(3.235.191.87) 您好!臺灣時間:2021/05/13 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林呂圭
研究生(外文):Lin, Lu-Kuei
論文名稱:橫向鐵磁(鎳鐵)/超導(鈮)接面系統與逆鄰近效應之研究
論文名稱(外文):Study on Lateral Ferromagnet (NiFe)/Superconductor (Nb) Junction System and Inverse Proximity Effect
指導教授:黃金花黃金花引用關係李尚凡
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:206
中文關鍵詞:超導鐵磁鄰近效應約瑟芬接面
外文關鍵詞:superconductivityferromagnetismproximity effectJosephson junction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
鐵磁與超導的交互作用引發出許多有趣的物理現象,這兩種材料都是自旋有序的相轉變系統。然而鐵磁有序驅使電子自旋同向排列,超導體的庫柏電子對則是傾向自旋電子以相反方向來互相配對。因此這兩種不同的自旋電子有序是互相抵抗的,而利用製作鐵磁與超導的異質接面結構是最直接的方式來研究這互相競爭的有序參數。在此鐵磁/超導的異質結構中,鄰近效應在過去已經被廣為研究,然而相對於鄰近效應,鐵磁對超導的逆鄰近效應則在這近十年中被提出並引起廣大的興趣。從過去的文獻中可以發現,橫向鐵磁/超導異質接面的研究仍然較缺乏,尤其是鐵磁對超導的逆鄰近效應在橫向鐵磁/超導異質接面中的影響更是少見。因此,提供了我們對鐵磁對超導的逆鄰近效應在橫向鐵磁超導異質接面中研究的動機。
在本論文中,我們利用電性量測的方式對這橫向鐵磁/超導異質接面做了一系列的研究。我們主要製造了兩種不同的橫向鐵磁/超導異質接面,一個是利用兩鐵磁材料鎳鐵長條跨接在兩個超導電極鈮,所製造的橫向雙鐵磁/超導接面,另一個則是利用鎳鐵長條與超導長條交叉跨接所形成弱連結的橫向約瑟芬接面。
在兩鐵磁跨接的橫向鐵磁/超導異質接面中,我們改變了兩鐵磁長條之間的間距,從150奈米到700奈米,來研究自旋電子在此區域間的弛豫長度。在小間距(150和250奈米)的樣品中,我們發現了由於逆鄰近效應而造成電荷堆積在接面形成的兩鐵磁長條的自旋閥效應。另外在大間距(500和700奈米)的樣品中,我們發現了自旋閥效應消失,取而代之的是兩鐵磁長條的異向性磁阻現象。而我們另外製造更多數目的鐵磁長條跨接在超導電極,自旋閥效應以及異向性磁阻現象出現與兩鐵磁長條間距的關係能然可以觀察的到。利用改變兩鐵磁長條之間的間距,觀察自旋閥效應以及異向性磁阻現象的變化,我們可以估計出自旋電子在超導鈮中橫向的弛豫長度。而在自旋閥效應出現的樣品中,我們還發現了超導的臨界溫度隨著兩鐵磁長條的磁區排列有所改變,兩鐵磁長條磁區反平行的臨界溫度比平行的臨界溫度最多提高了58.3 mK。除此之外,在電阻對溫度的量測中,我們還發現了奇異的電阻陡降與陡升,在此我們推測可能成因來自於鐵磁與超導間的交互作用。
在鎳鐵長條與超導長條交叉跨接所形成弱連結的橫向約瑟芬接面中,我們探討此橫向約瑟芬接面的弱連結是由鐵磁對超導的逆鄰近效應所形成的,也就是說鐵磁藉由逆鄰近效應在超導材料中誘發出磁性而形成橫向約瑟芬接面中的弱連結區域。我們利用觀察在此橫向約瑟芬接面中直流以及交流的超導約瑟芬效應來證明此弱連結來是來自於鐵磁對超導的逆鄰近效應所形成的。這是利用電性量測方式對逆鄰近效應的直接證明。另外,我們也估算了此橫向約瑟芬接面的Thouless能量大小。我們亦探討了此超導約瑟芬效應與超導渦旋電流移動所造成的效應不同。在此橫向約瑟芬接面中,超導電流能流經由鐵磁誘發的弱連結區域長達2.1微米,因此我們推測,此約瑟芬接面中具有如理論預測的自旋三重態的電子。此研究提供了一種全新的方式來製作超導約瑟芬接面,未來應用在製作超導量子干涉儀上有取代現今複雜製作方式的優勢。

The heterogeneous properties around the interface between ferromagnet (F) and conventional s-wave superconductor (S) hybrid structures exhibit several remarkable phenomena. The superconductivity and ferromagnetism are two competing orders. The ferromagnetic order forces the spins to align in parallel, and Cooper pairs in singlet superconductivity prefer an antiparallel spin orientation with total spin zero. Due to the incompatible nature of S and F, singlet superconductivity and ferromagnetic order should not coexist in bulk materials. Thus, fabricating S/F heterostructure is the immediate way to study the proximity phenomena in the competition of the two order parameters. However, the S/F proximity effect has attracted much attention over the past years. Aspect of the S/F proximity effect, the “inverse proximity” effect which is the ferromagnetic order-parameter penetrates into the superconductor, has gained renewed interest only in the last decade. Following the literatures, the characterizations of the S/F lateral junction have been studied rear, especially the inverse proximity. Therefore, it gives us the motivations to study the inverse proximity effect in S/F lateral junction.
In this dissertation, we systematically investigate the lateral S/F junctions by electron transport measurement. We fabricated two types of S/F lateral junction. One is the junctions between two superconductor Nb leads were connected by two bars of the ferromagnetic NiFe, another is lateral Josephson junction with a weak link by fabricating a ferromagnetic NiFe strip across a superconducting Nb strip.
In the lateral two NiFe bars junctions, the separation distance l between NiFe bars was varied from 150 to 700 nm to study the spin relaxation effect in Nb. In small l (150 and 250 nm) samples, a spin-valve like behavior related to the inverse proximity effect was observed, which manifest itself as charge accumulation due to spin imbalance near the interface. However, for samples with large l (500 and 700 nm), the spin-valve behavior vanishes and the anisotropic magnetoresistance effect dominates. The spin-valve and anisotropic magnetoresistance (AMR) behaviors were also observed on multiple bars samples. From the two different behaviors observation, the spin relaxation length of Nb lateral device can be estimated. The transition temperature enhancement of Nb was observed on the spin-valve behavior samples. The transition temperature enhancement of the l = 250 and 300 nm samples are 35.5 and 58.3 mK, respectively. In addition, there are some striking resistance peaks observed in the R-T measurements. It is attributed to the interaction between S and F.
In the lateral Josephson junctions with a weak link by fabricating a ferromagnetic NiFe strip across superconducting Nb strips. We argue that the effective weak link of the Josephson junction was induced by the inverse proximity effect around the Nb interface in contact with the NiFe. The argument has been proved by the observation of the dc and ac Josephson effect. We also estimated the strength of the Josephson junctions by Thouless energy analysis. In our observations, the supercurrents can go through such long distance up to 2.1μm of the junctions, implying that a spin triplet component possibly exists as the theoretical prediction, the spin triplet component induced by inverse proximity effect. In addition, we also discussed the correlation of the vortex dynamics and the critical current modulations, and ruled out the possibility of the vortex dynamics in our data.

中文摘要
Abstract
Contents
List of Figures
List of Tables
1. Introduction
2. General background and literature review
2.1 Proximity effect of superconductor/ferromagnet system
2.2 Superconductor /ferromagnet/superconductor Josephson junction
2.3 Spin switch effect
2.4 Coexistence in the FFLO state
2.5 Spin triplet superconductivity
2.6 Inverse proximity effect
3. Experimental facilities and measurement methods
3.1 Optical lithography
3.2 Scanning electron microscope (SEM)
3.3 Electron beam lithography system
3.4 Sputtering system
3.5 Fabrication processes of the samples
3.6 Measurement methods
3.7 Microwave radiation measurements
4. Results and Discussion I – Lateral superconductor-ferromagnet-superconductor junctions
4.1 Two-bar junctions
4.2 Spin valve effect of two-bar junctions
4.3 AMR effect of two-bar junctions
4.4 Spin relaxation length in Nb
4.5 Critical temperature enhancement of two-bar junctions
4.6 Multiple-bar junctions
4.7 Anomalous resistance below onset of superconducting transition
5. Results and Discussion II– Nb lateral Josephson junctions induced by the inverse proximity effect
5.1 Nb lateral Josephson junctions with NiFe strips
5.2 Critical temperatures and currents of Nb lateral Josephson junctions
5.3 DC Josephson effect of Nb lateral Josephson junctions
5.4 AC Josephson effect of Nb lateral Josephson junctions
5.5 Thouless energy of Nb lateral Josephson junctions
6. Conclusions
Reference
Appendix A
Appendix B
Appendix C
Appendix D
Publications
Awards

Chapter 1
[1] de Gennes, P. G., Rev. Mod. Phys. 36, 225 (1964).
[2] Deutscher, G., and P. G. de Gennes, Superconductivity (Dekker, New York), Vol. 2 (1969).
[3] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[4] L. Lazar, K. Westerholt, H. Zabel, L. R. Tagirov, Y. V. Goryunov, N. N. Garif’yanov, and I. A. Garifullin, Phys. Rev. B 61, 3711 (2000)
[5] L. N. Bulaevskii, V. V. Kuzii, A. A. Sobyanin, JETP Lett. 25, 290 (1977).
[6] V. V. Ryazanov et al., Phys. Rev. Lett. 86, 2427 (2001).
[7] V. A. Oboznov et al., Phys. Rev. Lett. 96, 197003 (2006).
[8] T. Kontos et al., Phys. Rev. Lett. 89, 137007 (2002).
[9] Y. Blum et al., Phys. Rev. Lett. 89, 187004 (2002).
[10] G. Deutscher and F. Meunier, Phys. Rev. Lett. 22, 395 (1969).
[11] J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader, Phys. Rev. Lett. 89, 267001 (2002).
[12] I. C. Moraru, W. P. Pratt, and N. O. Birge, Phys. Rev. B 74, 220507R (2006).
[13] P. G. de Gennes, Phys. Lett. 23, 10 (1966).
[14] L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).
[15] A. Yu. Rusanov, S. Habraken, and J. Aarts, Phys. Rev. B 73, 060505R (2006).
[16] R. Steiner and P. Ziemann, Phys. Rev. B 74, 094504 (2006).
[17] F. J. Jedema, B. J. vanWees, B. H. Hoving, A. T. Filip, and T. M. Klapwijk, Phys. Rev. B 60, 16549(1999).
[18] M. Johnson, Appl. Phys. Lett. 65, 1460 (1994).
[19] N. Poli, J. P. Morten, M. Urech, A. Brataas, D. B. Haviland, and V. Korenivski, Phys. Rev. Lett. 100, 136601 (2008).
[20] S. Takahashi and S. Maekawa, Phys. Rev. B 67, 052409 (2003).
[21] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[22] A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP. 20, 762 (1965).
[23] F. S. Bergeret, A. F. Volkov, K. B. Efetov, Phys. Rev. Lett. 86, 4096 (2001).
[24] F. S. Bergeret, A. F. Volkov, K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).
[25] A. Kadigrobov, R. Shekhter, M. Jonson, Europhys. Lett. 54, 394 (2001).
[26] J. W. A. Robinson, J. D. S. Witt, M. G. Blamire, Science 329, 59 (2010).
[27] M. Houzet and A. I. Buzdin, Phys. Rev. B 76, 060504 (2007).
[28] T. S. Khaire et al., Phys. Rev. Lett. 104, 137002 (2010).
[29] M. Eschrig et al., Phys. Rev. Lett. 90, 137003 (2003).
[30] R. S. Keizer et al., Nature 439, 825 (2006).
[31] P. G. de Gennes, Phys. Lett. 23, 10 (1966).
[32] G. Deutscher and F. Meunier, Phys. Rev. Lett. 22, 395 (1969).
[33] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Europhys. Lett. 66, 111 (2004).
[34] F. S. Bergeret and N. Garcia, Phys. Rev. B 70, 052507 (2004).
[35] V. N. Krivoruchko and E. A. Koshina, Phys. Rev. B 66, 014521 (2002).
[36] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 69, 174504 (2004).
[37] F. S. Bergeret, A. Levy Yeyati, and A. Martin-Rodero, Phys. Rev. B 72, 064524 (2005).
[38] M. Yu. Kharitonov, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 73, 054511 (2006).
[39] R. I. Salikhov, I. A. Garifullin, N. N. Garifyanov, L. R. Tagirov, K. Theis-Brohl, K. Westerholt, and H. Zabel, Phys. Rev. Lett. 102, 087003 (2009).
[40] J. Stahn, J. Chakhalian, Ch. Niedermayer, J. Hoppler, T. Gutberlet, J. Voigt, F. Treubel, H-U. Habermeier, G. Cristiani, B. Keimer, and, C. Bernhard, Phys. Rev. B 71, 140509 (2005).
[41] J. Xia, V. Shelukhin, M. Karpovski, A. Kapitulnik, and A. Palevski, Phys. Rev. Lett. 102, 087004 (2009).
[42] D. Stamopoulos, N. Moutis, M. Pissas, and D. Niarchos, Phys. Rev. B 72, 212514 (2005).
[43] I. Asulin, O. Yuli, G. Koren, and O. Millo, Phys. Rev. B 79, 174524 (2009).
[44] O. Vavra, W. Pfaff, and Ch. Strunk, Appl. Phys. Lett. 95, 062501 (2009).

Chapter 2
[45] de Gennes, P. G., Rev. Mod. Phys. 36, 225 (1964).
[46] Deutscher, G., and P. G. de Gennes, Superconductivity (Dekker, New York), Vol. 2 (1969).
[47] H. Zabel and S.D Bader, Magnetic Heterostructures: Advances and Perspectives in Spinstructures and Spintransport (Springer Tracts in Modern Physics, 2007)
[48] M. Faure,A. I. Buzdin, A. A. Golubov and M. Y. Kupriyanov Phys. Rev. B 73 064505 (2006).
[49] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[50] Yu. A. Izyumov, Yu. N. Proshin, and M. G. Khusainov, Phys. Usp. 45, 109 (2002).
[51] Buzdin, A. I., and M. Y. Kupriyanov, JETP Lett. 52, 487 (1990).
[52] Radovic, Z., L. Dobrosavljevic-Grujic, A. I. Buzdin, and J. R. Clem, Phys. Rev. B 44, 759 (1991).
[53] J. S. Jiang, D. Davidovic, D. H. Reich, and C. L. Chien, Phys. Rev. Lett. 74, 314 (1995).
[54] Mercaldo, V., C. Affanasio, C. Coccorese, L. Maritato, S. L. Prischepa, and M. Salvato, Phys. Rev. B 53, 14040 (1996).
[55] Obi, Y., M. Ikebe, T. Kubo, and H. Fujimori, Physica C 317, 149 (1999).
[56] Sidorenko, A. S., V. I. Zdravkov, A. A. Prepelitsa, C. Helbig, Y. Luo, S. Gsell, M. Schreck, S. Klimm, S. Horn, L. R. Tagirov, and R. Tidecks, Ann. Phys. 12, 37 (2003).
[57] Garifullin, I. A., D. A. Tikhonov, N. N. Garif’yanov, L. Lazar, Yu. V. Goryunov, S. Ya. Khlebnikov, L. R. Tagirov, K. Westerholt, and H. Zabel, Phys. Rev. B 66, R020505 (2002).
[58] Mühge, Th., N. N. Garif’yanov, Yu. V. Goryunov, G. G. Khaliullin, L. R. Tagirov, K. Westerholt, I. A. Garifullin, and H. Zabel, Phys. Rev. Lett. 77, 1857 (1996).
[59] Vélez, M., M. C. Cyrille, S. Kim, J. L. Vicent, and I. K. Schuller, Phys. Rev. B 59, 14659 (1999).
[60] Lazar, L., K. Westerholt, H. Zabel, L. R. Tagirov, Yu. V. Goryunov, N. N. Garifyanov, and I. A. Garifullin, Phys. Rev. B 61, 3711 (2000).
[61] Th. Müuhge, N. N. Garif'yanov, Yu. V. Goryunov, G. G. Khaliullin, L. R Tagirov, K. Westerholt, I. A. Garifullin, and H. Zabel, Phys. Rev. Lett. 77, 1857 (1996).
[62] Th. Mühge, K. Westerholt, H. Zabel, N. N. Garif'yanov, Yu. V. Goryunov, I. A. Garifullin, and G. G. Khaliullin, Phys. Rev. B. 55, 8945, (1997).
[63] J. Aarts, J. M. E. Geers, E. Bruck, A. A. Golubov, and R. Coehoorn, Phys. Rev. B 56, 2779 (1997).
[64] L. Lazar, K. Westerholt, H. Zabel, L. R. Tagirov, Yu. V. Goryunov. N. N. Garif'yanov, and I. A. Garifullin. Phys. Rev. B 61, 3711 (2000).
[65] Z. Radovic´, M. Ledvij, L. Dobrosavljevic´-Grujic´, A. I. Buzdin, and J. R. Clem, Phys. Rev. B 44, 759 (1991).
[66] L. R. Tagirov, Physica C 307, 145 (1998).
[67] Y. V. Fominov, N. M. Chtchelkatechev, and A. A. Golubov, Phys. Rev. B 66, 014507 (2002).
[68] J. Kim, Jun Hyung Kwon, K. Char, and Hyeonjin Doh, Phys. Rev. B 72, 014518 (2005).
[69] C. Cirillo, A. Rusanov, C. Bell, and J. Aarts, Phys. Rev. B 75, 174510 (2007).
[70] V. Zdravkov, A. Sidorenko, G. Obermeier, S. Gsell, M. Schreck, C. Müller, S.Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. Lett. 97, 057004 (2006).
[71] Bulaevskii, L. N., V. V. Kuzii, and A. A. Sobyanin, JETP Lett. 25, 290 (1977).
[72] Buzdin, A. I., L. N. Bulaevskii, and S. V. Panyukov, JETP Lett. 35, 178(1982).
[73] Buzdin, A. I., and M. Y. Kupriyanov, JETP Lett. 53, 321(1991).
[74] Fogelström, M., Phys. Rev. B 62, 11812 (2000).
[75] Heikkilä, T. T., F. K. Wilhelm, and G. Schön, Europhys. Lett. 51, 434 (2000).
[76] Chtchelkatchev, N. M., W. Belzig, Y. Nazarov, and C. Bruder, JETP Lett. 74, 323 (2001).
[77] Barash, Y. S., I. V. Bobkova, and T. Kopp, Phys. Rev. B 66, 140503 (2002).
[78] Golubov, A. A., M. Y. Kupriyanov, and Y. V. Fominov, JETP Lett. 75, 588 (2002).
[79] Radovic, Z., N. Lazarides, and N. Flytzanis, Phys. Rev. B 68, 014501 (2003).
[80] Zyuzin, A. Y., B. Spivak, and M. Hruska, Europhys. Lett. 62, 97 (2003).
[81] Ryazanov, V. V., V. A. Oboznov, A. Y. Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).
[82] Blum, Y., M. K. A. Tsukernik, and A. Palevski, Phys. Rev. Lett. 89, 187004 (2002).
[83] Bergeret, F. S., A. F. Volkov, and K. B. Efetov, Phys. Rev. B 64, 134506 (2001).
[84] Shoichi Nagata, H. C. Yang, and D. K. Finnemore, Phys. Rev. B 25, 6012 (1982).
[85] Trupti S. Khaire, W. P. Pratt, Jr., and Norman O. Birge, Phys. Rev. B 79, 094523 (2009).
[86] Mazin A. Khasawneh, W. P. Pratt, Jr., and Norman O. Birge, Phys. Rev. B 80, 020506 (2009).
[87] Trupti S. Khaire, Mazin A. Khasawneh, W. P. Pratt, Jr., and Norman O. Birge, Phys. Rev. Lett. 104, 137002 (2010).
[88] Carolin Klose, Trupti S. Khaire, Yixing Wang, W. P. Pratt, Jr., and Norman O. Birge, Phys. Rev. Lett. 108, 127002 (2012).
[89] S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).
[90] E. A. Early, A. F. Clark, and K. Char, Appl. Phys. Lett. 62, 3357 (1993).
[91] A. M. Klushin, W. Prusseit, E. Sodtke, S. I. Borovitskii, L. E. Amatuni, and H. Kohlstedt, Appl. Phys. Lett. 69, 1634 (1996).
[92] C. Vanneste, C. C. Chi, K. H. Brown, A. C. Callegari, M. M. Chen, J. H. Greiner, H. C. Jones, K. K. Kim, A. W. Kleinasser, H. A. Notarys, G. Proto, R. H. Wang, and T. Yogi, Phys. Rev. B 31, 4230 (1985).
[93] D. Terpstra, R. P. J. Ijsselsteijn, and H. Rogalla, Appl. Phys. Lett. 66, 2286 (1995).
[94] Y. Constantinian, G. A. Ovsyannikov, A. D. Mashtakov, J. Ramos, Z. G. Ivanov, J. Mygind, and N. F. Pedersen, Physica C 21, 273 (1996).
[95] G. Filatrella and N. F. Pedersen, Appl. Phys. Lett. 63, 1420 (1993).
[96] L. Chen, P. Chen, and C. K. Ong, Appl. Phys. Lett. 80, 1025 (2002).
[97] S. M. Frolov and D. J. Van Harlingen,V. V. Bolginov, V. A. Oboznov, and V. V. Ryazanov, Phys. Rev. B 74, 020503 (2006).
[98] P. G. de Gennes, Phys. Lett. 23, 10(1966).
[99] L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).
[100] A. I. Buzdin, A. V. Vedyayev, and N. V. Ryzhanova, Europhys. Lett. 48, 686 (1999).
[101] G. Deutscher and F. Meunier, Phys. Rev. Lett. 22, 395 (1969).
[102] J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader, Phys. Rev. Lett. 89, 267001 (2002).
[103] A. Potenza and C. H. Marrows, Phys. Rev. B 71, 180503R(2005).
[104] I. C. Moraru, W. P. Pratt, Jr., and N. O. Birge, Phys. Rev. Lett. 96, 037004 (2006).
[105] Ion C. Moraru, W. P. Pratt, Jr., and Norman O. Birge, Phys. Rev. B 74, 220507 (2006)
[106] A. Yu. Rusanov, S. Habraken, and J. Aarts, Phys. Rev. B 73, 060505R(2006).
[107] Ya. V. Fominov, A. A. Golubov, and M. Yu. Kupriyanov, JETP Lett. 77, 510 (2003).
[108] G. Nowak, H. Zabel, and K. Westerholt, I. Garifullin, M. Marcellini, A. Liebig, and B. Hjörvarsson, Phys. Rev.B 78, 134520 (2008).
[109] Guo-Xing Miao, Ana V. Ramos, and Jagadeesh S. Moodera1, Phys. Rev. Lett. 101, 137001 (2008).
[110] Ginzburg, V. L., “Ferromagnetic superconductors,” Zh. Eksp. Teor. Fiz. 31, 202–214 (1956); Sov. Phys. JETP 4, 153(1957).
[111] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[112] A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP. 20, 762 (1965).
[113] Matthias Eschrig, Phys.Today 64, 43 (2011).
[114] Yoshiteru MAENO, Shunichiro KITTAKA1, Takuji NOMURA, Shingo YONEZAWA, and Kenji ISHIDA, J. Phys. Soc. Jpn. 81 011009 (2012).
[115] G. R. Stewart, Z. Fisk, J. O. Willis, and J. L. Smith, Phys. Rev. Lett. 52 679 (1984).
[116] C. Geibel, S. Thies, D. Kaczorowski, A. Mehner, A. Grauel, B. Seidel, U. Ahlheim, R. Helfrich, K. Petersen, C. D. Bredl, and F. Steglich, Z. Phys. B 83 305 (1991).
[117] K. Ishida, D. Ozaki, T. Kamatsuka, H. Tou, M. Kyogaku, Y. Kitaoka, N. Tateiwa, N. K. Sato, N. Aso, C. Geibel, and F. Steglich, Phys. Rev. Lett. 89 037002 (2002).
[118] S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Nature 406 587 (2000).
[119] D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E. Lhotel, and C. Paulsen, Nature 413 613 (2001).
[120] T. Akazawa, H. Hidaka, H. Kotegawa, T. C. Kobayashi, T. Fujiwara, E. Yamamoto, Y. Haga, R. Settai, and Y.Onuki, J. Phys. Soc. Jpn. 73 3129 (2004).
[121] N. T. Huy, A. Gasparini, D. E. de Nijs, Y. Huang, J. C. P. Klaasse, T. Gortenmulder, A. de Visser, A. Hamann, T. Go¨rlach, and H. v. Lohneysen, Phys. Rev. Lett. 99 067006 (2007).
[122] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett. 86 4096 (2001).
[123] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).
[124] A. Kadigrobov, R. Shekhter, and M. Jonson, Europhys. Lett. 54, 394 (2001).
[125] T. S. Khaire, M. A. Khasawneh, W. P. Pratt, Jr., and N. O. Birge, Phys. Rev. Lett. 104, 137002 (2010).
[126] M. A. Khasawneh, W. P. Pratt, Jr., and N. O. Birge, Phys. Rev. B 80, 020506 (2009).
[127] I. Sosnin, H. Cho, Petrashov, and A. F. Volkov, Phys. Rev. Lett. 96, 157002 (2006).
[128] J. W. A. Robinson, J. D. S. Witt, and M. G. Blamire, Science 329, 59 (2010).
[129] J. W. A. Robinson, Z. H. Barber, M. G. Blamire, Appl. Phys. Lett. 95, 192509 (2009).
[130] M. Eschrig, J. Kopu, J. C. Cuevas, and Gerd Schon, Phys. Rev. Lett. 90, 137003 (2003).
[131] M. Eschrig, and T. Lofwander, Nature phys. 4, 138 (2008).
[132] R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao & A. Gupta, Nature 439, 825(2006).
[133] P. G. de Gennes, Phys. Lett. 23, 10 (1966).
[134] G. Deutscher and F. Meunier, Phys. Rev. Lett. 22, 395 (1969).
[135] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Europhys. Lett. 66, 111 (2004).
[136] F. S. Bergeret and N. Garcia, Phys. Rev. B 70, 052507 (2004).
[137] V. N. Krivoruchko and E. A. Koshina, Phys. Rev. B 66, 014521 (2002).
[138] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 69, 174504 (2004).
[139] F. S. Bergeret, A. Levy Yeyati, and A. Martin-Rodero, Phys. Rev. B 72, 064524 (2005).
[140] M. Yu. Kharitonov, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 73, 054511 (2006).
[141] R. I. Salikhov, I. A. Garifullin, N. N. Garifyanov, L. R. Tagirov, K. Theis-Brohl, K. Westerholt, and H. Zabel, Phys. Rev. Lett. 102, 087003 (2009).
[142] J. Stahn, J. Chakhalian, Ch. Niedermayer, J. Hoppler, T. Gutberlet, J. Voigt, F. Treubel, H-U. Habermeier, G. Cristiani, B. Keimer, and, C. Bernhard, Phys. Rev. B 71, 140509 (2005).
[143] J. Xia, V. Shelukhin, M. Karpovski, A. Kapitulnik, and A. Palevski, Phys. Rev. Lett. 102, 087004 (2009).
[144] D. Stamopoulos, N. Moutis, M. Pissas, and D. Niarchos, Phys. Rev. B 72, 212514 (2005).
[145] I. Asulin, O. Yuli, G. Koren, and O. Millo, Phys. Rev. B 79, 174524 (2009).
[146] S. Soltan, J. Albrecht, and H.-U. Habermeier, Phys. Rev. B 70, 144517 (2004).
[147] V. Peña, C. Visani, J. Garcia-Barriocanal, D. Arias, Z. Sefrioui, C. Leon, J. Santamaria, and Carmen A. Almasan, Phys. Rev. B 73, 104513 (2006).
[148] O. Vavra, W. Pfaff, and C. Strunk, Appl. Phys. Lett. 95, 062501 (2009).
[149] O. Vavra, W. Pfaff, R. Monaco, M. Aprili, and C. Strunk, Appl. Phys. Lett. 95, 062501 (2009).

Chapter 4
[150] M. A. Sillanpää, T. T. Heikkilä, R. K. Lindell, and P. J. Hakonen, Euro. Lett. 56, 590 (2001).
[151] S. Y. Huang, S. F. Lee, S. Y. Hsu, and Y. D. Yao, Phys. Rev. B 76, 024521 (2007).
[152] Wanjun Park, David V. Baxter, S. Steenwyk, I. Moraru, W. P. Pratt, Jr., and J. Bass, Phys. Rev. B 62, 1178 (2000).
[153] F. J. Jedema, B. J. van Wees, B. H. Hoving, A. T. Filip, and T. M. Klapwijk, Phys. Rev. B 60, 16549 (1999).
[154] Saburo Takahashi, and Sadamichi Maekawa, J. Phys. Soc. Jpn. 77, 031009 (2008).
[155] N. Poli, J. P. Morten, M. Urech, Arne Brataas, D. B. Haviland, and V. Korenivski, Phys. Rev. Lett. 100, 136601 (2008).
[156] J. Y. Gu, J. A. Caballero, R. D. Slater, R. Loloee, and W. P. Pratt, Jr., Phys. Rev. B 66, 140507 (2002).
[157] Jack Bass, and William P Pratt Jr., J. Phys.: Condens. Matter 19, 183201 (2007).
[158] L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).
[159] R. Steiner and P. Ziemann, Phys. Rev. B 74, 094504 (2006).
[160] J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader, Phys. Rev. Lett. 89, 267001 (2002).
[161] A. Yu. Rusanov, M. Hesselberth, J. Arts, and A. I. Buzdin, Phys. Rev. Lett. 93, 057002 (2004).
[162] Santhanam, P., Shi, C. C., Wind, S. J., Brady, M. J., and Bucchignano, J. J., Phys. Rev. Lett. 66, 2254 (1991).
[163] Park, M., Isaacson, M. S., and Parpia, J. M., Phys. Rev. B 55, 9067 (1997).
[164] Arutyunov, K. Yu., Presnov, D. A., Lotkhov, S. V., Pavolotski, A. B., and Rinderer, L., Phys. Rev. B 59, 6487 (1999).
[165] Brands, M., and Dumpich, G., J. Appl. Phys. 98, 014309 (2005).
[166] Vila, L. et al., IEEE Trans. Magn. 38, 2577 (2002).
[167] Tian, M. L. et al., Phys. Rev. Lett. 95, 076802 (2005).
[168] Zgirski, M., Riikonen, K., Touboltsev, V., and Arutyunov, K., Nano Lett. 5, 1029 (2005).
[169] Wang, J. et al., Appl. Phys. Lett. 92, 233119 (2008).
[170] Bezryadin, A., Lau, C. N., and Tinkham, M., Nature 404, 971 (2000).
[171] Ciurtois, H., Gandit, Ph., and Pannetier, B., Phys. Rev. B 52, 1162 (1995).
[172] Jedema, F. J., van Wees, B. J., Hoving, B. H., Filip, A. T., and Klapwijk, T. M., Phys. Rev. B 60,16549 (1999).
[173] Fal'ko, V. I., Volkov, A. F., and Lambert, C., Phys. Rev. B 60, 15394 (1999).
[174] Chiang, Yu. N., Shevchenko, O. G., and Kolenov, R. N. Low Temp. Phys. 33, 314 (2007).
[175] T. Kimura, T. Sato, and Y. Otani, Phys. Rev. Lett. 100, 066602 (2008).
[176] T. Kimura, J. Hamrle, and Y. Otani, Phys. Rev. B 72, 014461 (2005).
[177] Jian Wang et al., Nature Physics, 6, 389 (2010).
[178] S. Takei and V. Galitski, Phys. Rev. B 86, 054521 (2012).
[179] M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).
[180] T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
[181] T. Kimura, T. Sato, and Y. Otani, Phys. Rev. Lett. 100, 066602 (2008).
[182] T. Kimura, J. Hamrle, and Y. Otani, Phys. Rev. B 72, 014461 (2005).
[183] Yu. N. Chiang, O. G. Shevchenko, and R. N. Kolenov, Low Temp. Phys. 33, 314 (2007).
[184] L. B. Ioffe, A. I. Larkin, A. A. Varlamov, and L. Yu, Phys. Rev. B 47, 8936 (1993).
[185] G. Balestrino, M. Marinelli, E. Milani, A. A. Varlamov, and L. Yu, Phys. Rev. B 47, 6037 (1993).
[186] G. Balestrino, E. Milani, and A. A. Varlamov, Physica C 210, 386 (1993).
[187] L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001).
[188] V. M. Edelstein, Phys. Rev. B 67, 020505 (2003).
[189] L. G. Aslamasova, and A. I. Larkin, Phys. Lett. A 26, 238 (1968).

Chapter 5
[190] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[191] S. Y. Huang, J. J. Liang, S. Y. Hsu, L. K. Lin, T. C. Tsai, and S. F. Lee, Eur. Phys. J. B 79, 153 (2011).
[192] V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).
[193] H. Sellier, C. Baraduc, F. Lefloch, and R. Calemczuk, Phys. Rev. B 68, 054531 (2003).
[194] J. W. A. Robinson, S. Piano, G. Burnell, C. Bell and M. G. Blamire, Phys. Rev. Lett. 97, 177003 (2006).
[195] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Europhys. Lett. 66, 111 (2004).
[196] F. S. Bergeret and N. Garcia, Phys. Rev. B 70, 052507 (2004).
[197] V. N. Krivoruchko and E. A. Koshina, Phys. Rev. B 66, 014521 (2002).
[198] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 69, 174504 (2004).
[199] F. S. Bergeret, A. Levy Yeyati, and A. Martin-Rodero, Phys. Rev. B 72, 064524 (2005).
[200] M. Yu. Kharitonov, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 73, 054511 (2006).
[201] R. I. Salikhov, I. A. Garifullin, N. N. Garifyanov, L. R. Tagirov, K. Theis-Brohl, K. Westerholt, and H. Zabel, Phys. Rev. Lett. 102, 087003 (2009).
[202] J. Stahn, J. Chakhalian, Ch. Niedermayer, J. Hoppler, T. Gutberlet, J. Voigt, F. Treubel, H-U. Habermeier, G. Cristiani, B. Keimer, and, C. Bernhard, Phys. Rev. B 71, 140509 (2005).
[203] J. Xia, V. Shelukhin, M. Karpovski, A. Kapitulnik, and A. Palevski, Phys. Rev. Lett. 102, 087004 (2009).
[204] D. Stamopoulos, N. Moutis, M. Pissas, and D. Niarchos, Phys. Rev. B 72, 212514 (2005).
[205] I. Asulin, O. Yuli, G. Koren, and O. Millo, Phys. Rev. B 79, 174524 (2009).
[206] O. Vavra, W. Pfaff, and Ch. Strunk, Appl. Phys. Lett. 95, 062501 (2009).
[207] Lance Horng, J. C. Wu, T. C. Wu, and S. F. Lee, J. Appl. Phys. 91, 8510 (2002).
[208] M. Velez, J. I. Martin, J. E. Villegas, A. Hoffmann, E. M. Gonzalez, J. L. Vicent, and Ivan K. Schuller, J. Magn. Magn. Mater. 320, 2547 (2008).
[209] P. G. de Gennes, Phys. Lett. 23, 10 (1966).
[210] G. Deutscher and F. Meunier, Phys. Rev. Lett. 22, 395 (1969).
[211] Wanjun Park, David V. Baxter, S. Steenwyk, I. Moraru, W. P. Pratt, Jr., and J. Bass, Phys. Rev. B 62, 1178 (2000).
[212] J. Y. Gu, J. A. Caballero, R. D. Slater, R. Loloee, and W. P. Pratt, Jr., Phys. Rev. B 66, 140507 (2002).
[213] Saburo Takahashi, and Sadamichi Maekawa, J. Phys. Soc. Jpn. 77, 031009 (2008).
[214] N. Poli, J. P. Morten, M. Urech, Arne Brataas, D. B. Haviland, and V. Korenivski, Phys. Rev. Lett. 100, 136601 (2008).
[215] Jack Bass, and William P Pratt, Jr., J. Phys.: Condens. Matter 19, 183201 (2007).
[216] L. K. Lin, S. Y. Huang, J. K. Lin, J. H. Huang, and S. F. Lee, J. Appl. Phys. 109, 07E155 (2011).
[217] M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu, and J. Aarts, Phys. Rev. B 82, 100501 (2010).
[218] R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao, and A. Gupta, Nature 439, 825 (2006).
[219] T. S. Khaire, M. A. Khasawneh, W. P. Pratt, Jr., and Norman O. Birge, Phys. Rev. Lett. 104, 137002 (2010).
[220] J. W. A. Robinson, J. D. S. Witt, and M. G. Blamire, Science 329, 59 (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王仁祥,〈先秦威儀觀探論〉,《興大歷史學報》第17期,2006年6月。
2. 甘懷真,〈鄭玄、王肅天神觀的探討〉,《史原》第15期,1986年4月。
3. 朱曉海,〈孔子的一個早期形象〉,《清華學報》新32卷第1期,2002年6月。
4. 巫雪如,〈〈民之父母〉、〈孔子閑居〉及〈論禮〉若干異文的語言分析——兼論《孔子家語》的成書問題〉,《漢學研究》第28卷第4期,2010年12月。
5. 林素英,〈降服的文化結構意義──以《儀禮•喪服》為討論中心〉,《中國學術年刊》第19期,1998年3月。
6. 林聰舜,〈叔孫通「起朝儀」的意義——劉邦卡理斯瑪支配的轉變〉,《哲學與文化》第20卷第12期,1993年12月。
7. 張書豪,〈從奏議到經義——西漢晚期廟數之爭析論〉,《政大中文學報》第15期,2011年6月。
8. 黃忠天,〈從《中庸‧達孝章》談宗廟祭祀與治國的關係〉,《經學研究集刊》創刊號,2005年10月。
9. 楊晉龍,〈神統與聖統——鄭玄王肅「感生說」異解探義〉,《中國文哲研究集刊》第3期,1993年3月。
10. 鄭倩琳,〈從《莊子》外雜篇中「孔子困厄」之論述探析儒道之衝突與會通〉,《國文學報》第44期,2008年12月。
11. 寧鎮疆,〈由出土文獻再說《孔子家語》的性質及其成書過程〉,《孔孟學報》第82期,2004年9月。
12. 龔鵬程,〈宗廟制度論略(上)〉,《孔孟學報》第43期,1982年4月。
 
系統版面圖檔 系統版面圖檔