(3.92.96.236) 您好!臺灣時間:2021/05/07 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:巴士羅
研究生(外文):Basrul
論文名稱:Interpolation between Outline Font Characters
論文名稱(外文):向量字型字元的內插法
指導教授:潘雙洪
指導教授(外文):Poon, Sheung-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:82
中文關鍵詞:貝茲曲線內插法分段式
外文關鍵詞:Bézier curveInterpolationSubdividing.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
Outline font is one of method to represent font that consists of a series of straight line segments
or curves. Usually they are designed as Bézier curves. In this thesis, we are going
to interpolate two different outline fonts. We propose a pretty simple algorithm to solve
this problem. We input two different outline fonts. Then we perform subdividing or cutting
curve before interpolation. We cannot directly interpolate them because the composition of
each font character is quite different, such as the total number of curves, position and size
are totally different. We use subdividing curve method for cutting curve. The final output
of total number curves of first and second font should then be same. Then we perform interpolation
from the first to second font at any time point 0 · t · 1. For each t value, we
can create a new curve as the final output for new outline font after interpolation. We also
provide some experimentation results.
Acknowledgements
Abstract
Contens
List of Figures
List of Tables
1 Introduction
1.1 Problem
1.2
1.2 Related Work
1.3 Outline
2 Background
2.1 Bézier Curve
2.2 Subdivision of Bezier Curve
2.3 Font Representation
3 Algorithm
3.1 Algorithm Overview
3.2 Algorithm Detail
3.3 Limitations of Algorithm
4 Implementation and Experimentation
5 Conclusion
Bibliography
[1] M. K. Agoston. Computer Graphics and Geometric Modelling: Implementation and
Algorithms. Springer, USA, 2004.
[2] A. L. Ahmad. Approximation of a bézier curve with a minimal number of line seg-
ments. Master’s thesis, Universiy of South Alabama, 2001.
[3] C. Alavala. CAD/CAM: Concept and Applications. PHI, New Delhi, 2009.
[4] S. H. Baloch, H. Krim, W. Mio, and A. Srivastava. 3d curve interpolation and ob-
ject reconstruction. IEEE Internationl Conference on Image Processiong, 2:982–985,
2005.
[5] S. R. Buss. 3-D Computer Graphics: A mathematical introduction with opengl. Cam-
bridge University Press, New York, 2003.
[6] S. Chavan. Rapidex DTP Course. Unicorn Books Pvt.Ltd., New Delhi, 2005.
[7] S. Erdogan. A comparision of interpolation methods for producing digital elevation
models at the field scale. Earth Surfaces Process Landforms, 34:366–376, 2009.
[8] J. Fisher, J. Lowther, and C. K. Shene. Curve and surface interpolation and approxi-
mation: knowledge unit and software tool. Proceedings of Innovation and Technology
in Computer Science Education, 36(3):146–150, 2004.
[9] M. Ganesh. Basics of Computer Aided Geometric Design: An Algorithm Approach.
I.K International, New Delhi, 2008.
[10] S. Gao, Z. Zhang, and C. Cao. Particle swarm algorithm for the shortest bézier curve.
Intelligent Systems and Applications (ISA), pages 1–4, 2009.
[11] R. Goldman. Pyramid Algorithm: A dynamic programming approach to curves and
surfaces for geometric modelling. Elsevier Science, USA, 2003.
[12] K. Itoh and Y. Ohno. A curve fitting algorithm for character fonts. Electronic Pub-
lishing, 6(3):195–205, 1993.
[13] P. Jamjuntr. Thai font type recognition using linear interpolation analysis. Computer
Graphics, Imaging and Visualization, pages 406–409, 2009.
[14] M. A. Khan. An efficient design font method. Master’s thesis, King Fahd University
of Petroleum & Minerals, 2001.
[15] T. M. Lehmann, C. Gonner, and K. Spitzer. Survey: Interpolation methods in medical
image processing. IEEE Transactions on Medical Imaging, 18(11):1049–1075, 1999.
[16] M.Abbas, E. Jamal, and J. M. Ali. Bézier curve interpolation constrained by a line.
Applied Mathematica Sciences, 5(37):1817–1832, 2011.
[17] D. Marsh. Applied Geometry for Computer Graphics and CAD. Springer-Verlag,
London, 2005.
[18] J. J. McConnell. Computer Graphics: Theory into Practice. Jones & Bartlett Pub-
lisher, Inc., USA, 2006.
[19] D. Meek, B. Ong, and D. Walton. Constrained interpolation with rational cubics.
Computer Aided Geometric Design, 20:253–275, 2003.
[20] P. Pandunata, Shamsuddin, and S. Mariyam. Differential evolution optimization for
bézier curve fitting. Computer Graphics, Imaging and Visualization (CGIV), pages
68–72, 2010.
[21] J. G. Pu, X. P. Xu, and S. Q. Wu. A universal interpolation algorithm for parametric
curves. Electrical and Control Engineering (ICECE), pages 311–314, 2010.
[22] T. Rabinowitz. Exploring Typography. Thomson/Delmar Learning, Inc., USA, 2006.
[23] S. P. Regalla. Computer Aided Analysis and Design. I.K International, New Delhi,
2010.
[24] D. F. Rogers. An Introduction to NURBS : with Historical Perspective. Morgan Kauf-
mann, 2001.
[25] D. Salomon. Curves and Surfaces for Computer Graphics. Springer, 2006.
[26] M. Sarfraz. Some algorithms for curve design and automatic outline capturing of
images. International Journal of Image and Graphics, 4(2):301–324, 2004.
[27] M. Sarfraz and S. Raza. Towards automatic recognition of fonts using genetic ap-
proach. Recent Advances in Computers, Computing and Communication, pages 290–
295, 2002.
[28] M. Sarfraz and M. Razzak. An algorithm for automatic capturing of the font outlines.
Computer and Graphics, pages 795–804, 2002.
[29] L. Shao and H. Zhou. Curve fitting with bézier cubics. Graphical Models and Image
Processing, 58(3):223–232, 1996.
[30] P. Shirley and S. Marschner. Fundamental of Computer Graphics. Taylor and Francis
Group, USA, 2010.
[31] R. W. Smith. LPIC-1: Linux Professional Institue Certification Study Guide. John
Wiley & Sons, Inc., Indiana, 2013.
[32] F. A. Sohel, L. S. Dooley, and G. C. Karmakar. A dynamic bézier curve model. Image
Processing (ICIP), 2:II–474–7, 2005.
[33] F. A. Sohel, L. S. Dooley, and G. C. Karmakar. A novel half-way shifting bézier curve
model. TENCON 2005 IEEE Region 10, pages 1–6, 2005.
[34] K. P. Soman, K.I.Ramachandran, and N.G.Resmi. Insight into Wavelets: From theory
to practice. PHI, New Delhi, 2010.
[35] P. Thevenaz, T. Blu, and M. Unser. Interpolation revisited. IEEE Transaction on
Medical Imaging, 19(7):739–758, 2000.
[36] J. A. Tierney. Calculus and Analytic Geometry. Allyn and Bacon, Inc., 1975.
[37] A. F. Wahab, R. Zakaria, and J. M. Ali. Fuzzy interpolation rational bézier curve.
Computer Graphics, Imaging and Visualization (CGIV), pages 63–67, 2010.
[38] H. M. Yang, J. J. Lu, and H. J. Lee. A bézier curve-based approach to shape description
for chinese calligraphy characters. Proceedings Document Analysis and Recognition,
pages 276–280, 2001.
[39] C. Zhang and F. Cheng. Constructing parametric quadratic curves. Computational
and Applied Mathematics, 102:21–36, 1999.
[40] J. Y. Zhao, H. Guo, and N. Jiang. The design and development of outline fonts of the
dai characters based on opentype. International Symposium on Electronic Commerce
and Security, 2009.
[41] I. Zied and R. Sivasubramanian. CAD/CAM: Theory and Practice. McGraw-Hill, Inc.,
2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔