(3.227.235.183) 您好!臺灣時間:2021/04/13 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈宛叡
研究生(外文):Shen, Wan-Jui
論文名稱:AlCrNbSiTi高熵合金與其氮化物薄膜微結構、機械性質與高溫氧化行為之研究
論文名稱(外文):Study on Microstructures, Mechanical Properties and Oxidation Behavior of High-Entropy (AlCrNbSiTi)Nx Metallic and Nitride Films
指導教授:葉均蔚張一熙
指導教授(外文):Yeh, Jien-WeiChang, Yee-Shyi
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:208
中文關鍵詞:高熵氮化物機械性質抗氧化切削性質
外文關鍵詞:High-entropy NitrideMechanical PropertiesOxidation ResistanceMachining Performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本實驗利用真空電弧熔煉法製備Al0.34Cr0.22Nb0.22Si0.11Ti0.11六元非等莫耳高熵合金靶材,再利用反應式直流磁控濺鍍法製備其高熵金屬及氮化物薄膜,藉由調整氮氣流率與基板偏壓,探討此二參數對薄膜微結構與機械性質的影響。此外,為了解薄膜抗氧化性質,選擇氮氣流率50% 與基板偏壓 -100 V所鍍製之薄膜,在不同條件下進行大氣退火,研究此高熵合金氮化物薄膜的抗氧化性質及機制。為瞭解附著性,則以Ti, Cr, 與自身合金作為中間層,研究此最佳化高熵氮化物薄膜在WC/Co基板上的附著性質。最後,以此高熵氮化物膜搭配適宜的中間層鍍覆在WC/Co商用三角銑刀上,對304不銹鋼以及SKD11 工具鋼進行切削測試,並與商用TiN 及TiAlN互相比較。

實驗結果發現(Al0.34Cr0.22Nb0.22Si0.11Ti0.11)50N50氮化物薄膜在氮氣比例50 %、基板偏壓 -100 V的製程條件下,擁有最高的硬度值36 GPa與楊氏係數340 GPa。除合金膜為非晶質結構外,高熵氮化物薄膜呈現單一的FCC結構,為二元氮化物的固溶相,其薄膜結構呈現緻密的細纖維結構。此外,此製程條件下製備之高熵氮化物擁有非常優秀的抗氧化性質,在900 °C 50小時的大氣退火下,表面只有約 290 nm厚的氧化物生成;而氧化增重測試中,由室溫以每分鐘上升10 °C到1300 °C,每cm2也只增重0.015 mg,皆遠優於商用TiN與TiAlN的表現。此絕佳抗氧化表現經TEM及EDX分析,應歸因於表面緻密氧化鋁層與豐富的非晶氧化物層形成了良好的擴散阻絕層。而附著測試中,以100 nm厚的Ti作為中間層可在WC/Co基板上提供最佳的附著性質,其臨界應力大於100 N,超過商用標準。以此(Al0.34Cr0.22Nb0.22Si0.11Ti0.11)50N50氮化物薄膜搭配Ti中間層鍍覆在商用WC/Co銑刀上進行切削測試,並與與商用TiN與TiAlN薄膜相較,高熵合金氮化物擁有更優秀的切削性質。綜合本研究成果,可瞭解(Al0.34Cr0.22Nb0.22Si0.11Ti0.11)50N50高熵氮化物在刀具保護上具有優秀的應用潛力。

High-entropy nitride (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)100-xNx coatings were sputter-deposited from an alloy target Al0.34Cr0.22Nb0.11Si0.11Ti0.22. The effects of nitrogen flow ratio and substrate bias on film structure and properties were studied. Stoichiometric nitride coatings with the best hardness were then annealed at various conditions to investigate the oxidation properties. This (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 coatings were also deposited onto WC/Co substrate with Ti, Cr, and Al0.34Cr0.22Nb0.11Si0.11Ti0.22 metallic interlayers to study the adhesion properties. The cutting test of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 coated inserts with optimal interlayer and oxidation resistance was performed on 304 stainless steel and SKD11 tool steel. For comparison, TiN and TiAlN coatings were also prepared for oxidation and cutting tests.
The results show that (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 coatings deposited at nitrogen flow ratio 50% and substrate bias -100 V have the highest hardness of 36 GPa and Young's modulus of 340 GPa. The metallic films exhibit amorphous structures, while all other nitride films are in single FCC structures. This hard coating also possesses outstanding oxidation resistance. The oxide layer on the coating surface was 290 nm after 50 h annealing at 900 °C. The weight gain after thermal ramping to 1300 °C was merely 0.015 mg cm-2. Such an oxidation resistance is superior to other reported nitride coatings. Eight layers of oxides with different compositions were observed in the scale by TEM. The superior oxidation resistance is owing to the protection of the dense Al2O3 layer and inter-connected Si-rich amorphous network.
In adhesion test, (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 coatings with 100 nm Ti-interlayer demonstrate the best adhesion property. The critical load exceeds 100 N, which is better than the commercial demand (60 N). The cemented inserts coated with (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 and Ti-interlayer show a better milling performance than commercial TiN and TiAlN-coated inserts. This research demonstrates the great potential of application of this high-entropy (Al0.34Cr0.22Nb0.22Si0.11Ti0.11)50N50.coating for cutting tools.
摘 要 i
Abstract iii
誌謝 v
Contents viii
List of Figures xii
List of Tables xxiii
Chapter 1 Introduction 1
Chapter 2 Background 5
2.1 Thin Film Deposition 5
2.1.1 Physical Vapor Deposition 5
2.1.2 Sputtering Technique 8
2.1.3 Magnetron Sputtering 12
2.1.4 Reactive Sputtering 14
2.2 Formation and Structure of Thin Film 15
2.2.1 Formation Mechanism 15
2.2.2 Microstructure Evolution 18
2.3 Review of Hard Coatings 24
2.3.1 Intrinsic Hard Coatings 27
2.3.2 Extrinsic Hard Coatings 32
2.3.2.1 Multilayer 32
2.3.2.2 Nanocomposite Coatings 34
2.3.3 Properties of Transition Metal Nitride 38
2.4 Review of High-Entropy Alloys Nitrides 45
2.4.1 High-Entropy Alloy 45
2.4.2 Definition and Core Effects 48
2.4.3 High-Entropy Nitride Coatings 52
2.5 Purpose of This Study 76
Chapter 3 Experimental Procedure 79
3.1 Target Preparation 81
3.2 Film Deposition 83
3.3 Film Characterization 86
3.3.1 Chemical Composition and Microstructures 86
3.3.2 Mechanical Properties 87
3.3.3 Oxidation Resistance and Thermal Stability 88
3.3.4 Adhesion Test 89
3.3.5 Milling Test 92
Chapter 4 Results and Discussion 95
4.1 Effect of Nitrogen Flow Ratio on Structure and Mechanical Properties of High-Entropy Nitride (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)Nx coatings 95
4.1.1 Film Composition Analysis 95
4.1.2 XRD Analysis 99
4.1.3 Surface Morphology and Cross-sectional Microstructure 106
4.1.4 Deposition Rate 111
4.1.5 Mechanical Property 113
4.2 Effects of Substrate Bias on the Structure and Mechanical Properties of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)100-xNx Coatings 118
4.2.1 Deposition Rate and Chemical Composition 118
4.2.2 XRD Analysis 122
4.2.3 Surface Morphology and Cross-sectional Microstructure 130
4.2.4 Mechanical Properties 134
4.3 Superior Oxidation Resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-entropy Nitride Films 139
4.3.1 XRD Analysis 139
4.3.2 TGA Analysis 142
4.3.3 SEM Investigation 144
4.3.4 Thickness of Oxide Layer 146
4.3.5 TEM analysis 150
4.3.6 Mechanism of Layered-structure Formation 159
4.3.7 Mechanism of Oxidation Resistance 164
4.3.8 Deviation from Parabolic Behavior 165
4.4 Thermal Stability, Adhesion Test, and Machining Performance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride Coatings 167
4.4.1 Thermal Stability and Film Hardness 167
4.4.2 Adhesion Test 171
4.4.3 Milling Test 176
Chapter 5 Conclusions 186
References 192
Vita and Publiction List 207

[1] P.C. Jindal, A.T. Santhanam, U. Schleinkofer, A.F. Shuster, International Journal of Refractory Metals & Hard Materials 17 (1999) 163.
[2] H.E. Hintermann, Thin Solid Films 84 (1981) 215.
[3] W.D. Munz, J. Vac. Sci. Technol., A 4 (1986) 2717.
[4] P. Panjan, B. Navinsek, M. Cekada, A. Zalar, Vacuum 53 (1999) 127.
[5] P. Panjan, B. Navinsek, A. Cvelbar, A. Zalar, J. Vlcek, Surf. Coat. Technol. 98 (1998) 1497.
[6] M. Nordin, M. Larsson, S. Hogmark, Surf. Coat. Technol. 106 (1998) 234.
[7] S. Veprek, S. Reiprich, S.H. Li, Appl. Phys. Lett. 66 (1995) 2640.
[8] K.H. Huang, Master Master thesis, Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 1996.
[9] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater. 6 (2004) 74.
[10] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299.
[11] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 35A (2004) 2533.
[12] Y.Y. Chen, U.T. Hong, J.W. Yeh, H.C. Shih, Appl. Phys. Lett. 87 (2005) 261918.
[13] Y.Y. Chen, U.T. Hong, J.W. Yeh, H.C. Shih, Scripta Mater. 54 (2006) 1997.
[14] J.W. Yeh, Ann. Chim. - Sci. Mat. 31 (2006) 633.
[15] P.K. Huang, J.W. Yeh, Scripta Mater. 62 (2010) 105.
[16] H.T. Hsueh, W.J. Shen, M.H. Tsai, J.W. Yeh, Surf. Coat. Technol. 206 (2012) 4106.
[17] K.H. Cheng, C.W. Tsai, S.J. Lin, J.W. Yeh, J. Phys. D: Appl. Phys. 44 (2011) 205405.
[18] M.H. Hsieh, M.H. Tsai, W.J. Shen, J.W. Yeh, Surf. Coat. Technol. 221 (2013) 118.
[19] K.H. Cheng, C.H. Lai, S.J. Lin, J.W. Yeh, Thin Solid Films 519 (2011) 3185.
[20] P.K. Huang, J.W. Yeh, J. Phys. D: Appl. Phys. 42 (2009) 115401.
[21] D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes, Westwood, NJ, 1998.
[22] W.R. Grove, Phil. Trans. R. Soc. Lond. 142 (1852) 87.
[23] R.F. Bunshah, in: R.F. Bunshah (Ed.), HANDBOOK OF HARD COATINGS- Deposition Technologies, Properties and Applications, Noyes, Norwich, NY, 2001.
[24] D.M. Mattox, J. Vac. Sci. Technol., A 7 (1989) 1105.
[25] J.L. Vossen, W. Kern, Thin Film Processes II, Academic Press, New York, 1991.
[26] J.A. Venables, G.D.T. Spiller, M. Hanbucken, Rep. Prog. Phys. 47 (1984) 399.
[27] F.A. Smidt, Int. Mater. Rev. 35 (1990) 61.
[28] J.A. Thornton, Annu. Rev. Mater. Sci. 7 (1977) 239.
[29] J.A. Thornton, J. Vac. Sci. Technol. 11 (1974) 666.
[30] R. Messier, A.P. Giri, R.A. Roy, J. Vac. Sci. Technol. A 2 (1984) 500.
[31] P.B. Barna, M. Adamik, Protective Coatings and Thin Films: Synthesis Characterisation and Applications,, Kluwer Academic, Boston, 1997.
[32] Y. Pauleau, P.B. Barna, Protective Coatings and Thin Films: Synthesis, Characterization and Applications Kluwer Academic Publishers, The Netherlands, 1997.
[33] C. Friedrich, G. Berg, E. Broszeit, C. Berger, Surf. Coat. Technol. 98 (1998) 816.
[34] S. Veprek, J. Vac. Sci. Technol., A 17 (1999) 2401.
[35] G. Hägg, Z. Phys. Chem. Abt. B (1929) 221.
[36] H.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps. , Noyes, Westwood, New Jersey, 1996.
[37] J.S. Koehler, Phys. Rev. B 2 (1970) 547.
[38] U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, J.E. Greene, J. Appl. Phys. 62 (1987) 481.
[39] L.A. Donohue, W.D. Munz, D.B. Lewis, J. Cawley, T. Hurkmans, T. Trinh, I. Petrov, J.E. Greene, Surf. Coat. Technol. 93 (1997) 69.
[40] P.E. Hovsepian, W.D. Munz, A. Medlock, G. Gregory, Surf. Coat. Technol. 133 (2000) 508.
[41] P.E. Hovsepian, D.B. Lewis, W.D. Munz, Surf. Coat. Technol. 133 (2000) 166.
[42] S.K. Tien, C.H. Lin, Y.Z. Tsai, J.G. Duh, J. Alloy. Compd. 489 (2010) 237.
[43] S. Veprek, S. Mukherjee, P. Karvankova, H.D. Mannling, J.L. He, K. Moto, J. Prochazka, A.S. Argon, J. Vac. Sci. Technol., A 21 (2003) 532.
[44] A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, Scripta Metallurgica 23 (1989) 1679.
[45] R.W. Siegel, G.E. Fougere, Nanostruct. Mater. 6 (1995) 205.
[46] J. Patscheider, MRS Bull. 28 (2003) 180.
[47] S. Veprek, P. Karvankova, M.G.J. Veprek-Heijman, J. Vac. Sci. Technol., B 23 (2005) L17.
[48] S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Thin Solid Films 476 (2005) 1.
[49] S. Veprek, M. Haussmann, S. Reiprich, J. Vac. Sci. Technol., A 14 (1996) 46.
[50] R. Buhl, H.K. Pulker, E. Moll, Thin Solid Films 80 (1981) 265.
[51] M. Wittmer, J. Noser, H. Melchior, J. Appl. Phys. 52 (1981) 6659.
[52] C.W. Kim, K.H. Kim, Thin Solid Films 307 (1997) 113.
[53] J.L. Lin, N.Y. Zhang, W.D. Sproul, J.J. Moore, Surf. Coat. Technol. 206 (2012) 3283.
[54] B. Navinsek, P. Panjan, I. Milosev, Surf. Coat. Technol. 97 (1997) 182.
[55] M. Zhu, M.S. Li, Y.C. Zhou, Surf. Coat. Technol. 201 (2006) 2878.
[56] M. Kawate, A.K. Hashimoto, T. Suzuki, Surf. Coat. Technol. 165 (2003) 163.
[57] D.B. Lee, M.H. Kim, Y.C. Lee, S.C. Kwon, Surf. Coat. Technol. 141 (2001) 232.
[58] F. Rovere, P.H. Mayrhofer, A. Reinholdt, J. Mayer, J.M. Schneider, Surf. Coat. Technol. 202 (2008) 5870.
[59] F. Rovere, P.H. Mayrhofer, J. Vac. Sci. Technol., A 25 (2007) 1336.
[60] L.A. Donohue, I.J. Smith, W.D. Munz, I. Petrov, J.E. Greene, Surf. Coat. Technol. 94-5 (1997) 226.
[61] M. Pfeiler, C. Scheu, H. Hutter, J. Schnoller, C. Michotte, C. Mitterer, M. Kathrein, J. Vac. Sci. Technol., A 27 (2009) 554.
[62] C. Leyens, M. Peters, Titanium and Titanium Alloys, Wiley-VCH, New York, 2003.
[63] J. Prochazka, P. Karvankova, M.G.J. Veprek-Heijman, S. Veprek, Mater. Sci. Eng., A 384 (2004) 102.
[64] S. Veprek, S. Reiprich, Thin Solid Films 268 (1995) 64.
[65] S. Veprek, M. Haussmann, S. Reiprich, L. Shizhi, J. Dian, Surf. Coat. Technol. 86 (1996) 394.
[66] S. Veprek, Surf. Coat. Technol. 97 (1997) 15.
[67] H. Zeman, J. Musil, P. Zeman, J. Vac. Sci. Technol., A 22 (2004) 646.
[68] P. Zeman, J. Musil, R. Daniel, Surf. Coat. Technol. 200 (2006) 4091.
[69] J. Musil, R. Daniel, P. Zeman, O. Takai, Thin Solid Films 478 (2005) 238.
[70] J. Musil, A. Sasek, P. Zeman, R. Cerstvy, D. Herman, J.G. Han, V. Satava, Surf. Coat. Technol. 202 (2008) 3485.
[71] J. Musil, J. Vlcek, P. Zeman, Advances in Applied Ceramics 107 (2008) 148.
[72] J. Musil, R. Daniel, J. Soldan, P. Zeman, Surf. Coat. Technol. 200 (2006) 3886.
[73] J. Musil, P. Dohnal, P. Zeman, J. Vac. Sci. Technol., B 23 (2005) 1568.
[74] A. Kimura, H. Hasegawa, K. Yamada, T. Suzuki, J. Mater. Sci. Lett. 19 (2000) 601.
[75] M. Zhou, Y. Makino, M. Nose, K. Nogi, Thin Solid Films 339 (1999) 203.
[76] K.H. Huang, Master thesis Master thesis, Department of Materials Science and Engineering, National Tsing Hua University, 1996.
[77] K.T. Rai, Master thesis Master thesis, Department of Materials Science and Engineering, National Tsing Hua University, 1998.
[78] Y.H. Sheu, Master thesis Master thesis, Department of Materials Science and Engineering, National Tsing Hua University, 2000.
[79] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Metall. Mater. Trans. A 35A (2004) 1465.
[80] T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, Surf. Coat. Technol. 188 (2004) 193.
[81] Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Corros. Sci. 47 (2005) 2257.
[82] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Materials Chemistry and Physics 103 (2007) 41.
[83] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, J.Y. Gan, Appl. Phys. Lett. 92 (2008) 052109.
[84] K.Y. Tsai, Ph.D. Thesis, Materials Science & Engineering, National Tsing Hua University, Hsinchu, 2013.
[85] R.A. Swalin, Thermodynamics of Solids, John Wiley & Sons, New York, 1972.
[86] J.W. Yeh, JOM, 2013, p. accepted.
[87] T.K. Chen, M.S. Wong, T.T. Shun, J.W. Yeh, Surf. Coat. Technol. 200 (2005) 1361.
[88] T.K. Chen, M.S. Wong, Surf. Coat. Technol. 203 (2008) 495.
[89] C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, Surf. Coat. Technol. 201 (2006) 3275.
[90] C.H. Lai, S.J. Lin, J.W. Yeh, A. Davison, J. Phys. D: Appl. Phys. 39 (2006) 4628.
[91] C.H. Lai, M.H. Tsai, S.J. Lin, J.W. Yeh, Surf. Coat. Technol. 201 (2007) 6993.
[92] C.H. Lai, K.H. Cheng, S.J. Lin, J.W. Yeh, Surf. Coat. Technol. 202 (2008) 3732.
[93] K.H. Cheng, C.H. Weng, C.H. Lai, S.J. Lin, Thin Solid Films 517 (2009) 4989.
[94] C.H. Lin, J.G. Duh, J.W. Yeh, Surf. Coat. Technol. 201 (2007) 6304.
[95] C.H. Lin, J.G. Duh, Surf. Coat. Technol. 203 (2008) 558.
[96] H.W. Chang, P.K. Huang, A. Davison, J.W. Yeh, C.H. Tsau, C.C. Yang, Thin Solid Films 516 (2008) 6402.
[97] H.W. Chang, P.K. Huang, J.W. Yeh, A. Davison, C.H. Tsau, C.C. Yang, Surf. Coat. Technol. 202 (2008) 3360.
[98] C.W. Tsai, S.W. Lai, K.H. Cheng, M.H. Tsai, A. Davison, C.H. Tsau, J.W. Yeh, Thin Solid Films 520 (2012) 2613.
[99] Y.J. Chen, Master Master thesis, Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 2007.
[100] M.I. Lin, M.H. Tsai, W.J. Shen, J.W. Yeh, Thin Solid Films 518 (2010) 2732.
[101] P.K. Huang, J.W. Yeh, Surf. Coat. Technol. 203 (2009) 1891.
[102] K.H. Cheng, C.W. Tsai, S.J. Lin, J.W. Yeh, J. Phys. D: Appl. Phys. 44 (2011) 205405.
[103] K.H. Cheng, Master Thesis, Materials Science & Engineering, National Tsing Hua University, Hsinchu, 2005.
[104] K.H. Cheng, Ph.D. Thesis, Materials Science & Engineering, National Tsing Hua University, Hsinchu, 2011.
[105] C.H. Lai, Ph.D. Thesis, Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 2006.
[106] S.W. Lai, Master Thesis, Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 2006.
[107] H.M. Hsieh, Master Thesis, Materials Science & Engineering, National Tsing Hua University, Hsinchu, 2008.
[108]P.K. Huang, Ph.D. Thesis, Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 2009.
[109] Y.K. Tu, Master Thesis, Materials Science & Engineering, National Tsing Hua University, Hsinchu, 2010.
[110] B. Ren, Z.X. Liu, L. Shi, B. Cai, M.X. Wang, Appl. Surf. Sci. 257 (2011) 7172.
[111] Z.C. Chang, S.C. Liang, S. Han, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 269 (2011) 1973.
[112] M.H. Tsai, C.H. Lai, J.W. Yeh, J.Y. Gan, J. Phys. D: Appl. Phys. 41 (2008) 235402.
[113] H.T. Hsueh, Master Thesis, Materials Science & Engineering, National Tsing Hua University, Hsinchu, 2010.
[114] M.H. Hsieh, Master Thesis, Materials Science & Engineering, National Tsing Hua University, Hsinchu, 2011.
[115] S.C. Tseng, Master Thesis, Materials Science & Engineering, National Tsing Hua University, Hsinchu, 2012.
[116] V. Braic, A. Vladescu, M. Balaceanu, C.R. Luculescu, M. Braic, Surf. Coat. Technol. 211 (2012) 117.
[117] S.Y. Lin, S.Y. Chang, Y.C. Huang, F.S. Shieu, J.W. Yeh, Surf. Coat. Technol. 206 (2012) 5096.
[118] C.F. Chang, Master Thesis, Materials Science & Engineering, National Tsing Hua University, Hsinchu, 2013.
[119] S.Y. Chang, Y.C. Huang, C.E. Li, H.F. Hsu, J.W. Yeh, S.J. Lin, Jom 65 (2013) 1790.
[120] B. Ren, S.Q. Yan, R.F. Zhao, Z.X. Liu, Surf. Coat. Technol. 235 (2013) 764.
[121] A.D. Pogrebnjak, I.V. Yakushchenko, G. Abadias, P. Chartier, O.V. Bondar, V.M. Beresnev, Y. Takeda, O.V. Sobol, K. Oyoshi, A.A. Andreyev, B.A. Mukushev, Journal of Superhard Materials 35 (2013) 356.
[122] D.C. Tsai, Z.C. Chang, L.Y. Kuo, T.J. Lin, T.N. Lin, F.S. Shieu, Surf. Coat. Technol. 217 (2013) 84.
[123] T.H. Dekeijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels, J. Appl. Crystallogr. 15 (1982) 308.
[124] W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564.
[125] S.J. Bull, A.M. Jones, A.R. McCabe, Surf. Coat. Technol. 54 (1992) 173.
[126] M.L. Cohen, Phys. Rev. B 32 (1985) 7988.
[127] J. Stallard, S. Poulat, D.G. Teer, Tribology International 39 (2006) 159.
[128] K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus, Wear 254 (2003) 278.
[129] G. Este, R. Surridge, W.D. Westwood, J. Vac. Sci. Technol., A 4 (1986) 989.
[130] G. Este, W.D. Westwood, J. Vac. Sci. Technol., A 5 (1987) 1892.
[131] G.L. Huffman, D.E. Fahnline, R. Messier, L.J. Pilione, J. Vac. Sci. Technol., A 7 (1989) 2252.
[132] A.L. Greer, Nature 366 (1993) 303.
[133] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Thin Solid Films 197 (1991) 117.
[134] U.C. Oh, J.H. Je, J. Appl. Phys. 74 (1993) 1692.
[135] J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, J. Phys. D: Appl. Phys. 30 (1997) 5.
[136] L. Toth, Transition Metal Carbides and Nitrides, Elsevier Science, 1971.
[137] T. Shiino, S. Shiba, N. Sakai, T. Yamakura, L. Jiang, Y. Uzawa, H. Maezawa, S. Yamamoto, Supercond. Sci. Technol. 23 (2010).
[138] S. Hofmann, Thin Solid Films 191 (1990) 335.
[139] H.A. Jehn, S. Hofmann, V.E. Ruckborn, W.D. Munz, J. Vac. Sci. Technol., A 4 (1986) 2701.
[140] A. Bendavid, P.J. Martin, X. Wang, M. Wittling, T.J. Kinder, J. Vac. Sci. Technol., A 13 (1995) 1658.
[141] M.K. Lee, H.S. Kang, W.W. Kim, J.S. Kim, W.J. Lee, J. Mater. Res. 12 (1997) 2393.
[142] S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, Q. Zhang, Diamond Relat. Mater. 13 (2004) 1777.
[143] C.S. Sandu, M. Benkahoul, R. Sanjines, F. Levy, Surf. Coat. Technol. 201 (2006) 2897.
[144] D. Mercs, P. Briois, V. Demange, S. Lamy, C. Coddet, Surf. Coat. Technol. 201 (2007) 6970.
[145] Y.H. Cheng, T. Browne, B. Heckerman, P. Gannon, J.C. Jiang, E.I. Meletis, C. Bowman, V. Gorokhovsky, J. Phys. D: Appl. Phys. 42 (2009) 125415.
[146] C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc., 1996.
[147] O. Kubaschewski, E. L. Evans, C.B. Alcock, Metallurgical Thermochemistry, Pergamon Press Ltd., London, 1967.
[148] I. Petrov, F. Adibi, J.E. Greene, W.D. Sproul, W.D. Munz, J. Vac. Sci. Technol., A 10 (1992) 3283.
[149] P. Patsalas, C. Gravalidis, S. Logothetidis, J. Appl. Phys. 96 (2004) 6234.
[150] N. Schell, W. Matz, J. Bottiger, J. Chevallier, P. Kringhoj, J. Appl. Phys. 91 (2002) 2037.
[151] M. Ohring, The Materials Science of Thin Films, Academic Press, San Diego, 2001.
[152] J.E. Greene, J.E. Sundgren, L. Hultman, I. Petrov, D.B. Bergstrom, Appl. Phys. Lett. 67 (1995) 2928.
[153] I. Petrov, L. Hultman, J.E. Sundgren, J.E. Greene, J. Vac. Sci. Technol., A 10 (1992) 265.
[154] G. Hakansson, J.E. Sundgren, D. McIntyre, J.E. Greene, W.D. Munz, Thin Solid Films 153 (1987) 55.
[155] H. Oettel, R. Wiedemann, Surf. Coat. Technol. 76 (1995) 265.
[156] G. Abadias, Surf. Coat. Technol. 202 (2008) 2223.
[157] A.G. Dirks, H.J. Leamy, Thin Solid Films 47 (1977) 219.
[158] K.H. Muller, Phys. Rev. B 35 (1987) 7906.
[159] R. Messier, V.C. Venugopal, P.D. Sunal, J. Vac. Sci. Technol., A 18 (2000) 1538.
[160] H. Holleck, J. Vac. Sci. Technol., A 4 (1986) 2661.
[161] G. Janssen, F.D. Tichelaar, C.C.G. Visser, J. Appl. Phys. 100 (2006) 093512.
[162] G. Janssen, Thin Solid Films 515 (2007) 6654.
[163] D. McIntyre, J.E. Greene, G. Hakansson, J.E. Sundgren, W.D. Münz, J. Appl. Phys. 67 (1990) 1542.
[164] F. Vaz, L. Rebouta, M. Andritschky, M.F. da Silva, Surf. Coat. Technol. 98 (1998) 912.
[165] I. Milosev, H.H. Strehblow, B. Navinsek, Thin Solid Films 303 (1997) 246.
[166] M. Diserens, J. Patscheider, F. Levy, Surf. Coat. Technol. 120 (1999) 158.
[167] D.R. Gaskell, Introduction to The Thermodynamics, third ed., Taylor & Francis, Philadelphia, 1995.
[168] S. Degterov, A.D. Pelton, Journal of Phase Equilibria 17 (1996) 476.
[169] T.G. Babich, A.V. Zagorodnyuk, G.A. Teterin, M.Y. Khodos, A.P. Zhirnova, Zhurnal Neorganicheskoi Khimii 33 (1988) 996.
[170] J.E.L. Gomes, A.M. Huntz, Oxidation of Metals 14 (1980) 249.
[171] W.J. Shen, M.H. Tsai, K.Y. Tsai, C.C. Juan, C.W. Tsai, J.W. Yeh, Y.S. Chang, J. Electrochem. Soc. 160 (2013) C531.
[172] J.E. Sundgren, Thin Solid Films 128 (1985) 21.
[173] W.J. Shen, M.H. Tsai, Y.S. Chang, J.W. Yeh, Thin Solid Films 520 (2012) 6183.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔