031–2032, 1998.
[61] F. Y. Lin and J. M. Liu, “Harmonic frequency locking in a semiconductor laserwith delayed negative optoelectronic feedback,” Appl. Phys. Lett., vol. 81, no. 17,pp. 3128–3130, 2002.
[62] F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injectedsemiconductor laser subject to optoelectronic feedback,” Opt. Commun.,vol. 221, no. 1, pp. 173–180, 2003.
[63] S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos ina semiconductor laser with delayed opto-electronic feedback,” IEEE J. QuantumElectron., vol. 37, no. 3, pp. 329–336, 2001.
[64] S. Eriksson and A. M. Lindberg, “Periodic oscillation within the chaotic region ina semiconductor laser subjected to external optical injection,” Opt. Lett., vol. 26,no. 3, pp. 142–144, 2001.
[65] T. Mukai and K. Otsuka, “New route to optical chaos: Successive-subharmonicoscil-lation cascade in a semiconductor laser coupled to an external cavity,” Phys.Rev. Lett., vol. 55, no. 17, pp. 1711–1714, 1985.
[66] J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni, “Instabilities inlasers with an injected signal,” J. Opt. Soc. Am. B, vol. 2, no. 1, pp. 173–183, 1985.
[67] J. Otsubo, Semiconductor Lasers: Stability, Instability, and Chaos. Springer,2nd ed., 2007.
[68] A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dotlasers,” IEEE J. Quantum Electron., vol. 43, no. 4, pp. 287–294, 2007.
[69] M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain andlinewidth enhancement factor of quantum dot semiconductor lasers,” Opt. andQuantum Electron., vol. 38, no. 4, pp. 381–394, 2006.
[70] M. Grundmann, “How a quantum-dot laser turns on,” Appl. Phys. Lett., vol. 77,no. 10, pp. 1428–1430, 2000.
[71] E. Malic, K. J. Ahn, M. J. P. Bormann, P. Hovel, E. Scholl, A. Knorr, M. Kuntz,and D. Bimberg, “Theory of relaxation oscillations in semiconductor quantum dotlasers,” Appl. Phys. Lett., vol. 89, no. 10, p. 101107, 2006.
[72] T. Erneux, E. A. Viktorov, and P. Mandel, “Time scales and relaxation dynamicsin quantum-dot lasers,” Phys. Rev. A, vol. 76, no. 2, p. 023819, 2007.
[73] T. Ikegami and Y. Suematsu, “Carrier lifetime measurement of a junction laserusing direct modulation,” IEEE J. Quantum Electron., vol. 4, no. 4, pp. 148–151,1968.
[74] E. I. Verriest and W. Michiels, “Routh-Hurwitz criterion and stability of neutralsystems,” in IEEE Decision and Control 2003, vol. 5, pp. 5060–5065, 2003.
[75] B. Haegeman, K. Engelborghs, D. Roose, D. Pieroux, and T. Erneux, “Stability andrupture of bifurcation bridges in semiconductor lasers subject to optical feedback,”Phys. Rev. E, vol. 66, no. 4, p. 046216, 2002.
[76] J. B. Gao, S. K. Hwang, and J. M. Liu, “When can noise induce chaos,” Phys. Rev.Lett., vol. 82, no. 6, pp. 1132–1135, 1999.
[77] F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. of Sel. Top. Quantum Electron.,vol. 10, no. 5, pp. 991–997, 2004.
[78] B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in opticallyinjected semiconductor lasers: contrasting quantum-well-and quantum-dot-baseddevices,” Phys. Rev. E, vol. 83, no. 2, p. 026207, 2011.
[79] P. A. Morton, T. Tanbun-Ek, R. A. Logan, A. M. Sergent, P. F. Sciortino, and D. L.Coblentz, “Frequency response subtraction for simple measurement of intrinsic laserdynamic properties,” IEEE Photonic. Tech. L., vol. 4, no. 2, pp. 133–136, 1992.
[80] C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S.LaCourse, “Characterization of the dynamics of semiconductor lasers using opticalmodulation,” IEEE J. Quantum Electron., vol. 28, no. 1, pp. 118–127, 1992.
[81] C. H. Lange and C. B. Su, “Theory and experiment of the parasitic-free frequencyresponse measurement technique using facet-pumped optical modulation in semiconductordiode lasers,” Appl. Phys. Lett., vol. 55, no. 17, pp. 1704–1706, 1989.
[82] V. T. Verdeyen, Laser Electronics. Prentice-Hall, 3rd ed., 1995.
[83] A. Yariv and P. Yeh, Optical Electronics in Modern Communications. OxfordUniversity Press, 5th ed., 1997.
[84] B. W. Hakki and T. L. Paoli, “cw degradation at 300 K of GaAs doubleheterostructurejunction lasers. II. Electronic gain,” J. of Appl. Phys., vol. 44,no. 9, pp. 4113–4119, 1973.
[85] C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancementfactor α of semiconductor lasers,” Appl. Phys. Lett., vol. 42, no. 4, pp. 328–330,1983.
[86] S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov,A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-Dependent LinewidthEnhancement Factor of Quantum-Dot Lasers,” IEEE Photonic. Tech. L., vol. 20,no. 20, pp. 1736–1738, 2008.
[87] J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancementfactor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEEPhoton. J., vol. 3, no. 3, pp. 476–488, 2011.
[88] T. Fordell and A. M. Lindberg, “Experiments on the Linewidth-Enhancement Factorof a Vertical-Cavity Surface-Emitting Laser,” IEEE J. Quantum Electron.,vol. 43, no. 1, pp. 6–15, 2007.
[89] K. Iiyama, K. Hayashi, and Y. Ida, “Simple method for measuring the linewidthenhancement factor of semiconductor lasers by optical injection locking,” Opt. Lett.,vol. 17, no. 16, pp. 1128–1130, 1992.
[90] R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement techniqueof alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett.,vol. 26, no. 14, pp. 997–998, 1990.
[91] I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxationoscillations of an injection-locked semiconductor laser,” IEEE J. QuantumElectron., vol. 24, no. 2, pp. 148–154, 1988.
[92] H. H. Lin, C. H. Lin, and F. Y. Lin, “Four-wave mixing analysis of quantum dotand quantum well lasers,” in SPIE Physics and Simulation of Optoelectronic DevicesXIX, p. 79331K, 2011.
[93] C. H. Lin, H. H. Lin, and F. Y. Lin, “Four-wave mixing analysis of quantum dotsemiconductor lasers for linewidth enhancement factor extraction,” Opt. Express,vol. 21, no. 18, pp. 101–110, 2012.
[94] C. H. Lin and F. Y. Lin, “Four-wave mixing analysis on injection-locked quantumdot semiconductor lasers,” Opt. Express, vol. 20, no. 1, pp. 21242–21253, 2013.
[95] H. Nakajim and R. Frey, “Intracavity nearly degenerate four-wave mixing in a(GaAl) As semiconductor laser,” Appl. Phys. Lett., vol. 47, no. 8, pp. 769–771,1985.
[96] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Wiley, 2nd ed., 2006.
[97] K. Inoue, T. Mukai, and T. Saitoh, “Nearly degenerate four-wave mixing in atraveling-wave semiconductor laser amplifier,” Appl. Phys. Lett., vol. 51, no. 14,pp. 1051–1053, 1987.
[98] G. Giuliani, “The linewidth enhancement factor of semiconductor lasers: usefulness,limitations, and measurements,” in IEEE Photonics Society, 2010 23rd AnnualMeeting of the, pp. 423–424, 2010.
[99] Y. S. Chang and F. Y. Lin, “Nonlinear dynamics of a vertical-cavity surfaceemittinglaser subject to a repetitive optical pulse injection,” in Proc. of SPIE,vol. 6997, p. 69971O, 2008.
[100] Y. S. Juan, H. Y. Tu, and F. Y. Lin, “Nonlinear dynamical characteristics of pulseinjected semiconductor lasers,” in Proc. of SPIE, vol. 6824, p. 682405, 2008.
[101] Y. S. Juan and F. Y. Lin, “Dynamical characteristics of a semiconductor laserinjected by optical pulses with high repetition rate,” in Proc. of SPIE, vol. 6997,p. 69971P, 2008.
[102] F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics ofsemiconductor lasers under repetitive optical pulse injection,” IEEE J. of Sel. Top.Quantum Electron., vol. 15, no. 3, pp. 604–611, 2009.
[103] Y. S. Juan, Y. H. Liao, and F. Y. Lin, “Characteristics of the frequency-lockedstates generated by a semiconductor laser under periodical optical injection andtheir applications in frequency conversion,” in Proc. of SPIE, vol. 7211, p. 721106,2009.
[104] Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductorlaser subject to optical pulse injection from an optoelectronic feedbacklaser,” Opt. Lett., vol. 34, no. 11, pp. 1636–1638, 2009.
[105] Y. S. Juan and F. Y. Lin, “Ultra broadband microwave frequency combs generatedby an optical pulse-injected semiconductor laser,” Opt. Express, vol. 17, no. 21,pp. 18596–18605, 2009.
[106] Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiberbased on optical pulse-injected semiconductor laser,” Opt. Express, vol. 18, no. 9,pp. 9664–9670, 2010.
[107] Y. S. Juan and F. Y. Lin, “Demonstration of arbitrary channel selection utilizing apulse-injected double phase-locked semiconductor laser with optical injection,” inProc. of SPIE, vol. 7933, p. 793372, 2011.
[108] Y. S. Juan and F. Y. Lin, “Demonstration of arbitrary channel selection utilizing apulse-injected semiconductor laser with a phase-locked loop,” Opt. Express, vol. 19,no. 2, pp. 1057–1064, 2011.
[109] C. H. Cheng, J. W. Lee, T. W. Lin, and F. Y. Lin, “Speckle noise reduction of a dualfrequencylaser doppler velocimeter based on an optically injected semiconductorlaser,” in Proc. of SPIE, vol. 8255, p. 82551, 2012.
[110] C. H. Chen, C. W. Lee, T. W. Lin, and F. Y. Lin, “Dual-frequency laser Dopplervelocimeter for speckle noise reduction and coherence enhancement,” Opt. Express,vol. 20, no. 18, pp. 20255–20265, 2012.
[111] M. C. Tsai and F. Y. Lin, “Chaotic communication in radio-over-fiber systembased on optoelectronic feedback semiconductor laser,” in Proc. of SPIE, vol. 6457,p. 64570G, 2007.
[112] F. Y. Lin and M. C. Tsai, “Chaotic communication in radio-over-fiber transmissionbased on optoelectronic feedback semiconductor lasers,” Opt. Express, vol. 15, no. 2,pp. 302–311, 2007.
[113] Y. S. Juan, Y. C. Chen, and F. Y. Lin, “High-frequency microwave signal generationin a semiconductor laser under double injection locking,” in Proc. of SPIE, vol. 7936,p. 793609, 2011.
[114] Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwavesignals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon.J., vol. 3, no. 4, pp. 644–650, 2011.
[115] Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beamoptically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron.,vol. 19, no. 4, p. 1500606, 2013.
[116] T. J. Wu and F. Y. Lin, “Chaotic communication based on delayed optoelectronicfeedback semiconductor laser with two time delays,” in Proc. of SPIE, vol. 6783,p. 678310, 2007.
[117] Y. H. Liao and F. Y. Lin, “Dynamical characteristics and their applications ofsemiconductor lasers subject to both optical injection and optical feedback,” Opt.Express, vol. 21, no. 20, pp. 23568–23578, 2013.
[118] Y. H. Liao, W. T. Wu, and F. Y. Lin, “Noise suppression in chaotic lidars underdifferent synchronization schemes,” in Proc. of SPIE, vol. 7933, p. 793356, 2011.
[119] F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaoticsignals,” IEEE J. of Quantum Electron., vol. 48, no. 8, pp. 1010–1014, 2012.
[120] W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaoslidars,” Opt. Express, vol. 18, no. 25, pp. 26155–26162, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔