跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/13 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何宗翰
研究生(外文):Ho, Zonghan
論文名稱:以類神經網路設計與實現伺服器散熱系統溫度控制器
論文名稱(外文):Design and Implementation of Temperature Controller for Server Cooling System by Neural Network
指導教授:陳榮順陳榮順引用關係
指導教授(外文):Chen, Rongshun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:78
中文關鍵詞:類神經網路逆模型控制溫度控制器伺服器散熱系統
相關次數:
  • 被引用被引用:2
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
伺服器散熱系統為多輸入多輸出非線性系統(MIMO Nonlinear System),此外每個發熱原件與風扇間也有耦合效應存在,造成此系統難以做確切的流場分析與系統鑑別,其真實情況往往會與模擬結果而有所出入。目前產業界以PID法則來控制伺服器內的發熱元件之溫度,加上以權重表來設定控制風扇與發熱元件之間的影響程度來達到系統輸入與輸出間的效能分配。由於系統趨於複雜而無法得出其數學模型,此控制方式雖能有效解決伺服器的散熱問題,但工程師需要花上龐大的時間來設定這些參數與測試。
本研究以類神經網路(Neural Network,NN)來設計控制器,透過未知系統的真實輸出與輸入來訓練類神經網路內部的權重值(Weighting)與偏權值(Bias),使其對伺服器散熱系統的反函數做函數逼近(Approximate Functions),訓練完成的類神經網路為類神經網路逆模型(Neural Network Inverse Model,NNIM)並具有伺服器散熱系統溫度控制器的功能。測試結果顯示其不但能使發熱元件在三種不同的操作條件下收斂到設定溫度,在動態操作條件下也能使溫度在短時間內收斂回到設定溫度上,顯示其具有在不同操作條件下的適應性。

目錄
摘要 I
致謝 II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論
1.1 研究背景與動機
1.2 文獻回顧
1.3 本文架構
第二章 伺服器散熱系統
2.1 PWM風扇技術
2.2 控制平台介紹
2.3 伺服器散熱控制目的
2.4 系統耦合問題與測試
第三章 控制器原理與設計
3.1 類神經網路
3.1.1 基礎模型
3.1.2 基礎架構
3.1.3 學習法則
3.2 類神經網路逆模型控制
3.2.1 訓練與函數逼近
3.2.2 模型與架構
3.2.3 倒傳遞學習演算法
3.2.4 類神經網路控制器
第四章 實驗平台與設備介紹
4.1 實驗硬體設備
4.1.1 伺服器模型
4.1.2 電源供應器與資料擷取器
4.1.3 控制卡
4.2 軟體介紹
4.2.1 MATLAB
4.2.2 LabVIEW
4.3 實驗平台架設
第五章 實驗與結果討論
5.1 類神經網路逆模型之訓練與測試
5.2 仿真伺服器散熱控制器測試
第六章 結論與未來工作
6.1 結論
6.2 未來工作
參考文獻

參考文獻
[1]C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler and T. W. Keller, "Energy Management for Commercial Servers," Computer, vol. 36, pp. 39-48, 2003.
[2]S. Greenberg, E. Mills, B. Tschudi, P. Rumsey and B. Myatt," Best Practices for Data Centers: Results from Benchmarking 22 Data Centers ," ACEEE Summer Study on Energy Efficiency in Buildings, vol. 3, pp. 76-87, 2006.
[3]D. Hanrahan, "Fan Speed Control Techniques in PCs," Analog Diologue, vol. 34, pp. 16-20, 2000.
[4]V. Egan, J. Stafford, P. Walsh, E. Walsh and R. Grimes, "An Experimental Study on the Performance of Miniature Heat Sinks for Forced Convection Air Cooling," The 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, USA, pp. 497-507, May 28-31, 2008.
[5]J. H. Zhou and C. X. Yang, "Design and Simulation of The CPU Fan and Heat Sinks," Components and Packaging Technologies, vol. 31, pp. 890-903, 2008.
[6]R. Ayoub and T. S. Rosing, "Cool and Save: Cooling Aware Dynamic Workload Scheduling in Multi-Socket CPU Systems," The 15th Asia and South Pacific on Design Automation Conference (ASP-DAC), Taipei, Taiwan, pp. 891-896, Jan. 18-21, 2010.
[7]R. Ayoub, K. Indukuri and T. S Rosing, "Temperature Aware Dynamic Workload Scheduling in Multisocket CPU Servers," Computer-Aided Design of Integrated Circuits and Systems, vol. 30, pp. 1359-1372, 2011.
[8]Z. Wan, C. Bash, N. Tolia, M. Marwah, X. Zhu and P. Ranganathan, "Optimal Fan Speed Control for Thermal Management of Servers," The ASME InterPack Conference, San Francisco, USA, pp. 1-11, July 19-23, 2009.
[9]R. D. L. Guardia and W. M. Beltman, "Adaptive System for Fan /Management," U. S. Patent 7711659, 2010.
[10]T. A. Byquist and M. T. Crocker, "Method and System of Advanced Fan Speed Control," U. S. Patent 8191793, 2012.
[11]C. M. Lee, Y. H. Chan and R. Chen, "Decoupling Fan Speed Control Design of Server Based on Fuzzy Logic," 2013 IEEE International Symposium on Industrial Electronics (ISIE), Taipei, Taiwan, pp. 1-5, /May 28-31, 2013.
[12]J. H. Li, P. M. Lee and S. J. Lee, "Motion Control of an AUV Using a Neural Network Adaptive Controller," Underwater Technology, pp. /217-221, 2002.
[13]L. Q. Jin and W. Q. Yue, "Study of How to Identify Nonlinear System Based on Neural Network by MATLAB Toolbox," The 2nd International Workshop on Intelligent Systems and Applications (ISA), pp. 1-4, 2010.
[14]D. Liu, D. Wang and D. Zhao, "Neural-Network-Based Optimal Control for a Class of Nonlinear Discrete-Time Systems with Control Constraints Using the Citerative GDHP Algorithm," The /2011 International Joint Conference on Neural Networks (IJCNN), San Jose, USA, pp. 53-60, July 31-Aug. 5, 2011.
[15]T. Pazelli, F. P. A. T. Pazelli, M. H. Terra and A. A. G. Siqueira, "Neural Network Robust Controllers Applied to Free-Floating Space /Manipulators in Task Space," American Control Conference (ACC), Baltimore, USA, pp. 3648-3653, June 30-July 2, 2010.
[16]H. X. Li, X. Wu and Y. Zhang, "Internal Model Control Using Neural Networks-Genetic Algorithm for Vertical Electric Furnace," International Conference on Mechatronics and Automation (ICMA), Changchun, China, pp. 1368-1373, Aug. 9-12, 2009.
[17]U. Imtiaz, A. Assadzadeh, S. S. Jamuar and J. N. Sahu, "Bioreactor Temperature Profile Controller Using Inverse Neural Network (INN) for Production of Ethanol," Journal of Process Control, vol. 23, pp. 731-742, 2013.
[18]R. W. Erickson, Fundamentals of Power Electronics, Kluwer Academic Publishers, New York, 2nd ed, 2000.
[19]EETimes - How to control analog output from a CPLD using a pulse width modulator:
http://www.eetimes.com/document.asp?doc_id=1274679
[20]Pulse Width Modulation (PWM) Technology:
http://www.digikey.com/Web%20Export/Supplier%20Content/Delta/_603/PDF/delta-brochure-pwm-technology.pdf?redirected=1
[21]Standard Performance Evaluation Corporation (SPEC) Website:
http://www.spec.org/
[22]Server Fan Speed Control:
https://www.yumpu.com/en/document/view/3647477/server-fan-spe//ed-control
[23]Intel Xeon Processor E5440:
http://ark.intel.com/products/33082/Intel-Xeon-Processor-E5440-12//M-Cache-2_83-GHz-1333-MHz-FSB
[24]Introduction to Neural Network:
http://home.agh.edu.pl/~vlsi/AI/intro/
[25]M. S. McCulloch and W. Pitts, "A Logical Calcus of The Ideas Immanent in Nervous Activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.
[26]C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems, Prentice-Hall, Englewood Cliffs, 1996.
[27]R. Hedjar, "Online Adaptive Control of Non-linear Plants Using Neural Networks with Application to Temperature Control System, " Journal of King Saud University - Computer and Information Sciences, vol. 19, pp. 75-94, 2007.
[28]GPC-1850/3020/3030 D.C. POWER SUPPLY:
http://www.miko.com.hk/GW/GPC-3030.htm
[29]Agilent Technologies:
http://www.home.agilent.com/zh-TW/pd-1000001313%3Aepsg%3A/pro-pn-34970A/data-acquisition-data-logger-switch-unit
[30]NI sbRIO-9602/9602XT:
http://sine.ni.com/nips/cds/view/p/lang/zht/nid/205892
[31]L. F. A. Wessels and E. Barnard, "Avoiding False Local Minima by /Proper Initialization of Connections," Neural Networks, vol. 3, pp. 889-905, 1992.
[32]K. J. Hunt and D. Sbarbaro, "Neural Networks for Nonlinear Internal Model Control," Control Theory and Applications, vol. 138, pp. 431-438, 1991.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top