(3.235.245.219) 您好!臺灣時間:2021/05/07 22:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許紘瑋
研究生(外文):Shiu, Hung Wei
論文名稱:三族氮化物在矽基板上與氮化鈧與石墨烯之異質界面研究
論文名稱(外文):Study of III-nitride semiconductor heterostructures with ScN and graphene on silicon substrate
指導教授:果尚志陳家浩
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:117
中文關鍵詞:III-nitrideSchottky barriergraphenephotoemissionRare-earth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
由於三族氮化物在光學電子元件的應用上具有極優良的電子與光學特性,因此一直以來都備受關注。然而,三族氮化物在實際元件的應用上仍有許多問題需要克服,如自發極化場,應力誘發之壓電場,基板效應以及異質界面問題等。於本文,我們將討論兩種特別的材料−氮化鈧與石墨稀−並討論它們與氮化鎵之間的異質接合關係。由於氮化鈧為一非極化材料,且過去的文獻指出,氮化鈧的晶格排列與氮化鎵完美匹配,因此如能使用氮化鈧作為成長氮化鎵時的緩衝層,將可進一步的提升氮化鎵的品質。而石墨稀則更令人興奮,因為它具有極佳的光穿透率與電子特性,因此人們相信,它在另外三族氮化物光學電子元件的穿透電極的應用上,是極具潛力的。除了這兩種異質介面研究外,三族氮化物的本質特性研究也極為重要,尤其是具有極特殊表面效應的氮化銦。因此,了解並探討三族氮化物的本質與異質介面研究是極讓人感興趣的。
在第一章,我們將簡單介紹三族氮化物,稀土族與過度元素的基本特性,並將簡述石墨稀引人注目的電子與光學特性與其在元件上的應用。第二章將簡述本文研究所使用的相關儀器與設施。而第三章我們將分兩個部分來討論氮化鈧與氮化鎵的異質介面研究。由於過去的文獻指出,當氮化鈧成長於矽基板時,些許的矽化鈧會產生。因此,在第一小節我們將討論矽化鈧的形成與特性,並在第二小節探討氮化鈧的結構與特性以及與氮化鎵的異質界面效應。第四章討論石墨稀的層數與氮化鎵之間的電子光學特性的關聯性。而在第五章,我們針對原位成長的氮化銦來討論它的基本性質,希望能解出氮化銦表面電子累積的成因。最後在第六章,針對本文的內容做出總結,與期望。

III-nitride semiconductors have attracted a lot of attention due to its outstanding electronic and optical properties for the application of optoelectronic devices. However, several effects strongly influence the performance of the III-nitride based devices, including natural spontaneous polarization, strain induced piezoelectric polarization, the substrate effects and heterostructure with other materials. In this study, two special materials for the heterostructures with GaN were introduced, one is ScN and the other is graphene. ScN is a non-polar material and its lattice parameter is excellently matched with GaN, using ScN as a buffer layer for growing GaN will definitely enhance the quality of GaN. Moreover, graphene is one of the best candidates to be used as transparent electrode for III-nitride semiconductor based optical devices, because of its marvelous transparency and electronic properties. In addition to the heterostructures, the intrinsic properties of III-nitride semiconductor itself are also important, especially for the unusual surface properties of InN. Accordantly, it is interesting to investigate the electronic properties and crystalline structure of these nitride semiconductors and its heterostructure with the proposed buffer layer of ScN and top electrode of graphene.
In Chapter 1, the basic properties of III-nitride semiconductors, rare-earth materials and graphene based optical and electronic devices will be introduced. Chapter 2 briefly describes the related experimental methods used in this study. Previous studies indicated when growing ScN on Si, a small amount of Sc silicides might form at the interface. Therefore, in Chapter 3.1, properties of Sc silicide overlayer on Si (111) substrate will be discussed, then the electronic and crystalline structures and the corresponding band line-up of ScN/GaN heterostructure will be presented in Chapter 3.2. Chapter 4 describes the layer number dependent optical and electronic properties of the device applications by using graphene as a transparent electrode on GaN surface. In Chapter 5, a fundamental study of in situ grown InN surface will be presented, in an attempt to understand the strong electron accumulation effect occurred in InN surface. Finally, Chapter 6 summarizes and pictures the future perspective of this study
摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Figures vi
List of Tables xii
1. Introduction 1
1.1. Superior properties of III-nitride based semiconductors 1
1.2. Rare-earth and transition metals grown on silicon 7
1.2.1. Transition metal silicides 8
1.2.2. Rare-earth metal silicides 11
1.3. Graphene based electronic and optical devices 14
1.3.1. Electronic properties of graphene 15
1.3.2. Optical properties of graphene 16
1.3.3. Graphene-based optical devices 17
2. Experimental methods 20
2.1. Synchrotron Radiation 21
2.1.1. High-resolution photoelectron spectroscopy 26
2.1.2. Scanning photoelectron microscopy 30
2.1.3. High resolution X-ray diffraction 33
2.2. Growth of III-nitride semiconductor by PAMBE 36
3. III-nitride semiconductor heterostructure with ScN 39
3.1. Does Sc resemble transition or rare-earth material when it is grown on silicon surface? 40
3.1.1. Introduction to the special element “scandium” 40
3.1.2. Growth of Sc silicide on Si (111) surface 43
3.1.3. Activation process at Sc coverage ≤ 2 Å 45
3.1.4. Schottky barrier formation at Sc coverage ≥ 2 Å 50
3.2. The electronic properties and crystalline structure of ScN/GaN heterostructure 56
3.2.1. Motivation 56
3.2.2. Sample preparation 58
3.2.3. Crystalline structure of ScN grown on GaN surface 59
3.2.4. Band alignment of ScN/GaN heterostructure 61
4. III-nitride semiconductor heterostructure with graphene 67
4.1. Motivation 68
4.2. Sample preparation 69
4.3. Optical contrast calculation 70
4.4. SPEM study of SLG, BLG and MLG 74
5. In situ growth and investigation for III-nitride semiconductor 80
5.1. Motivation 81
5.2. In situ epitaxial grown InN overlayer on AlN surface 83
5.3. Reduction of electron accumulation on polar InN surface 87
6. Conclusions 94
Reference 97
Curriculum Vitae (Hung Wei Shiu) 112

1 S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
2 T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
3 I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
4 V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Stat. Sol. (b) 229, r1 (2002).
5 J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
6 J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, III, E. E. Haller, H. Lu, and W. J. Schaff, Phys. Rev. B 66, 201403 (2002).
7 J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, J. Appl. Phys. 94, 6477 (2003).
8 S. Nakamura, Science 281, 956 (1998).
9 H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, Appl. Phys. Lett. 97, 073101 (2010).
10 E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
11 H. Morkoç, Handbook of Nitride Semiconductors and Devices V. 1 (Wiley-VCH, Weinheim, 2008).
12 F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
13 F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 63, 193201 (2001).
14 M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001).
15 L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003).
16 H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, Appl. Phys. Lett. 89, 243105 (2006).
17 A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, J. Cryst. Growth 128, 391 (1993).
18 C.-L. Wu, J.-C. Wang, M.-H. Chan, T. T. Chen, and S. Gwo, Appl. Phys. Lett. 83, 4530 (2003).
19 P. Chen, R. Zhang, Z. M. Zhao, D. J. Xi, B. Shen, Z. Z. Chen, Y. G. Zhou, S. Y. Xie, W. F. Lu, and Y. D. Zheng, J. Cryst. Growth 225, 150 (2001).
20 J. Narayan and B. C. Larson, J. Appl. Phys. 93, 278 (2003).
21 P. Chen, R. Zhang, Z. M. Zhao, D. J. Xi, B. Shen, Z. Z. Chen, Y. G. Zhou, S. Y. Xie, W. F. Lu, and Y. D. Zheng, J. Cryst. Growth 225, 150 (2001).
22 M. E. Little and M. E. Kordesch, Appl. Phys. Lett. 78, 2891 (2001).
23 F. Perjeru, X. Bai, M. I. Ortiz-Libreros, R. Higgins, and M. E. Kordesch, Appl. Surf. Sci. 175-176, 490 (2001).
24 M. A. Moram, M. J. Kappers, T. B. Joyce, P. R. Chalker, Z. H. Barber, and C. J. Humphreys, J. Cryst. Growth 308, 302 (2007).
25 M. A. Moram, C. F. Johnston, M. J. Kappers, and C. J. Humphreys, J. Cryst. Growth 311, 3239 (2009).
26 N. Farrer and L. Bellaiche, Phys. Rev. B 66, 201203 (2002).
27 C. Constantin, H. Al-Brithen, M. B. Haider, D. Ingram, and A. R. Smith, Phys. Rev. B 70, 193309 (2004).
28 C. Constantin, M. B. Haider, D. Ingram, A. R. Smith, N. Sandler, K. Sun, and P. Ordejón, J. Appl. Phys. 98, 123501 (2005).
29 H. Al-Brithen and A. R. Smith, Appl. Phys. Lett. 77, 2485 (2000).
30 M. A. Moram, T. B. Joyce, P. R. Chalker, Z. H. Barber, and C. J. Humphreys, Appl. Surf. Sci. 252, 8385 (2006).
31 C. Nörenberg, M. A. Moram, and P. J. Dobson, Surf. Sci. 600, 4126 (2006).
32 N. Takeuchi and G. H. Cocoletzi, Phys. Rev. B 76, 035333 (2007).
33 T. L. Lee, L. J. Chen, and F. R. Chen, J. Appl. Phys. 71, 3307 (1992).
34 R. Hofmann, W. A. Henle, F. P. Netzer, and M. Neuber, Phys. Rev. B 46, 3857 (1992).
35 L. Ming, L. Grill, M. G. Ramsey, F. P. Netzer, and J. A. D. Matthew, Surf. Sci. 375, 24 (1997).
36 A. H. Reader, A. H. van Ommen, P. J. W. Weijs, R. A. M. Wolters, and D. J. Oostra, Rep. Prog. Phys. 56, 1397 (1993).
37 H. R. Huff and E. Sirtl, Semiconductor Silicon 1977 (The Electrochemical Society, Princeton, N. J., 1977).
38 P. E. Schmid, P. S. Ho, H. Föll, and G. W. Rubloff, J. Vac. Sci. Technol. 18, 937 (1981).
39 V. G. Lifshits, A. A. Saranin, and A. V. Zotov, Surface Phases on Silicon (John Wiley & Sons Ltd., Chichester, England, 1994).
40 J. H. Werner and H. H. Güttler, J. Appl. Phys. 73, 1315 (1993).
41 E. H. Rhoderick and R. H. Williams, Metal-Semiconductor contacts (Clarendon Press, Oxford, England, 1988).
42 S. P. Murarka, J. Vac. Sci. Technol. 17, 775 (1980).
43 J. E. Baglin, F. M. d’Heurle, and C. S. Petersson, Appl. Phys. Lett. 36, 594 (1980).
44 H. Norde, J. de Sousa Pires, F. d'Heurle, F. Pesavento, S. Petersson, and P. A. Tove, Appl. Phys. Lett. 38, 865 (1981).
45 K. N. Tu, R. D. Thompson, and B. Y. Tsaur, Appl. Phys. Lett. 38, 626 (1981).
46 J. A. Knapp and S. T. Picraux, Appl. Phys. Lett. 48, 466 (1986).
47 F. P. Netzer, J. Phys.: Condens. Matter 7, 991 (1995).
48 T. P. Roge, F. Palmino, C. Savall, J. C. Labrune, S. Saintenoy, P. Wetzel, C. Pirri, D. Bolmont, and G. Gewinner, Surf. Sci. 352-354, 622 (1996).
49 T. P. Roge, F. Palmino, C. Savall, J. C. Labrune, P. Wetzel, C. Pirri, and G. Gewinner, Phys. Rev. B 51, 10998 (1995).
50 I. Manke, H. J. Wen, A. Höhr, A. Bauer, M. Dähne-Prietsch, and G. Kaindl, J. Vac. Sci. Technol. B 13, 1657 (1995).
51 C. Rogero, C. Polop, L. Magaud, J. L. Sacedón, P. L. de Andrés, and J. A. Martín-Gago, Phys. Rev. B 66, 235421 (2002).
52 P. Wetzel, S. Saintenoy, C. Pirri, D. Bolmont, G. Gewinner, T. P. Roge, F. Palmino, C. Savall, and J. C. Labrune, Surf. Sci. 355, 13 (1996).
53 S. Vandré, T. Kalka, C. Preinesberger, and M. Dähne-Prietsch, Phys. Rev. Lett. 82, 1927 (1999).
54 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
55 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
56 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
57 D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature 458, 872 (2009).
58 S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).
59 G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).
60 M. Müller, M. Bräuninger, and B. Trauzettel, Phys. Rev. Lett. 103, 196801 (2009).
61 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
62 A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
63 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
64 K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).
65 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
66 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).
67 S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S.-E. Wu, S.-F. Chen, C.-P. Liu, S. T. Nguyen, and R. S. Ruoff, Nano Lett. 7, 1888 (2007).
68 X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 323 (2008).
69 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312, 1191 (2006).
70 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
71 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
72 G. Jo, M. Choe, C.-Y. Cho, J. H. Kim, W. Park, S. Lee, W.-K. Hong, T.-W. Kim, S.-J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, Nanotechnology 21, 175201 (2010).
73 D.-W. Jeon, W. M. Choi, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, L.-W. Jang, and I.-H. Lee, J. Mater. Chem. 21, 17688 (2011).
74 C.-H. Lee, Y.-J. Kim, Y. J. Hong, S.-R. Jeon, S. Bae, B. H. Hong, and G.-C. Yi, Adv. Mater. 23, 4614 (2011).
75 D. Bohm and L. Foldy, Physical Review 70, 249 (1946).
76 F. R. Elder, A. M. Gurewitsch, R. V. Langmuir, and H. C. Pollock, Physical Review 71, 829 (1947).
77 N. S. R. R. C. (NSRRC), Synchrotron Light Source (NSRRC, Hsinchu, 2009).
78 National Synchrotron Radiation Research Center (NSRRC) (NSRRC, Hsinchu).
79 D. Attwood, Soft X-rays and extreme ultraviolet radiation (Cambridge University Press, Cambridge, 1999).
80 H. Hertz, Annalen der Physik 267, 983 (1887).
81 A. Einstein, Annalen der Physik 322, 132 (1905).
82 S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer, New York, 2003).
83 G. Somerjai, Chemistry in Two Dimensions: Surfaces (Cornell University Press, Ithaca, 1981).
84 K. Horn, Appl. Phys. A 51, 289 (1990).
85 H. Ade, J. Kirz, S. L. Hulbert, E. D. Johnson, E. Anderson, and D. Kern, Appl. Phys. Lett. 56, 1841 (1990).
86 L. Casalis, W. Jark, M. Kiskinova, D. Lonza, P. Melpignano, D. Morris, R. Rosei, A. Savoia, A. Abrami, C. Fava, P. Furlan, R. Pugliese, D. Vivoda, G. Sandrin, F.-Q. Wei, S. Contarini, L. DeAngelis, C. Gariazzo, P. Nataletti, and G. R. Morrison, Rev. Sci. Instrum. 66, 4870 (1995).
87 I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, J.-M. Juang, T.-E. Dann, R. Klauser, T. J. Chuang, C. T. Chen, and K.-L. Tsang, Nucl. Instrum. Meth. A 467-468, 905 (2001).
88 H. J. Shin and M. K. Lee, Nucl. Instrum. Meth. A 467-468, 909 (2001).
89 R. Klauser, I. H. Hong, T. H. Lee, G. C. Yin, D. H. Wei, K. L. Tsang, T. J. Chuang, S. C. Wang, S. Gwo, M. Zharnikov, and J. D. Liao, Surf. Rev. Lett. 9, 213 (2002).
90 A. G. Michette, Optical Systems for Soft X-Rays (Plenum, London, 1986).
91 J. Kirz and H. Rarback, Rev. Sci. Instrum. 56, 1 (1985).
92 R. Klauser, M.-L. Huang, S.-C. Wang, C.-H. Chen, T. J. Chuang, A. Terfort, and M. Zharnikov, Langmuir 20, 2050 (2004).
93 N. W. Ashcroft and N. D. Mermin, Solid State Physics (New York, 1976).
94 B. Yang, A. Trampert, O. Brandt, B. Jenichen, and K. H. Ploog, J. Appl. Phys. 83, 3800 (1998).
95 T. A. Rawdanowicz and J. Narayan, Appl. Phys. Lett. 85, 133 (2004).
96 R. Purtell, G. Hollinger, G. W. Rubloff, and P. S. Ho, J. Vac. Sci. Thechnol. A 1, 566 (1983).
97 H. Lee, D. Lee, S. Kim, and C. Hwang, New Journal of Physics 10, 043008 (2008).
98 C. Calandra, O. Bisi, and G. Ottaviani, Surf. Sci. Rep. 4, 271 (1985).
99 T. M. Grehk, L. S. O. Johansson, S. M. Gray, M. Johansson, and A. S. Flodström, Phys. Rev. B 52, 16593 (1995).
100 Q. H. Wang and M. C. Hersam, Small 4, 915 (2008).
101 J. Y. Duboz, P. A. Badoz, A. Perio, J. C. Oberlin, F. A. Davitaya, Y. Campidelli, and J. A. Chroboczek, Appl. Surf. Sci. 38, 171 (1989).
102 S. Vandré, T. Kalka, C. Preinesberger, and M. Dähne-Prietsch, J. Vac. Sci. Technol. B 17, 1682 (1999).
103 R. D. Thompson, B. Y. Tsaur, and K. N. Tu, Appl. Phys. Lett. 38, 535 (1981).
104 R. Thompson, M. Eizenberg, and K. N. Tu, J. Appl. Phys. 52, 6763 (1981).
105 J. G. Clabes, G. W. Rubloff, B. Reihl, R. J. Purtell, P. S. Ho, A. Zartner, F. J. Himpsel, and D. E. Eastman, J. Vac. Sci. Technol. 20, 684 (1982).
106 P. E. Schmid, P. S. Ho, and T. Y. Tan, J. Vac. Sci. Technol. 20, 688 (1982).
107 L. Magaud, A. Pasturel, G. Kresse, and J. Hafner, Phys. Rev. B 55, 13479 (1997).
108 R. Kaplan, S. M. Prokes, S. C. Binari, and G. Kelner, Appl. Phys. Lett. 68, 3248 (1996).
109 M. A. Moram, Z. H. Barber, C. J. Humphreys, T. B. Joyce, and P. R. Chalker, J. Appl. Phys. 100, 023514 (2006).
110 Y. Chen, D. A. A. Ohlberg, and R. S. Williams, J. Appl. Phys. 91, 3213 (2002).
111 C. Polop, C. Rogero, J. L. Sacedón, and J. A. Martín-Gago, Surf. Sci. 482-485, 1337 (2001).
112 R. I. G. Uhrberg, T. Kaurila, and Y.-C. Chao, Phys. Rev. B 58, R1730 (1998).
113 E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. B 28, 1965 (1983).
114 D. A. Shirley, Phys. Rev. B 5, 4709 (1972).
115 J. E. Castle, H. Chapman-Kpodo, A. Proctor, and A. M. Salvi, J. Electron. Spectrosc. Relat. Phenom. 106, 65 (2000).
116 J. J. Olivero and R. L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233 (1977).
117 L. A. U. Gelius, E. Basilier, S. Hedman, K. Helenelund, K. Siegbahn, Nucl. Instrum. Meth. B 1, 85 (1984).
118 G. Le Lay, M. Göthelid, T. M. Grehk, M. Björkquist, U. O. Karlsson, and V. Y. Aristov, Phys. Rev. B 50, 14277 (1994).
119 C. J. Karlsson, E. Landemark, Y. C. Chao, and R. I. G. Uhrberg, Phys. Rev. B 50, 5767 (1994).
120 M. V. Gomoyunova and I. I. Pronin, Technical Physics 49, 1249 (2004).
121 Q. Chen, A. J. McDowall, and N. V. Richardson, Langmuir 19, 10164 (2003).
122 J. H. G. Owen, K. Miki, and D. R. Bowler, 41, 4568 (2006).
123 W. Mönch, Semiconductor Surfaces and Interfaces (1995).
124 S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys. 30, L1998 (1991).
125 A. Osinsky, S. Gangopadhyay, J. W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, I. K. Shmagin, Y. C. Chang, J. F. Muth, and R. M. Kolbas, Appl. Phys. Lett. 72, 551 (1998).
126 B. Gil, Group III Nitride Semiconductor Compounds (Oxford University Press, Oxford, 1998).
127 H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, J. Cryst. Growth 189/190, 178 (1998).
128 C.-T. Kuo, K.-K. Chang, H. W. Shiu, S.-C. Lin, C.-H. Chen, and S. Gwo, Appl. Phys. Lett. 99, 022113 (2011).
129 M. A. Moram, M. J. Kappers, Z. H. Barber, and C. J. Humphreys, J. Cryst. Growth 298, 268 (2007).
130 D. Gall, I. Petrov, L. D. Madsen, J.-E. Sundgren, and J. E. Greene, J. Vac. Sci. Technol. A 16, 2411 (1998).
131 W. R. L. Lambrecht, Phys. Rev. B 62, 13538 (2000).
132 D. Gall, M. Städele, K. Järrendahl, I. Petrov, P. Desjardins, R. T. Haasch, T. Y. Lee, and J. E. Greene, Phys. Rev. B 63, 125119 (2001).
133 A. R. Smith, H. A. H. Al-Brithen, D. C. Ingram, and D. Gall, J. Appl. Phys. 90, 1809 (2001).
134 H. W. Shiu, L. Y. Chang, J. L. Lou, C. P. Wu, and C.-H. Chen, J. Appl. Phys. 113, 043701 (2013).
135 L. Porte, J. Phys. C 18, 6701 (1985).
136 C.-L. Wu, H.-M. Lee, C.-T. Kuo, S. Gwo, and C.-H. Hsu, Appl. Phys. Lett. 91, 042112 (2007).
137 C.-T. Kuo, H.-M. Lee, H. W. Shiu, C.-H. Chen, and S. Gwo, Appl. Phys. Lett. 94, 122110 (2009).
138 K. Horn, Surf. Sci. 269–270, 938 (1992).
139 G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, Appl. Phys. Lett. 68, 2541 (1996).
140 C.-T. Kuo, K.-K. Chang, H. W. Shiu, C.-R. Liu, L. Y. Chang, C.-H. Chen, and S. Gwo, Appl. Phys. Lett. 99, 122101 (2011).
141 S. W. King, C. Ronning, R. F. Davis, M. C. Benjamin, and R. J. Nemanich, J. Appl. Phys. 84, 2086 (1998).
142 J. R. Waldrop and R. W. Grant, Appl. Phys. Lett. 68, 2879 (1996).
143 X. Xu, X. Liu, Y. Guo, J. Wang, H. Song, S. Yang, H. Wei, Q. Zhu, and Z. Wang, J. Appl. Phys. 107, 104510 (2010).
144 E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, U.K., 2006).
145 S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, Adv. Mater. 20, 4061 (2008).
146 A. Bostwick, J. McChesney, T. Ohta, E. Rotenberg, T. Seyller, and K. Horn, Prog. Surf. Sci. 84, 380 (2009).
147 T. H. Seo, T. S. Oh, S. J. Chae, A. H. Park, K. J. Lee, Y. H. Lee, and E.-K. Suh, Jpn. J. Appl. Phys. 50, 125103 (2011).
148 J.-O. Muller, D. S. Su, U. Wild, and R. Schlögl, PCCP 9, 4018 (2007).
149 P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 (2007).
150 H. Anders, Thin Film in Optics (Focal, London, 1967).
151 L. Pauling, The Nature of The Chemical Bond (Cornell University Press, Ithaca, 1960).
152 T. Bååk, Appl. Opt. 21, 1069 (1982).
153 E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1991), Vol. 2.
154 M. Bass, Handbook of Optics (McGraw-Hill, New York, 1995), Vol. 2.
155 M. Bass, Handbook of Optics (McGraw-Hill, New York, 2010), Vol. 4.
156 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
157 O. Frank, M. Mohr, J. Maultzsch, C. Thomsen, I. Riaz, R. Jalil, K. S. Novoselov, G. Tsoukleri, J. Parthenios, K. Papagelis, L. Kavan, and C. Galiotis, ACS Nano 5, 2231 (2011).
158 A. C. Ferrari, Solid State Commun. 143, 47 (2007).
159 N. Peltekis, S. Kumar, N. McEvoy, K. Lee, A. Weidlich, and G. S. Duesberg, Carbon 50, 395 (2012).
160 J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, Appl. Phys. Express 5, 085101 (2012).
161 K. C. Prince, I. Ulrych, M. Peloi, B. Ressel, V. Cháb, C. Crotti, and C. Comicioli, Phys. Rev. B 62, 6866 (2000).
162 P. M. T. M. van Attekum and G. K. Wertheim, Phys. Rev. Lett. 43, 1896 (1979).
163 J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin, Phys. Rev. B 54, 8064 (1996).
164 Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, Nano Lett. 9, 3430 (2009).
165 T. Fang, A. Konar, H. Xing, and D. Jena, Appl. Phys. Lett. 91 (2007).
166 S. Tongay, M. Lemaitre, T. Schumann, K. Berke, B. R. Appleton, B. Gila, and A. F. Hebard, Appl. Phys. Lett. 99, 102102 (2011).
167 R. T. Tung, Materials Science and Engineering: R: Reports 35, 1 (2001).
168 N. Ooi, A. Rairkar, and J. B. Adams, Carbon 44, 231 (2006).
169 S. Tongay, T. Schumann, and A. F. Hebard, Appl. Phys. Lett. 95 (2009).
170 B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999).
171 I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).
172 H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, Appl. Phys. Lett. 82, 1736 (2003).
173 R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 96, 125505 (2006).
174 P. D. C. King, T. D. Veal, C. F. McConville, F. Fuchs, J. Furthmüller, F. Bechstedt, P. Schley, R. Goldhahn, J. Schörmann, D. J. As, K. Lischka, D. Muto, H. Naoi, Y. Nanishi, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 91, 092101 (2007).
175 D. Segev and C. G. Van de Walle, Europhys. Lett. 76, 305 (2006).
176 C. G. Van de Walle and D. Segev, J. Appl. Phys. 101, 081704 (2007).
177 C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen, and S. Gwo, Phys. Rev. Lett. 101, 106803 (2008).
178 P. Ebert, S. Schaafhausen, A. Lenz, A. Sabitova, L. Ivanova, M. Dähne, Y. L. Hong, S. Gwo, and H. Eisele, Appl. Phys. Lett. 98, 062103 (2011).
179 C.-T. Kuo, S.-C. Lin, K.-K. Chang, H. W. Shiu, L. Y. Chang, C.-H. Chen, S.-J. Tang, and S. Gwo, Appl. Phys. Lett. 98, 052101 (2011).
180 C.-L. Wu, C.-H. Shen, H.-Y. Chen, S.-J. Tsai, H.-W. Lin, H.-M. Lee, S. Gwo, T.-F. Chuang, H.-S. Chang, and T. M. Hsu, J. Cryst. Growth 288, 247 (2006).
181 S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004).
182 D. Muto, T. Araki, H. Naoi, F. Matsuda, and Y. Nanishi, Phys. Stat. Sol. (a) 202, 773 (2005).
183 O. Ambacher, J. Phys. D: Appl. Phys. 31, 2653 (1998).
184 A. Eisenhardt, M. Himmerlich, and S. Krischok, Phys. Stat. Sol. (a) 209, 45 (2012).
185 T. D. Veal, P. D. C. King, P. H. Jefferson, L. F. J. Piper, C. F. McConville, H. Lu, W. J. Schaff, P. A. Anderson, S. M. Durbin, D. Muto, H. Naoi, and Y. Nanishi, Phys. Rev. B 76, 075313 (2007).
186 D. Segev and C. G. Van de Walle, Surf. Sci. 601, L15 (2007).
187 P. D. C. King, T. D. Veal, P. H. Jefferson, S. A. Hatfield, L. F. J. Piper, C. F. McConville, F. Fuchs, J. Furthmüller, F. Bechstedt, H. Lu, and W. J. Schaff, Phys. Rev. B 77, 045316 (2008).
188 A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
189 B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔