跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高健銘
論文名稱:奈米結構對輕薄化之矽晶片表面缺陷造成應力集中現象之影響
論文名稱(外文):Effect of Nano Structure to Stress Concentration Caused by Thinning Silicon Chip Surface Defect
指導教授:葉孟考葉孟考引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:100
中文關鍵詞:奈米結構裂縫應力集中
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在現今的太陽能電池產業中,大量的使用矽晶片做為太陽能電池的基板,而將矽晶片輕薄化除了可減少成本,更可避免過度使用造成矽材料的短缺與能源的浪費。然而無論是在矽晶片的製造或輕薄化的過程中,都有可能使矽晶片表面產生缺陷,在缺陷處容易有應力集中的現象發生,且容易成為破壞的起始點。本研究利用有限單元分析軟體,首先探討裂縫物理參數對應力集中的影響,對不同的裂縫深度、裂縫尖端曲率半徑、有限單元分析軟體的單元類型以及單元形狀進行分析,接著探討奈米結構之太陽能矽晶片輕薄化後對機械強度之影響,最後進行金字塔奈米結構對表面缺陷處應力集中現象影響之研究,包含輕薄化前與輕薄化後之結果與討論。此外經由四點彎矩實驗證明奈米結構能有效增加矽晶片之機械強度,並且透過實驗來驗證模擬的結果。本研究所得到之結果能為矽晶片輕薄化以及使用奈米結構提高矽晶片機械強度之相關研究提供參考。
目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
符號表 xii
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 1
1.2.1矽材料的機械性質 1
1.2.2表面奈米結構之優點 2
1.2.3造成矽強度下降的原因與強化的方式 3
1.3裂縫處應力預測理論 4
1.4研究主題 5
第二章 有限單元與理論分析 7
2.1有限單元應力分析理論 7
2.2有限單元法簡述 7
2.2.1單元選取 9
2.2.2材料參數之設定 9
2.2.3第一部分模型與表面缺陷之幾何外型之建立 10
2.2.4表面奈米結構之幾何外型建立 10
2.2.5表面金字塔奈米結構之幾何外型建立 10
2.2.6結構網格化 11
2.2.7邊界條件與負載之設定 11
2.2.8網格密度測試與收斂分析 12
2.2.9分析求解與結果輸出 13
第三章 破裂力學理論 14
3.1裂縫尖端應力場 14
3.2應力集中因子與裂縫幾何形狀之關係 15
3.3 材料的破壞準則 15
第四章 實驗方法與步驟 17
4.1實驗儀器與實驗試片 17
4.1.1拉伸試驗機 17
4.1.2微拉伸試驗機 17
4.1.3矽晶片試片 18
4.2實驗方法與數據處理 18
4.2.1拉伸試驗 18
4.2.2四點彎矩試驗 19
4.2.3數據分析 20
第五章 結果與討論 22
5.1實驗結果與模擬分析 22
5.1.1拉伸試驗結果 23
5.1.2四點彎矩試驗結果 24
5.1.3模擬分析 26
5.2裂縫物理參數對裂縫處應力集中現象之影響 27
5.2.1有限單元分析造成之裂縫尖端應力偏移現象 27
5.2.2不同單元與單元形狀之模擬結果 28
5.3奈米結構模型輕薄化後對機械強度之影響 29
5.3.1模擬準確性分析 30
5.3.2模型輕薄化對裂縫尖端處最大等效應力的影響 30
5.3.3輕薄化之模型其不同深度的裂縫對裂縫處之機械行為的影響 31
5.3.4實際尺寸之奈米結構模型輕薄化分析 31
5.4金字塔奈米結構模型輕薄化後對機械強度之影響 32
5.4.1金字塔奈米結構模型之基本特性分析 32
5.4.2實際尺寸之金字塔奈米結構模型輕薄化分析 32
5.4.3不同深度之奈米結構對裂縫處應力行為的影響 33
5.4.4表面無奈米結構金字塔模型對裂縫處應力行為的影響 33
5.4.5不同之金字塔尺寸對裂縫處應力行為的影響 34
第六章 結論與未來展望 36
6.1結論 36
6.2未來展望 37
參考文獻 38

圖表目錄
表2.1 矽微米懸臂樑之材料常數[7] 44
表2.2 詳細的裂縫物理參數數值 44
表5.1 表面拋光矽晶片之楊氏模數 45
表5.2 表面拋光矽晶片之斷裂應力 45
表5.3 表面拋光矽晶片之蒲松比 46
表5.4 表面拋光矽晶片之撓曲模數 46
表5.5 表面蝕刻奈米結構矽晶片之撓曲模數 47
表5.6 表面拋光矽晶片之破壞荷重與彎曲強度 47
表5.7 表面蝕刻奈米結構矽晶片之破壞荷重與彎曲強度 48
表5.8 實驗結果驗證(給予壓縮位移) 48
表5.9 實驗結果驗證(給予荷重) 49
表5.10 公式(1)計算出之裂縫尖端處之x方向最大應力值 49
表5.11 無奈米結構模型之裂縫處應力值(PLANE 42) 50
表5.12 無奈米結構模型之裂縫處應力值(PLANE 82) 50
表5.13 PLANE 82單元、不同單元形狀與裂縫物理參數測試結果 51
表5.14 PLANE 42單元、不同單元形狀與裂縫物理參數測試結果 51
表5.15 裂縫尖端處應力與應力集中因子 52
表5.16 不同表面結構與模型厚度其裂縫尖端處最大等效應力 52
表5.17 不同厚度之矽晶片模型裂縫尖端處最大主應力 53
表5.18 不同厚度與裂縫深度之矽晶片模型裂縫尖端處最大主應力 53
表5.19 不同厚度之矽晶片模型裂縫尖端處y方向位移 54
表5.20 不同厚度與裂縫深度之矽晶片模型裂縫尖端處y方向位移 54
表5.21 有無表面金字塔奈米結構之缺陷模型模擬結果 55
圖1.1 典型的矽晶圓製程 56
圖2.1 ANSYS模擬分析流程 56
圖2.2 SOLID 45單元示意圖 57
圖2.3 PLANE 42單元示意圖 57
圖2.4 模型尺寸示意圖 58
圖2.5 裂縫形狀示意圖 58
圖2.6 奈米結構區域示意圖 59
圖2.7 奈米結構之SEM圖[73] 59
圖2.8 奈米結構尺寸示意圖 60
圖2.9 奈米結構示意圖 60
圖2.10 金字塔結構尺寸示意圖 61
圖2.11 高密度網格示意圖 61
圖2.12 表面金字塔奈米結構模型之網格化示意圖 62
圖2.13 三點彎矩實驗示意圖 62
圖2.14 四點彎矩實驗示意圖 63
圖2.15 四點彎矩邊界條件示意圖 63
圖2.16 裂縫處受張應力示意圖 64
圖2.17 模型邊界條件示意圖 64
圖2.18 純裂縫模型收斂性分析裂縫尖端處最大等效應力圖 65
圖2.19 表面奈米結構模型收斂性分析裂縫尖端處最大等效應力圖 65
圖2.20 自由網格化示意圖 66
圖2.21 金字塔奈米結構收斂性分析裂縫尖端處等效應力圖 66
圖3.1 裂縫受力模式示意圖[74] 67
圖4.1 拉伸試驗機Instron 3365 67
圖4.2 拉伸試驗機Instron 8848 68
圖4.3 Fast Track8800控制器與個人電腦 68
圖4.4 表面拋光之4吋矽晶圓 69
圖4.5 表面蝕刻奈米結構之4吋矽晶圓 69
圖4.6 表面蝕刻奈米結構矽晶圓SEM圖[73] 70
圖4.7 奈米結構局部SEM圖[73] 70
圖4.8 拉伸試驗試片 71
圖4.9 黏貼軸向應變規之拉伸試驗試片與端板(end tape) 71
圖4.10 黏貼軸向與橫向應變規之拉伸試驗試片 72
圖4.11 黏貼軸向與橫向應變規之拉伸試驗試片 72
圖4.12 拉伸試驗架設圖(黏貼軸向應變規) 73
圖4.13 拉伸試驗架設圖(黏貼軸向與橫向應變規) 73
圖4.14 四點彎矩實驗試片(左為有奈米結構,右為拋光試片) 74
圖4.15 四點彎矩實驗架設圖 74
圖4.16 最小平方法示意圖 75
圖5.1 試片拉伸結果(黏貼軸向應變規) 75
圖5.2 試片拉伸結果(黏貼軸向與橫向應變規) 76
圖5.3 表面拋光矽晶片之拉伸試驗位移荷重曲線 76
圖5.4 表面拋光矽晶片之拉伸試驗應力應變曲線 77
圖5.5 表面拋光矽晶片之拉伸試驗軸向與橫向應變曲線 77
圖5.6 四點彎矩中央圓弧段示意圖 78
圖5.7 表面拋光矽晶片之彎曲試驗應力應變曲線 78
圖5.8 表面蝕刻奈米結構矽晶片之彎曲試驗應力應變曲線 79
圖5.9 應力應變曲線兩段斜率示意圖 79
圖5.10 夾具偏移示意圖 80
圖5.11 表面有無奈米結構之應力應變曲線比較圖 80
圖5.12 彎曲試驗結果(左為有奈米結構、右為拋光試片) 81
圖5.13 還原後之拋光矽晶片破片 81
圖5.14 四點彎矩試片模型示意圖 82
圖5.15 四點彎矩試片模擬結果等效應力分佈圖 82
圖5.16 無奈米結構模型裂縫處等效應力分佈圖 83
圖5.17 無奈米結構模型裂縫尖端處等效應力分佈圖 83
圖5.18 裂縫尖端處最大等效應力偏移示意圖 84
圖5.19 無奈米結構之缺陷試片模型示意圖 84
圖5.20 奈米結構分佈區域示意圖(半模型) 85
圖5.21 模型中央處裂縫示意圖 85
圖5.22 不同表面結構與厚度裂縫尖端最大等效應力圖 86
圖5.23 裂縫尖端處應力分佈圖(a)表面蝕刻奈米結構(b)表面拋光 86
圖5.24 模型厚度與裂縫深度對裂縫尖端處最大等效應力的影響 87
圖5.25 模型厚度與裂縫深度對裂縫尖端處最大主應力的影響 87
圖5.26 矽晶片模型第一主應力分佈圖 88
圖5.27 矽晶片模型第二主應力分佈圖 88
圖5.28 矽晶片模型第三主應力分佈圖 89
圖5.29 矽晶片模型輕薄化後對裂縫尖端y方向位移的影響 89
圖5.30 模型厚度與裂縫深度對裂縫尖端處y方向位移的影響 90
圖5.31 模型y方向位移分佈與變形示意圖 90
圖5.32 實際尺寸表面奈米結構模型示意圖 91
圖5.33 實際尺寸表面奈米結構輕薄化模擬結果 91
圖5.34 表面金字塔奈米結構之缺陷試片模型示意圖 92
圖5.35 無奈米結構模型之裂縫處等效應力分佈圖 92
圖5.36 無奈米結構模型之裂縫尖端處等效應力分佈圖 93
圖5.37 表面金字塔奈米結構模型之裂縫處等效應力分佈圖 93
圖5.38 表面金字塔奈米結構模型裂縫尖端處等效應力分佈圖 94
圖5.39 表面金字塔奈米結構SEM圖(交大蔡育霖博士生提供) 94
圖5.40 表面金字塔奈米結構之缺陷試片模型示意圖 95
圖5.41 金字塔奈米結構模型網格劃分示意圖 95
圖5.42 表面金字塔奈米結構模型收斂測試 96
圖5.43 不同表面結構之輕薄化矽晶片裂縫尖端處最大等效應力圖 96
圖5.44 不同深度的奈米結構對裂縫尖端處最大等效應力的影響 97
圖5.45 表面金字塔結構模型示意圖 97
圖5.46 表面金字塔結構模型輕薄化之裂縫尖端處最大等效應力圖 98
圖5.47 表面金字塔結構模型之裂縫處等效應力分佈圖 98
圖5.48 等比例縮放金字塔對裂縫尖端處最大等效應力的影響 99
圖5.49 改變金字塔頂部角度方法示意圖 99
圖5.50 固定金字塔底長為10μm,改變金字塔高度結果圖 100
圖5.51 固定金字塔高度為5μm,改變金字塔底長結果圖 100

1. B. Yang, X. Chen, “Alumina Ceramics Toughened by a Piezoelectric Secondary Phase, ” Journal of the European Ceramic Society, Vol. 20, pp. 1687-1690, 2000.
2. S. Sung, X. Guo, K. Huang, F. Chen, H. Shih, “The Strengthening Mechanism of DLC Film on Silicon by MPECVD, ” Thin Solid Films, Vol. 315, pp. 345-350, 1998.
3. W. Nix, T. Kenny, “What is the Young’s Modulus of Silicon?, ” Journal of Microelectromechanical Systems, vol. 19, No. 2, 2010.
4. S. Sundararajan, B. Bhushan, T. Namazu, Y. Isono, “Mechanical Property Measurements of Nanoscale Structures Using an Atomic Force Microscope, ” Ultramicroscopy, Vol. 91, pp. 111-118, 2002.
5. X. Li, B. Bhushan, K. Takashima, C. Baek, Y. Kim, “Mechanical Characterization of Micro/nanoscale Structures for MEMS/NEMS Applications Using Nanoindentation Techniques, ” Ultramicroscopy, Vol. 97, pp. 481-494, 2003.
6. K. Petersen, “Silicon as a Mechanical Material, ” Proceedings of the IEEE, Vol. 70, No. 5, 1982.
7. C. Wilson, A. Ormeggi and M. Narbutovskih, “Fracture Testing of Silicon Microcantilever Beams, ” Journal of Applied Physics, Vol. 79, No. 5, pp. 2386-2393, 1996.
8. B. Leffler, “Stainless Steel and Their Properties, ” Welding Journal, 2000.
9. F. Morin, J. Maita, “Electrical Properties of Silicon Containing Arsenic and Boron, ” Physical Review, Vol. 96, pp. 28-35, 1954.
10. C. Sun, W. Fan, C. Cheng, C. Lin and K. Huang, “Templated Fabrication of Large Area Subwavelength Antireflection Gratings on Silicon, ” Applied Physics Letters, Vol. 91 pp. 231105, 2007.
11. H. Chen, W. Fan, C. Chen, C. Lin and K. Huang, “Fabrication of Texturing Antireflection Structures in Solar Cells by Using the Defocusing Exposure in Optical Lithography, ” Journal of The Electrochemical Society, Vol. 153, pp. G802-G806, 2006.
12. Z. Xi, D. Yang, W. Dan, C. Jun, X. Li and D. Que, “Texturization of Cast Multicrystalline Silicon for Solar Cells, ” Semiconductor Science and Technology, Vol. 19, pp. 485-489, 2004.
13. J. Lee, N. Lakshminarayan, S. Dhungel, K. Kim and J. Yi, “Optimization of Fabrication Process of High-Efficiency and Low-Cost Crystalline Silicon Solar Cell for Industrial Applications, ” Solar Energy Materials and Solar Cells, Vol. 93 pp. 256-261, 2009.
14. T. Yagi, Y. Uraoka, T. Fuyuki, “Ray-trace Simulation of Light Trapping in Silicon Solar Cell with Texture Structures, ” Solar Energy Materials &; Solar Cells, Vol. 90, pp. 2647-2656, 2006.
15. E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, J. Mijs, “Improved Anisotropic Etching Process for Industrial Texturing of Silicon Solar Cells, ” Solar Energy Materials &; Solar Cells, Vol. 57, pp. 179-188, 1999.
16. M.Karimirad, Comprehensive Renewable Energy, Elsevier Science, 2012.
17. Z. Yue, H. Shen, Y. Jiang, “Antireflective Nanostructures Fabricated by Reactive Ion Etching Method on Pyramid-structured Silicon Surface, ” Applied Surface Science, Vol. 271, pp. 402-406, 2013.
18. B. Cantor, C. Allen, R. Dunin-Burkowski, M. Green, J. Hutchinson, K. O’Reilly, A. Petford-Long, P. Schumacher, J. Sloan, P. Warren, “Applications of Nanocomposites, ” Scripta Materialia, Vol. 44, pp. 2055-2059, 2001.
19. B. Ji, H. Gao, “Mechanical Properties of Nanostructure of Biological Materials, ” Journal of the Mechanics and Physics of Solids, Vol. 52, pp. 1963-1990, 2004.
20. S. Zhang, Y. Fu, H. Du, Y. Liu, T. Chen, “Nanocomposite Thin Films for both Mechanical and Functional Applications, ” 2004.
21. R. Andrievski1, A. Glezer, “Size Effects in Properties of Nanomaterials, ” Scripta Materialia, Vol. 44, pp.1621-1624, 2001.
22. B. Stephens, D. Cody, “Optical Reflectance and Transmission of a Textured Surface, ” Thin Solid Films, Vol. 45, pp. 19-29, 1977.
23. C. Sanchez, H. Arribart, M. Guille, “Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems, ” Nature Materials, Vol. 4, pp. 277-288, 2005.
24. A. Parker, C. Lawrence, “Water Capture by a Desert Beetle, ” Nature, Vol. 414, pp. 33-34, 2001.
25. F. Song, K. Lee, A. Soh, F. Zhu, Y. Bai, “Experimental Studies of the Material Properties of the Forewing of Cicada (Homoptera, Cicadidae), ” Journal of Experimental Biology, Vol. 207, pp. 3035-3042, 2004.
26. P. Stoddart, P. Cadusch, T. Boyce, R. Erasmus, J. Comins, “Optical Properties of Chitin: Surface-enhanced Raman Scattering Substrates Based on Antireflection Structures on Cicada Wings, ” Nanotechnology, Vol. 17, pp. 680-686, 2006.
27. P. Vukusic, J. Sambles, “Photonic Structure in Biology, ” Nature, Vol. 424, pp. 852-855, 2003.
28. T. Sun, L. Feng, X. Gao, L. Jiang, “Bioinspired Surfaces With Special Wettability, ” Accounts of Chemical Research, Vol. 38, pp. 644-652, 2005.
29. S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, L. Chen, “Anti-reflecting and Photonic Nanostructures, ” Materials Science and Engineering R, Vol. 69, pp. 1-35, 2010.
30. S. Dhamodaran, D. Sathish Chander, J. Ramkumar, “Anti-reflective and Hydrophobic Surface of Self-organized GaN Nano-flowers, ” Applied Surface Science, Vol. 257, pp. 9612-9615, 2011.
31. G. Xie, G. Zhang, F. Liu, S. Mu, “The Fabrication of Subwavelength Anti-reflective Nanostructures Using a Bio-template, ” Nanotechnology, Vol. 19, pp. 095605-095610, 2008.
32. X. Feng, L. Jiang, “Design and Creation of Superwetting/Antiwetting Surfaces, ” Advanced Materials, Vol. 18, pp. 3063-3078, 2006.
33. R. Blossey, “Self-cleaning Surfaces – Virtual Realities, ” Nature Materials, Vol. 2, pp. 301-306, 2003.
34. P. Suresh Kumar, J. Sundaramurthy, X. Zhang, D. Mangalaraj, V. Thavasi, S. Ramakrishna, “Superhydrophobic and Antireflecting Behavior of Densely Packed and Size Controlled ZnO Nanorods, ” Journal of Alloys and Compounds, Vol. 553, pp. 375-382, 2013.
35. K. Askara, M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, B. Jiang, “Self-assembled Self-cleaning Broadband Anti-reflection Coatings, ” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013.
36. Y. Liu, Y. Xiu, C. Wong, “Micro/Nano Structure Size Effect on Superhydrophobicity and Anti Reflection of Single Crystalline Si Solar Cells, ” Electronic Components and Technology Conference, pp. 1719-1724, 2010.
37. Z. Dimitrova, C. Du, “Crystalline Silicon Solar Cells with Micro/nano Texture, ” Applied Surface Science, 2012.
38. Z. Huang, N. Geyer, P. Werner, J. Boor, U. Gösele, “Metal-Assisted Chemical Etching of Silicon: A Review, ” Adv. Mater. Vol. 23, pp. 285-308, 2011.
39. Z. J. Pei, A. Strasbaugh, “Fine Grinding of Silicon Wafers, ” International Journal of Machine Tools &; Manufacture, Vol. 41, pp. 659-672, 2001.
40. Z. J. Pei, S. R. Billingsley, S. Miura, “Grinding Induced Subsurface Cracks in Silicon Wafers, ” International Journal of Machine Tools &; Manufacture, Vol. 39, pp. 1103-1116, 1999.
41. H. Ohmori, T. Nakagawa, “Analysis of Mirror Surface Generation of Hard and Brittle Materials by ELID Grinding with Superfine Grain Metallic Bond Wheels, ” Annals of CIRP 44, pp. 287-290, 1995.
42. H. K. Xu, S. Jahanmir, L. K. Ives, “Material Removal and Damage Formation Mechanisms in Grinding Silicon Nitride, ” J. Mater. Res, Vol. 11, pp. 1717-1724, 1996.
43. B. Zhang, T. D. Howes, “Subsurface Evaluation of Ground Ceramics, ” Annals of CIRP, Vol. 44, pp. 263-266, 1995.
44. Z. Zhong, V.C. Venkatesh, “Surface Integrity Studies on the Grinding, Lapping and Polishing Processes for Optical Products, ” J. Mater. Process. Technol, Vol. 44, pp. 179-186, 1994.
45. H. K. Tonshoff, B. Karpuschewski, M. Hartmann, C. Spengler, “Grinding-and-Slicing Technique as an Advanced Technology for Silicon Wafer Slicing, ” Mach. Sci. Technol, Vol. 1, pp. 33-47, 1997.
46. U. Bismayer, E. Brinksmeier, B. Guttler, H. Seibt, C. Menz, “Measurement of Subsurface Damage in Silicon Wafers, ” Precision Engineering, Vol. 16, NO. 2, pp. 139-144, 1994.
47. H. K. Tonshoff, W. V. Schmieden, I. Inasaki, W. Konig, G. Spur, “Abrasive Machining of Silicon, ” Annals of CIRP, Vol. 39, NO. 2, pp. 621-630, 1990.
48. D. Echizenya, H. Sakamoto, K. Sasaki, “Effect of Mechanical Surface Damage on Silicon Wafer Strength, ” Procedia Engineering, Vol. 10, pp. 1440-1445, 2011.
49. T. Yi, L. Li, C. Kim, “Microscale Material Testing of Single Crystalline Silicon: Process Effects on Surface Morphology and Tensile Strength, ” Sensors &; Actuators: A. Physical, Vol. 83, pp. 172-178, 2000.
50. N. McLellan, N. Fan, S. Liu, K. Lau, J. Wu, “Effects of Wafer Thinning Condition on the Roughness, Morphology and Fracture Strength of Silicon Die, ” Journal of Electronic Packaging, Vol. 126, pp. 110-114, 2004.
51. X. Li, T. Kasai, S. Nakao, T. Ando, M. Shikida, K. Sato, “Influence of Sub-micrometer Notches on the Fracture of Single Crystal Silicon Thin Films, ” Fatigue Fract Engng Mater Struct, Vol. 30, pp. 1172-1181, 2007.
52. M. George, C. Coupeau, J. Colin, J. Grilhe, “Atomic Force Microscopy Observations of Successive Damaging Mechanisms of Thin Films on Substrates Under Tensile Stress, ” Thin Solid Films, Vol. 429, pp. 267-272, 2003.
53. K. Munzer, K. Holderman, R. Schlosser, S. Sterk, “Thin Monocrystalline Silicon Solar Cells, ” IEEE Transactions on Electron Devices, Vol. 46, No. 10, pp. 2055-2061, 1999.
54. NSC-95-2221-E-002-015, Studies on Thinning Technique for SiliconWafers. 2006.
55. L. C. Zhang, N. Yasunaga, Advances in Abrasive Technology, World Scientific Publishing Co. Pte. Ltd, Singapore, pp. 33-42, 1997.
56. S. Zhang, D. Sun, Y. Q. Fu, H. J. Du, “Toughening of Hard Nanostructural Thin Films: a Critical Review, ” Surface &; Coatings Technology, Vol. 198, pp. 2-8, 2005.
57. C. T. Huang, “Stress Relaxation of V-shaped Notch on Single Crystal Silicon Using Nanoholes, ” National Tsing Hua University Master thesis, 2009. (Advisor J. Yeh)
58. Y. K. Shao, “Effect of Nano Structure to Stress Concentration Caused by Chip Surface Defect, ” National Tsing Hua University Master thesis, 2013. (Advisor M. K. Yeh)
59. S. Kumar, X. Li, A. Haque, H. Gao, “Is Stress Concentration Relevant for Nanocrystalline Metals?, ” Nano Letters, Vol. 11, pp. 2510-2516, 2011.
60. C. R. Chiang, “Stress Concentration Factors of Edge-notched Orthotropic Plates, ” Journal of Strain Analysis, Vol. 33, No. 5, pp. 395-398, 1998.
61. M. Hendrix, S. Drews “Improvements in Yield by Eliminating Backgrind Defects and Providing Stress Relief with Wet Chemical Etching, ” 2004.
62. ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
63. R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th, Wiley, United States, 2001.
64. L. J. Segerlind, Applied Finite Element Analysis, 2nd, Wiley, New York, 1984.
65. 康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2003。
66. ANSYS Release 12.1, ANSYS HELP.
67. K. Peng, J. Zhu, “Morphological Selection of Electroless Metal Deposits on Silicon in Aqueous Fluoride Solution, ” Electrochimica Acta, Vol. 49, pp. 2563-2568, 2004.
68. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, J. Zhu, “Fabrication of Single-Crystalline Silicon Nanoholes by Scratching a Silicon Surface with Catalytic Metal Particles, ” Advanced Functional Materials, Vol. 16, pp. 387-394, 2006.
69. K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, J. Zhu, “Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays, ” Angewandte Chemie International Edition, Vol. 44, pp. 2737-2742, 2005.
70. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, S. Lee, “Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanoholes in Aqueous Fluoride Solution, ” Chemistry A European Journal, Vol. 12, pp. 7942-7947, 2006.
71. K. Peng, A. Lu, R. Zhang, S. Lee, “ Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching, ” Advanced Functional Materials, Vol. 12, pp. 3026-3035, 2008.
72. C. Hsieh, J. Chyan, W. Hsu, J. Yeh, “Fabrication of Wafer-level Antireflective Structures in Optoelectronic Applications, ” Optical MEMS and Nanophotonics 2007 IEEE/LEOS International Conference, pp. 185-186, 2007.
73. C. N. Chen, “Strengthening of Single Crystal Silicon by Mimicking the Surface Nanostructures on Cicada's Wing, ” National Tsing Hua University Master thesis, 2008. (Advisor J. Yeh)
74. D. Broek, Elementary Engineering Fracture Mechanics, 4th, Springer, Berlin, 1982.
75. C. C. Liu, “Propagation Characteristics of Thickness-Through-Cracks in Irregular Stress Distribution Fields, ” National Cheng Kung University Master thesis, 2002. (Advisor Z. H. Lin)
76. W. Pilkey, Peterson’s Stress Concentration Factors:Wiley-Interscience, New York, 1997.
77. C. R. Chiang, “On Stress Cocentration Factors in Orthotropic Materials, ” Journal of the Chinese Institute of Engineers, Vol. 22, No. 3, pp. 301-305, 1999.
78. 劉晉奇,有限元素分析與ANSYS的工程應用,滄海,台中,2006。
79. R. C. Hibber, Statics and Mechanics of Materials, 6th, Pearson Education, United States, 2004.
80. ASTM E8/E8M - 11, “Standard Test Methods for Tension Testing of Metallic Materials, ” Annual Book of ASTM Standards, Vol. 3, 2013.
81. M. Okaji, “Absolute Thermal Expansion Measurements of Single-Crystal Silicon in the Range 300-1300 K with an Interferometric Dilatometer, ” International Journal of Thermophysics, Vol. 9, No. 6, pp. 1101-1109, 1988.
82. H. Watanabe, N. Yamada, M. Okaji, “Linear Thermal Expansion Coefficient of Silicon from 293 to 1000 K, ” International Journal of Thermophysics, Vol. 25, No. 1, pp. 221-236, 2004.
83. K. G. Lyon, G. L. Salinger, C. A. Swenson, “Linear Thermal Expansion Measurements on Silicon from 6 to 340 K, ” Journal of Applied Physics, Vol. 48, NO. 3, pp. 865-868, 1977.
84. R. B. Roberts, “Thermal Expansion Reference Data: Silicon 300-850 K, ” Journal of Applied Physics, Vol. 14, pp. 163-166, 1981.
85. J. S. Shah, M. E. Straumanis, “Thermal Expansion Behavior of Silicon at Low Temperatures, ” Solid State Communications, Vol. 10, pp. 159-162, 1972.
86. A. V. Mazur, M. M. Gasik, “Thermal Expansion of Silicon at Temperatures Up to 1100 ◦C, ” Journal of Materials Processing Technology, Vol. 209, pp. 723-727, 2009.
87. L. Maisse, “Thermal Expansion of Silicon, ” Journal of Applied Physics, Vol. 31, pp. 211, 1960.
88. ASTM E855 - 90, “Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading, ” Annual Book of ASTM Standards, Vol. 3, 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top