( 您好!臺灣時間:2021/05/15 01:10
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):Microwave-Materials Processing and Heating Mechanism
外文關鍵詞:microwaveIonic crystalperturbation methodresonant cavity
  • 被引用被引用:1
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
我們提出了一個單模式TM010空腔以釐清非熱效應, 且使用一個功率放大器為波源, 波源能量入射進入腔體, 這腔體我們有詳細討論其機制。 我們以此共振腔為基礎來量測介電係數及磁性係數藉由改良型的微擾方法, 這個改良型的微擾方法,相對上, 可容許較大樣品體積及較高的介電係數變化。
此外, 我們也利用此共振腔來加熱離子晶體(NaCl, KCl,……), 我們發現一個有趣的物理現象, 當離子晶體加熱至熔點以上時, 產生了雙層粒子環形煙霧, 它是類似水龍捲現象。這現象主要是因未來自離子晶體粒子受到離心作用力及電磁作用力交互影響, 離子晶體粒子束縛於兩個半徑之內而造成此一現象。
最後一部份工作, 我們發現離子晶體在微波場作用之下, 離子晶體熔點比傳統加熱熔點還來的低, 我們使用9種離子晶體, 這9種離子晶體在微波場下期熔點都會下降, 我們認為微波場造成離子晶體電荷分佈變形,以至於造成了熔點下降。
We have proposed a cavity with the single-mode (TM010) operation and uncovered the intriguing non-thermal microwave effect. An experiment was conducted using an amplifier rather than an oscillator as the radiation source which was injected into the applicator to enhance the electromagnetic fields. The characteristics of the applicator are discussed and the mechanism of field enhancement are illustrated and explained.
We also proposed a modified calibration method to determine the complex permittivity and permeability of material based on the cavity-perturbation method. It allows a test sample with relative large in volume or high in dielectric constant. The theory is validated with a full wave solver (HFSS) and an experiment was conducted. A sample of SiC was heated using high-power microwave and characterized with low-power signal, all operating in the same cavity but different in time sequence. It facilitates the study of both microwave/material processing and material characterization.
In addition, we reported an intriguing phenomenon - the particles are spouting in a strong microwave field, called the particlespout. It is similar to a waterspout, an intense columnar vortex appeared a funnel shape, is a natural wonder that attracts public attention even today. These ionic crystals (NaCl, KCl, …...) are heated in a microwave applicator with silicon carbide as the susceptor. Beyond the melting point, the particles begin to escape from the surface and move upward due to thermal convection. These particles form a funnel shape as expected but, interestingly, they have two layers. In comparison with convention furnace heating, only a single layer but unstable columnar vortex can be observed. The microwave field in the cavity is analyzed and displayed. Various configurations of the susceptors which all result in the similar behavior are studied. A theoretical model is proposed which attributes the observed phenomenon to the rotational kinematics together with the ponderomotive force. These two effects confine the particles to the inner and outer bounds, respectively.
The final work, we employed microwave to process material. The microwave heating takes shorter processing time and lower processing temperature than conventional heating. The microwave-material processing is difficult to characterize because most of the researchers use over-moded applicators as well as free-running oscillators to achieve better uniformity and lower costs. This study reports the reduction of the melting points for nine alkali halide ionic crystals in the microwave fields. The melting points were determined from the abrupt change of the reflected wave due to the detuning of the input microwave frequency and the resonant frequency of the cavity during the phase transition. The reduction of the melting points were systematically characterized, where the lowest reduction is less than 2% for lithium bromide (LiBr) and the highest reduction is greater 5% for potassium fluoride (KF). The bond length of the ionic crystal strongly correlated to the reduction ratio of the melting temperature. A theoretical model is proposed which considers the energy drop due to the electric dipole of the ionic crystal interacting with the applied microwave fields. The proposed model qualitatively explains the melting point reduction, but more elaborated theory is still needed.

Chapter 1 Fundamental Concepts of Proposed Cavity 1
1.1 Basic Structure of Proposed Cavity 2
1.2 Distribution of EM-Field of Proposed Cavity 4
1.3 Experiment Setup and Results 7
Chapter2 Direct Measurement of Dielectric Properties 12
2.1 Conventional Cavity Perturbation Method 12
2.2 Proposed Modified Cavity Perturbation Method 13
2.3 HFSS Simulation 19
2.4 Experimental Setup and Results 21
Chapter 3 Dual-layer Particlespout in a Proposed Cavity 26
3.1 Basic Description and Theory of Dual-layer Particlespout 26
3.2 Experimental Setup 30
3.3 Observation of Dual-layer Particlespout 31
3.4 Particle Size and Distribution 34
Chapter 4 Microwave Induced Melting Point Reduction for Ionic Crystals 37
4.1 Introduction of Theoretical Model 39
4.2 Experimental Setup 48
4.3 Determine the Melting Temperature and Experimental Results 51
4.4 Discussion of Experimental Results 58
Chapter 5 Conclusions 62
References 65

1 D. Agrawal, Mater. Res. Innovations 14, 3 (2010).
2 J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, "Electric- field-enhanced crystallization of amorphous silicon", Nature 395, 481 (1998).
3 H. Y. Kim, B. Kim, J. U. Bae, K. J. Hwang, H. S. Seo, and C. D. Kim, "Kinetics of electric-field-enhanced crystallization of amorphous silicon in contact with Ni catalyst", Appl. Phys. Lett. 81, 5180 (2002).
4 J. H. Ahn, J. N. Lee, Y. C. Kim, and B. T. Ahn, "Microwave-induced low-temperature crystallization of amorphous Si thin films", Curr. Appl. Phys. 2 135 (2002).
5 J. Y. Wang, D. He, Y. H. Zhao, and E. J. Mittemeijer, "Wetting and crystallization at grain boundaries: origin of aluminum-induced crystallization of amorphous silicon", Appl. Phys. Lett. 88, 061910 (2006).
6 S. C. Fong, C. Y. Wang, T. H. Chang, and T. S. Chin,” Crystallization of amorphous Si film with SiC susceptor by microwave annealing”, Appl. Phys. Lett. 94, 102104 (2009).
7 S. C. Fong, H. W. Chao, T. H. Chang, H. J. Leu, I. S. Tsai, S. Y. Cheng, C. Y. Wang, T. S. Chin, "Microwave-crystallization of amorphous silicon film using carbon-overcoat as susceptor", Thin Solid Films 519, 4196 (2011).
8 A. Bhaskar, H. Y. Chang, T. H. Chang, and S. Y. Cheng, “Effect of microwave annealing temperatures on lead zirconate titanate thin films,” Nanotechnology 18, 395704 (2007).
9 A. Bhaskar, T. H. Chang, H. Y. Chang, and S. Y. Cheng, “Pb(Zr0.53Ti0.47)O3 thin films with different thickness obtained at low-temperature by microwave irradiation”, Applied Surface Science 255, 3795 (2009).
10 R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili, "Full sintering of powdered-metal bodies in a microwave field", Nature 399, 668 (1999).
11 K. I. Rybakov, A. G. Eremeev, S. V. Egorov, Y. V. Bykov, Z. Pajkic, and M. Willert-Porada, "Effect of microwave heating on phase transformations in nanostructured alumina", J. Phys. D: Appl. Phys. 41, 1 (2008).
12 Yu. V. Bykov, K. I. Rybakov, and V. E. Semenov, "High-temperature microwave processing of materials", J. Phys. D. 34, 55 (2001).
13 J. H. Booske, R. F. Cooper, S. A. Freeman, K. I. Rybakov, and V. E. Semenov, "Microwave ponderomotive forces in solid-state ionic plasmas", Phys. Plasmas 5, 1664 (1998).
14 K. I. Rybakov, V. E. Semenov, G. Link, and M. Thumm, "Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field", J. Appl. Phys. 101, 084915 (2007).
15 J. Cheng, R. Roy, D. Agrawal, "Radically different effects on materials by separated microwave electric and magnetic fields", Mat. Res. Innovat. 5, 170 (2002).
16 J. H. Booske, R. E. Cooper, S. A. Freeman, "Microwave enhanced reaction kinetics in ceramics", Mat. Res. Innovat. 1, 77 (1997).
17 Eberhard Heller, Werner Lautenschlager, Ulrike Holzgrabe, "Real time observation of microwave-enhanced reactions via fast FTIR spectroscopy", Tetrahedron Lett. 50, 1321 (2009).
18 K. I. Rybakov, V. E. Semenov, S. V. Egorov, A. G. Eremeev, I. V. Plotnikov, and Yu.V. Bykov, "Microwave heating of conductive powder materials" J. Appl. Phys. 99, 023506 (2006)
19 L. Chen, C. K. Ong, and B. T. G. Tan, "Amendment of Cavity Perturbation Method for Permittivity Measurement of Extremely Low-Loss Dielectrics" IEEE Trans. Instrum. Meas. 48, 1031(1999).
20 J. Sheen, "Amendment of cavity perturbation technique for loss tangent measurement at microwave frequencies" J. Appl. Phys. 102, 014102 (2007).
21 S. B. Balmus, G. N. Pascariu, F. Creanga, I. Dumitrud, D. D. Sandu, " The cavity perturbation method for the measurement of the relative dielectric permittivity in the microwave range" J. Optoelectron Adv. M. 8, 971(2006).
22 B. Meng, J. Booske, and R. Cooper, "Extended cavity perturbation technique to determine the complex permittivity of dielectric materials" IEEE Trans. Microw. Theory Tech. 43, 2633 (1995).
23 D. N. Peligrad, B. Nebendahl, C. Kessler, M. Mehring, A. Dulcˇic´, M. Pozˇek and D. Paar, "Orbital magnetism of singlet large bipolarons" Phys. Rev. B. 58, 11652(1998).
24 C. Huang, Amar S. Bhalla, M. T. Lanagan, L. Eric Cross, and R. Guo, "Dielectric measurement of ferroelectric Sr0.61Ba0.39Nb2O6 single crystal fiber using cavity perturbation method," Appl. Phys. Lett. 86, 122903 (2005).
25 M. Sucher and J. Fox, Handbook of Microwave Measurements, 3rd ed. (Polytechnic Press, New York, 1963).
26 R.A. Waldron, Theory of Guided Electromagnetic Waves (Von Nostrand Reinhold, London, 1970).
27 T. H. Chang, H. W. Chao, F. H. Syu, W. Y. Chiang, S. C. Fong, and T. S. Chin, "Efficient heating with a controlled microwave field" Rev. Sci. Instrum. 82, 124703(2011).
28 J. C. Booth, N. D. Orloff, J. Cagnon, J. Lu, and S. Stemmer, "Temperature dependent dielectric relaxation in bismuth zinc niobate thin films "Appl. Phys. Lett. 97, 022902(2010).
29 Z. M. Dang, L. Wang, H. Y. Wang, C. W. Nan, D. Xie, Y. Yin, and S. C. Tjong, "Rescaled temperature dependence of dielectric behavior of ferroelectric polymer composites" Appl. Phys. Lett. 86, 172905(2005).
30 P. T. B. Shaffer, "A Review of Structure of Silicon Carbide" Acta Cryst. B25, 477(1968).
31 T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schoner, and N. Nordell, "Deep Defect Centers in Silicon Carbide Monitored with Deep Level Transient Spectroscopy" Phys. Stat. Sol. (a) 162, 199 (1997).
32 Y. V. Bykov, K. I. Rybakov, V. E. Semenov, J. Phys. D: Appl. Phys. R55, 34(2001).
33 D. E. Clark, "Microwave processing of materials" Ann. Rev. Matter. Sci. 26, 299(1994).
34 Howard, M. & Schuyler, E. "Waterspouts." Science 15, 32-33(1887).
35 Rogers, H. R. The great primordial force. Science 17, 601-604(1881).
36 Brunt, D. Waterspouts. Nature 111, 82 (1923).
37 http://en.wikipedia.org/wiki/Waterspout
38 Colgate, S. A. Tornadoes: Mechanism and Control. Science 157, 1431-1434(1967).
39 Snow, J. T. The Tornado. Scientific American 250, 86-96(1984).
40 Durward, J. Rotation of Dust Devils. Nature 128, 412-413(1931).
41 Eden, H. F. & Vonnegut B. Electrical Breakdown Caused by Dust Motion in Low-Pressure Atmospheres: Considerations for Mars. Science 180, 962-963(1973).
42 Chakraborty, P., Gioia, G. & Kieffer, S. W. Volcanic Mesocyclones. Nature 458, 497-500(2009).
43 Kibble, T. W. B. Refraction of electron beams by intense electromagnetic waves. Phys. Rev. Lett. 16, 1054–1056 (1966).
44 Schwartz, J. C., Senko, M. W., & Syka, J. E. P. A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 13, 659–669(2002).
45 Boot, H. A. H., &. Harvie, R. B. R.-S. Charged particles in a non-uniform radiofrequency field. Nature 180, 1187 (1957).
46 Lamb, B. M., & Morales, G. J. Ponderomotive effects in nonneutral plasmas. Phys. Fluids 26, 3488-3496(1983).
47 Chu, S. The manipulation of neutral particles. Reviews of Modern Physics 70, 685-706(1998).
48 Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290(1986).
49 Chu, S., Bjorkholm, J. E., Ashkin, A., & Cable, A. Experimental Observation of Optically Trapped Atoms. Phys. Rev. Lett. 57, 314-317(1986).
50 Cohen-Tannoudji, C. N. Manipulating atoms with photons. Rev. Mod. Phys. 70, 707-719(1998).
51 Eichmann, U., Nubbemeyer, T., Rottke, H., & Sandner, W. Acceleration of neutral atoms in strong short-pulse laser fields. Nature 461, 1261-1264(2009).
52 Breeden, T. & Stark, H. M. Acceleration of Rydberg Atoms in Inhomogeneous Electric Fields. Phys. Rev. Lett. 47, 1726-1729(1981).
53 Booske, J. H., et al. Studies of Nonthermal Effect During Intense Microwave Heating of Crystalline Solids. Mater. Res. Soc. Proc. 269, 137–143(1992).
54 Rybakov, K. I. & Semenov, V. E. Possibility of Plastic Deformation of an Ionic Crystal Due to the Nonthermal Influence of a High-Frequency Electric Field, Phys. Rev. B 49, 64–68(1994).
55 Rybakov, K. I., Semenov, V. E., Linkand, G., & Thumm M. Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field J. Appl. Phys. 101, 084915(2007).
56 Chang, T. H., et al. Efficient heating with a controlled microwave field. Rev. Sci. Instrum. 82, 124703 (2011).
57 Booske, J. H., et al. Microwave ponderomotive forces in solid-state ionic plasmas. Phys. Plasmas 5, 1664(1998).
58 Freeman, S. A., et al. Microwave Radiation Effects on Ionic Current in Ionic Crystalline Solids. Mater. Res. Soc. Proc. 347, 479–485(1994).
59 Z. Fathi, I. Ahmed, J. H. Simmons, D. E. Clark, and A. R. Lodding, ‘‘Surface Modification of Sodium Aluminosilicate Glasses Using Microwave Energy,’’ Ceram. Trans. 21, 623–9 (1991).
60 J. G. P. Binner, N. A. Hassine, and T. E. Cross, ‘‘The Possible Role of the Pre-Exponential Factor in Explaining the Increased Reaction Rates Observed During the Microwave Syntheses of Titanium Carbide,’’ J. Mater. Sci. 30, 5389–93 (1995).
61 J. H. Booske, R. F. Cooper, I. Dobson, and L. McCaughan, ‘‘Model of Nonthermal Effects on Ionic Mobility During Microwave Processing of Crystalline Solids,’’ Ceram. Trans. 21, 185–92 (1991).
62 J. H. Booske, R. F. Cooper, L. McCaughan, S. Freeman, and M. Binshen, ‘‘Studies of Nonthermal Effect During Intense Microwave Heating of Crystalline Solids,’’ Mater. Res. Soc. Proc. 269, 137–43 (1992).
63 S. Freeman, J. H. Booske, R. F. Cooper, B. Meng, J. Kieffer, and B. J. Reardon, ‘‘Effects of High Power Microwave Fields on Ionic Transport in Ceramics and Ionic Crystalline Solids’’; pp. 22–4 in Proceedings of the Workshop on Microwave-Absorbing Materials for Accelerators, Edited by I. E. Campisi and L. R. Doolittle. Newport News, Virginia, 1993.
64 K. I. Rybakov and V. E. Semenov, ‘‘Possibility of Plastic Deformation of an Ionic Crystal Due to the Nonthermal Influence of a High-Frequency Electric Field,’’ Phys. Rev. B 49 [1] 64–8 (1994).
65 Sharon A. Nightingale, H. K. Worner, and D. P. Dunne, “Microstructural Developement during the Microwave Sintering of Yttria-Zirconia Ceramics,” J. Am. Ceram. Soc. 80 394-400 (1997).
66 Chien-Yih Tsay, Kuo-Shung Liu, I.-Nan Lin," Co-firing process using conventional and microwave sintering technologies for MnZn- and NiZn-ferrites ," Journal of the European Ceramic Society 21 1937–1940(2001).
67 Jiping Cheng, Dinesh Agrawal, Yunjin Zhang & Rustum Roy, " Development of Translucent Aluminum Nitride (AIN) Using Microwave Sintering Process ," Journal of Electroceramics, 9, page.67–71, 2002
68 Y. Fang, Y. Chen, M.R. Silsbee, D.M. Roy, " Microwave sintering of flyash ," Materials Letters 27 (1996) 155-159
69 A Del Sol Mesa, C Quesne and Yu F Smirnov, Generalized Morse potential: Symmetry and satellite potentials, 1998 J. Phys. A: Math. Gen. 31 321
70 I. Nasser, M.S. Abdelmonem, H. Bahlouli and A. D. Alhaidari, The rotating Morse potential model for diatomic molecules in the tridiagonal J-matrix representation: I. Bound states, 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4245
71 L. A. Girifalco and V. G. Weizer, Application of the Morse Potential Function to Cubic Metals, 1959 Phys. Rev. 114, 687–690 (1959)
72 N. Itoh, A.M. Stoneham and A.H. Harker, Initial production of Defects in Alkali-Halides - F and H Center Production by Non-Radiative Decay of Self-Trapped Exciton, 1977 J Phys. C Solid State , 10 (21) 4197 - 4209.
73 John David Jackson, Classical Electrodynamics, third edition, Section 7.5
74 John David Jackson, Classical Electrodynamics, third edition, Section 4.2
75 H. Lüth and R. Matz , Hydrogen Adsorption on GaAs(110) Studied by Electron-Energy-Loss Spectroscopy, Phys. Rev. Lett. 46, 1652 – Published 22 June 1981
76 Joachim Welker and Franz J. Giessibl, Revealing the Angular Symmetry of Chemical Bonds by Atomic Force Microscopy, Science 27 April 2012: 444-449.
77 A. A. Maradudin and D. L. Mills, Temperature Dependence of the Absorption Coefficient of Alkali Halides in the Multiphonon Regime, Phys. Rev. Lett. 31, 718 – Published 10 September 1973
78 Ralph E. Weston Jr., Transition-State Models and Hydrogen-Isotope Effects, Science 20 October 1967: 332-342.
79 http://en.wikipedia.org/wiki/Debye_model
80 Antonio C. Lasaga and Randall T. Cygan, Electronic and ionic polarizabilities of silicate minerals, American Mineralogist, April 1982, v. 67, p. 328-334
81 Agilent Basics of Measuring the Dielectric Properties of Materials. Agilent Technologies Inc.
82 O.V. Ivanov, E.G. Maksimov, Macroscopic calculations of the electron polarizability and lattice dynamics of ionic crystals, JETP, Vol. 81, No. 5, p. 1008 (November 1995)
83 Feynman, R., R. Leighton, and M. Sands. Feinmanovskie lektsiipo fizike. [Issue 5.] Elektrichestvo i magnetizm. Moscow, 1966. (Translated from English.)
84 Kalashnikov, C. G. Elektrichestvo, 2nd ed. Moscow, 1964.
85 Fizicheskii entsiklopedicheskii slovar’, vol. 1. Moscow, 1960.
86 Skanavi, G. I. Fizika dielektrikov (Oblast’ slabykh polei). Moscow-Leningrad, 1949.
87 Skanavi, G. I. Fizika dielektrikov (Oblast’ sil’nykh polei). Moscow, 1958.
88 Frelikh, G., Teoriia dielektrikov. Moscow, 1960.
89 Von Hippel, A. R. Dielektriki i volny. Moscow, 1960. (Translated from English.)
90 Zheludev, I. S. Fizika kristallicheskikh dielektrikov. Moscow, 1968.
91 Lindemann FA (1910) "The calculation of molecular vibration frequencies" Physik. Z. 11: 609–612.
92 Sorkin, S., (2003), Point defects, lattice structure, and melting, Thesis, Technion, Israel.
93 Philip Hofmann (2008). Solid state physics: an introduction. Wiley-VCH. p.67. 13 March 2011.
94 Nelson, D. R., (2002), Defects and geometry in condensed matter physics, Cambridge University Press.
95 K. Nishidate, M. Baba, Sarjono, M. Hasegawa, K. Nishigawa, I. Sokolska, and R. Ryba-Romanowski, " First-principles study on the energetics and vibrational properties of the S-2 impurity in alkali-halide crystals ", Phys. Rev. B 68, 224307 (2003).
96 W. N. Mei, L. L. Boyer, M. J. Mehl, M. M. Ossowski, and H. T. Stokes, " Calculation of electronic, structural, and vibrational properties in alkali halides using a density-functional method with localized densities

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top