(3.236.231.61) 您好!臺灣時間:2021/05/11 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李牧澤
論文名稱:無壓液相燒結鑽石/銀-鈦複合材料之微結構及熱性質
論文名稱(外文):Microstructures and Thermal Properties of Diamond/Ag-Ti Composites Fabricated by Pressureless Liquid Phase Sintering
指導教授:林樹均
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:139
中文關鍵詞:鑽石銀基複合材熱傳導係數熱膨脹係數
外文關鍵詞:Diamond/Ag compositeThermal conductivityCoefficient of thermal expansion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用無壓液相燒結法製備鑽石銀基複合材料。由於金屬銀在鑽石表面上的潤濕性不佳,由實驗得知,添加鈦以改善銀基材與鑽石間的潤濕性,進而得到具有良好的熱傳導性質的複合材料。在鈦添加量對於複合材料熱性質的影響中發現,最適量的Ti 添加量在3at.%,少於3at.%會造成系統潤濕性不足,多於3at.%會導致TiC生成過多而降低複材的熱傳導性質,鈦添加量對於複材的熱傳導性質有著決定性的影響。藉由電子顯微鏡觀察鑽石與基材間的界面厚度發現,界面層主要是由碳化鈦所組成。進一步研究燒結持溫時間對於複合材料熱性質的影響,發現複材的緻密度及熱傳導率會隨著持溫時間增加而變大,30分鐘持溫可得最大緻密度及熱傳導率;更久的持溫時間則因銀的蒸發而造成緻密度及熱傳導率降低。製備出的複合材料,在鑽石體積分率 60%、鈦添加量3at.%的條件下,其熱傳導係數可高達 836 W/mK,熱膨脹係數為 5.6 ppm/K,表示此製程製備的複合材料熱性質良好。由於此製程為一無壓燒結製程,無須加壓設備與高溫高壓模具,可大幅降低設備與模具成本;並且製程簡便,可大量生產,使此鑽石/銀基複合材料在電子構裝散熱材的應用上更具潛力。
In this study, Ti addition into matrix to improve the wettability between the diamond and Ag. Diamond/Ag-Ti composites were fabricated by a low-cost vacuum liquid sintering technique. The effects of Ti addition on the thermal properties of the composites were studied. The results indicate that the optimal quantity of added Ti is 3 at.%. Adding less than 3 at.% Ti resulted in poor wettability, while adding more than 3 at.% Ti resulted in excessive formation of TiC between diamond and Ag . Both reduced thermal conductivity. A composite comprising 60 vol.% diamond/Ag-3at.%Ti resulted in a maximum thermal conductivity of 836 W/mK with a coefficient of thermal expansion of 5.6 ppm/K. Furthermore, the holding time effect on thermal properties of the 60 vol.% diamond/Ag-3at.%Ti composites also were investigated. The relative density and thermal conductivity decreased with the holding time increased from 60 min to 180 min. The diamond/Ag-3 at.% Ti composite can be applied as a promising heat spreader with high reliability because it has high TC and also its coefficient of thermal expansion can be tailored for a specific semiconductor material for electronic device applications. This low-cost vacuum liquid sintering process with active Ti addition is a promising technique to fabricate high thermal conductivity diamond/Ag composites.
Table of contents
中文摘要 i
Abstract ii
Table of contents iii
Figure Captions vii
List of Tables xiv
Chapter 1 Introduction 1
Chapter 2 Background 3
2.1 Importance of heat dissipation 3
2.2 Development of heat dispassion materials 7
2.2.2 Conventional packaging heat dissipation materials 7
2.2.3 Advanced heat dissipation materials 9
2.2.4 Integration of heat dissipation materials 16
2.3 Metal matrix composite (MMC) 19
2.3.1 Theory of thermal properties of metal matrix composites 19
2.3.2 Various processing approaches 26
2.4 Factors in the thermal conductivity of diamond composites 28
2.4.1 Issue of interface between diamond and matrix 30
2.4.2 Element addition effect 34
2.4.3 Carbide layer thickness effect 42
Chapter 3 Experimental method and procedure 50
3.1 Experiment design and procedure 50
3.1.2 Principles of design 51
3.1.3 Experiment planning 52
3.2 Fabrication methods 55
3.2.1 Salt bath coating 55
3.2.2 Cold pressing 57
3.2.3 Vacuum pressureless liquid phase sintering 57
3.3 Analysis of composites 60
3.3.1 Metallographic observation 60
3.3.2 Relative density (RD) measurement 60
3.3.3 Coefficient of thermal expansion measurement (CTE) 61
3.3.4 Thermal conductivity (TC) Measurement 63
3.3.5 Thermal diffusivity 64
3.3.6 Specific heat 65
3.3.7 Density 67
Chapter 4 Results and discussion 68
4.1 Observation of powders before mixture 68
4.1.1 Ag powders and Ti powders 68
4.1.2 Diamond powders 68
4.2 Development of diamond/Ag composites fabrication process 71
4.2.1 Eletroless plating 71
4.2.2 Active element effect 77
4.2.3 Salt bath effect 78
4.2.4 Bimodal mixture effect 82
4.2.5 Vacuum Liquid phase sintering 85
4.2.6 Diamond size and shape effect 86
4.2.7 Summary of experiments from 2007 to 2011 90
4.3 Ti addition effect on TC of diamond/Ag-Ti composites 92
4.3.1 Microstructure 92
4.3.2 Thermal properties 97
4.3.3 Interface thermal conductance (ITC) calculation 100
4.3.4 Analysis of interface diamond/Ag 110
4.3.5 Summary 116
4.4 Liquid sintering holding time effect on TC of diamond/Ag-Ti composites 117
4.4.1 Microstructure 117
4.4.2 Analysis of interface diamond/Ag 119
4.4.3 Thermal properties 120
4.4.4 Comparison of theoretical analysis TC and measurement TC 123
4.4.5 Summary 124
Chapter 5 Conclusions 126
Chapter 6 Future work 129
Chapter 7 References 130


1. R. C. Chu, “The Perpetual Challenges of Electronics Cooling Technology for Computer Product Applications – from Laptop to Supercomputer” (2003).
2. J. Markoff, “Intel's Big Shift After Hitting Technical Wall”, New York Times, May 17 (2004).
3. 劉君愷 “3D IC散熱及可靠度設計技術(Thermal and Reliability Issues for 3D IC) ” 工業材料雜誌 274 (2009) 99-107.
4. R. Mahajan, C. P. Chiu and G. Chrysler, “Cooling a Microprocessor Chip” Proceedings of the IEEE 94 (2006) 1476-1486.
5. K. Banerjee, S. C. Lin and V. Wason, “Leakage and Variation aware Thermal Management of Nanometer Scale ICs”, Proceedings of IMAPS Advanced Technology Workshop on Thermal Management, Oct. 25-27, Palo Alto, CA, (2004).
6. 黃振東 “淺談LED散熱材料及元件(Brief Introduction of LED Thermal Management and Components)” 工業材料雜誌 281 (2010) 73-83.
7. Qpedia, “Chip Level Cooling: The Final Frontier”, 2 (2009) 6-11.
8. C. Zweben, “Advances in Composite Materials for Thermal Management in Electronic Packaging” Journal of the Minerals, Metals and Materials Society, 50 (1998) 47-51.
9. C. Zweben, “New, Low-CTE, Ultrahigh-Thermal-Conductivity Materials for Lidar Laser Diode Packaging”, Proceedings of SPIE, Lidar Remote Sensing for Environmental Monitoring VI, San Diego, CA, US, (2005) 1-10.
10. J. Barcena, J. Maudes, M. Vellvehi, X. Jorda, I. Obieta, C. Guraya, L. Bilbao, C. Jiménez, C. Merveille, and J. Coleto., “Innovative Packaging Solution for Power and Thermal Magagement of Wire-Bandgap Semiconductor Devices in Space Applications”, Acta Astronautica, 62 (2008) 422-430.
11. 黃振東 “高熱傳材料之發展與應用(The Development and Applications of High Thermal Conductivity Materials)” 工業材料雜誌 259 (2008) 117-126.
12. D. Rowcliffe, “Cemented Diamond Composites for Thermal Management Applications”, Proceedings of .IMAPS ATW, Denver, Colorado, USA, (2002).
13. D. M. Jacobson and S. P. S. Sangha, “Novel Low Expansion Packages for Elecronics”, The GEC Journal of Technology, 14 (1997) 48-52.
14. J. F. Silvain, Y. Le Petitcorps, E. Sellier, P. Bonniau and V. Heim, “Elastic Moduli, Thermal Expansion and Microstructure of Copper-Matrix Composite Reinforced by Continuous Graphite Fibres”, Composites, 25 (1994) 570-574.
15. I. Dutta, “Role of Interfacial and Matrix Creep During Thermal Cycling of Continuous Fiber Reinforced Metal-Metal Composites”, Acta Materials, 48 (2000) 1055-1074.
16. M. Vedula R. N. Pangborn and R. A. Queeney, “Fiber Anisotropic Thermal-Expansion and Residual Thermal-Stress in a Graphite/ Aluminum Composite”, Composites, 25 (1988) 55-60.
17. Nancy Dean, “先進散熱材料應用與管理”,《半導體科技.先進封裝與測試》雜誌 (2003) 54-56.
18. R. M. German, K. F. Hens, and J. L. Johnson, “Power-Metallurgy processing of Thermal Management Materials for Microelectronic Applications”, International Journal of Powder Metallurgy, 30 (1994) 205-215.
19. J. Hashin, and S. Shtrikman, “A Variational Approach to the Theory of Elastic Behavior of Multiphase Materials”, Journal of the Mechanics and Physics of Solids, 11 (1963) 127-140.
20. P. S Turner, “Thermal-Expansion Stresses in Reinforced Plastics”, Journal of Research of the National Bureau of Standards, 37 (1946) 239-250.
21. E. H. Kerner, “The Elastic and Thermo-Elastic Properties of Composite Media”, Proceeding of The Physical Society of London (B), 68 (1956) 808-813.
22. T. T. Wang and T. K. Kwei, “Effect of Induced Thermal Stresses on Coefficients of Thermal Expansion and Densities of Filled Polymers”, Journal of Polymer Science Part A-2: Polymer Physics, 7 (1969) 889-896.
23. R. R. Tummala and A. L. Friedberg, “Thermal Expansion of Composite Materials”, Journal of Applied Physics, 41 (1970) 5104-5107.
24. R. A. Schapery, “Thermal Expansion Coefficients of Composite Materials Based on Energy Principles”, Journal of Composite Materials, 2 (1968) 380-404.
25. A. A. Fahmy and A. N. Ragai, “Thermal-Expansion Behavior of Two-Phase Solids”, Journal of Applied Physics, 41(1970) 5108-5111.
26. R. M. German, “A Model for the Thermal-Properties of Liquid-Phase Sintered Composites”, Metallurgical Transactions A, 24A (1993) 1745-1752.
27. D. P. H. Hasselman and K. Y. Donaldson, “Effect of Reinforcement Particle Size on the Thermal Conductivity of a Particulate-Silicon Carbide-Reinforced Aluminum Matrix Composite”, Journal of the American Ceramic Society, 75 (1992) 3137-3140.
28. A. G. Every and Y. Tzou, D. P. H. Hasselman and R. Raj, “The Effect of Particle-Size on the Thermal Conductivity of ZnS/Diamond Composites”, Acta Metallurgica et Materialia, 40 (1992) 123-129.
29. L. Rayleigh, “On the Influence of Obstacles Arranged in Rectangular Order upon the Properties of a Medium”, Philosophical Magazine, 34 (1892) 481-502.
30. J. C. Maxwell, “A Treatise on Electricity and Magnetism”, 1, 3rd ed. Oxford University Press, Oxford, U. K., (1904).
31. D. P. H. Hasselman and L. F. Johnson, “Effective Thermal-Conductivity of Composites with Interfacial Thermal Barrier Resistance”, Journal of Composite Materials, 21 (1987) 508-515.
32. Y. Benvensite, “Effective Thermal Conductivity of Composites with a Thermal Contact Resistance between the Constituents: Nondilute Case”, Journal of Applied Physics, 61 (1987) 2840-2843.
33. J. C. Y. Koh and A. Fortini, “Prediction of Thermal Conductivity and Electrical Resistivity of Porous Metallic Materials”, International Journal of Heat and Mass Transfer, 16 (1973) 2013-2022.
34. D. B. Miracle, “Metal Matrix Composites – From Science to Technological Significance”, Composites Science and Technology, 65 (2005) 2526-2540.
35. K. Yoshida and H. Morigami, “Thermal Properties of Diamond/Copper Composite Material”, Microelectronics Reliability, 44 (2004) 303-308.
36. E. A. Ekimov, N. V. Suetin, A. F. Popovich, V. G. Ralchenko, E. L. Gromnitskaya and V. P. Modenov, “Effect of Microstructure and Grain Size on the Thermal Conductivity of High-Pressure-Sintered Diamond Composites”, Inorganic Materials, 44(2008) 224-229.
37. K. Nogi, Y. Okada, K. Ogino and N. Iwamoto, “Wettability of Diamond by Liquid Pure Metals”, Journal of the Japan Institute Metals, 57 (1993) 63-67.
38. W. B. Johnson and B. Sonuparlak, “Diamond/Al Metal Composites Formed by the Pressureless Metal Infiltration Process”, Journal of Materials Research, 8 (1993) 1169-1173.
39. F. A. Khalid, O. Beffort, U. E. Klotz, B. A. Keller and P. Gasser, “Microstructure and Interfacial Characteristics of Aluminum -Diamond Composite Materials”, Diamond and Related Materials, 13 (2004) 393-400.
40. O. Beffort, F. A. Khalid, L. Weber, P. Ruch, U. E. Klotz, S. Meier and S. Kleiner, “Interface Formation in Infiltrated Al(Si)/Diamond Composites”, Diamond and Related Materials, 15 (2006) 1250-1260.
41. P. W. Ruch, O. Beffort, S. Kleiner, L. Weber and P. J. Uggowitzer, “Selective Interfacial Bonding in Al(Si)-Diamond Composites and Its Effect on Thermal Conductivity”, Composites Science and Technology, 66 (2006) 2677-2685.
42. S. Kleiner, F. A. Khalid, P. W. Ruch, S. Meier and O. Beffort, “Effect of Diamond Crystallographic Orientation on Dissolution and Carbide Formation in Contact with Liquid aluminum”, Scripta Materialia, 55 (2006) 291-294.
43. K. Mizuuchi, K. Inoue, Y. Agari, Y. Morisada, M. Sugioka, M. Tanaka, T. Takeuchi, J. I. Tani, M. Kawahara and Y. Makino, “Thermal Properties of Diamond Particle Dispersed Aluminum Matrix Composites Fabricated in Continuous Solid-Liquid Co-Existed State by SPS”, Journal of the Japan Society of Powder and Powder Metallurgy, 56 (2009) 438-443.
44. B. Yang and J. K. Yu, “Microstructure and Thermal Expansion of Ti Coated Diamond/Al Composites”, Transactions of Nonferrous Metals Society of China, 19 (2009) 1167-1173.
45. J. A. Kerns, N. J. Colella and D. Makowiecki, “Dymalloy: A Composite Substrate for High Power Density Electronic Components”, Proceeding of 1995 International Symposium on Microelectronics, (1995) 66-71.
46. L. Weber and R. Tavangar, “On the Influence of Active Element Content on the Thermal Conductivity and Thermal Expansion of Cu-X (X = Cr, B) Diamond Composites”, Scripta Materialia, 57 (2007) 988-991.
47. R. Tavangar, J. M. Molina and L. Weber, “Assessing Predictive Schemes for Thermal Conductivity against Diamond-Reinforced Silver Matrix Composites at Intermediate Phase Contrast”, Scripta Materialia, 56 (2007) 357-360.
48. L. Weber, C. Von Grunigen and N. Frigeni, in: H.P. Degischer (Ed.), Verbundwerkstoffe, 14. Symposium Verbundwerkstoffe und Werkstoffverbounde, DGM, WILEYVCH publ., (2003) 801.
49. T. B. Massalski and H. Okamoto, “Binary Alloy Phase Diagrams”, ASM International (1990).
50. T. Schubert, L. Ciupinski, W. Zielinski, A. Michalski, T. Weisgarber and B. Kieback, “Interfacial Characterization of Cu/Diamond Composites Prepared by Powder Metallurgy for Heat Sink Applications”, Scripta Materialia, 58 (2008) 263-266.
51. C.L. Martin, D. Bouvard, “International Journal of Mechanical Sciences”, 46 (2004) 907–927
52. L.Weber, R. Tavangar, “Diamond-based Metal Matrix Composites for Thermal Management made by Liquid Metal Infiltration-Potential and Limits”, Advanced Materials Research, 59 (2009) 111-115
53. http://www.factdiamond.com
54. http://www.agpro.com.tw
55. S. K. Bhaumik , G. S. Upadhyaya and M. L. Vaidya, “Alloy Design of WC-10Co Hard Metals with Modifications in Carbide and Binder Phases” International Journal of Refractory Metals & Hard Materials, 11 (1992) 9-22.
56. TA Instruments 2940 Thermomechanical Analyzer (TMA).
57. NETZSCH Operating Instructions LFA 447TM Nanoflash.
58. N. Frage, N. Froumin and M. P. Dariel, “Wetting of TiC by Non-Reactive Liquid Metals” Acta Materialia, 50 (2002) 237-245.
59. C.L. Martin and D. Bouvard, “Isostatic compaction of bimodal powder mixtures and composites” International Journal of Mechanical Sciences, 46 (2004) 907–927.
60. M.L. Muolo, E. Ferrera, A. Passerone, “Wetting and spreading of liquid metals onZrB2-based ceramics” Journal of materials Science, 40 (2 005) 2295 – 2300
61. D.W. Liaw and R.K. Shiue, “Brazing of Ti-6Al-4V and Niobium Using Three Silver-Base Braze Alloys” Metallurgical and materials transactions A, 36(2005) 2415-2427.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔