跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/19 20:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊為龍
研究生(外文):Yang, Wei-Lung
論文名稱:適用於生醫應用之可調式小波轉換處理器
論文名稱(外文):A Configurable Wavelet Processor for Biomedical Applications
指導教授:馬席彬
指導教授(外文):Ma, Hsi-Pin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:69
中文關鍵詞:離散小波轉換生醫應用硬體
外文關鍵詞:Discrete Wavelet TransformBiomedical ApplicationsHardware
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨者高齡社會的來臨,遠距照護系統因其便利性而變得相當重要。藉此病人得以攜帶式裝置作為看護取代住院。然而需要監測的訊號相當多元,功率消耗變成在系統設計上的一個重要議題。

為了降低整體功率消耗,我們以生醫訊號的特徵萃取來達成目標。在各種現有的方法中,離散小波轉換 (Discrete Wavelet Transform) 因為擁有較低的複雜度與較佳的時域-頻域分析,而被選擇作為分析生醫訊號的方法。心電圖 (Electrocardiography) 與腦波 (Electroencephalography) 是兩項常見的生醫應用。在心電圖方面,為了診斷心臟相關疾病,我們以離散小波轉換去除原始訊號中冗餘的特徵,並由重建的訊號中偵測R-R區間;在腦波圖方面,我們藉由離散小波轉換分解帶有帕金森氏症 (Parkinson's Disease) 之老鼠腦波訊號,再觀察其頻域特徵。根據上述演算法分析,我們提出可調式小波轉換處理器與特徵萃取之電路架構。此架構在測量端 (Sensor) 可被整合與做訊號特徵萃取,故其能被應用於提高生醫應用之效率。在離散小波轉換計算器中,我們提出一套低複雜度的架構使其濾波器係數能由外部的微處理器做調整,同時此架構約省下50% 的硬體複雜度。

經由場式可程式閘陣列 (FPGA) 驗證與使用TSMC 0.18微米製程,我們提出的電路設計之大小為1.15平方公厘,功率消耗為0.52微瓦 (操作電壓為1.8伏特及工作頻率為360赫茲) 。相對於傳送原始心電圖訊號,我們所提出的萃取並傳送R-R區間之方法可以節省99.5% 功率消耗。


With the aging population, telecare systems are more and more popular since patients can be cared by wearing a sensor rather than being restricted in hospitals. However, with various signals to be monitored continuously, power consumption has become an important issue in this field.

Feature extraction is the main concern in our design. Due to the lower complexity and the better time-frequency analysis, discrete wavelet transform (DWT) algorithm has been applied to analyze biomedical signals such as Electrocardiography (ECG) and Electroencephalography (EEG) here. In ECG signal processing, we can use DWT algorithm to remove unusable features from original signals, and extract R-R interval sequences from the reconstructed waveform for diagnosing heart-related diseases. In EEG signal processing, we also can use the algorithm based on DWT to observe frequency domain features in Parkinson's disease (PD). Moreover, we have proposed a configurable wavelet processor with feature extraction circuit according to the proposed algorithm. It can be integrated in the sensor to extract signal features for more efficient biomedical applications. At the DWT computer of the processor, we have developed a structure which can not only let us configure filter coefficients by external microcontroller, but also save about 50% of the hardware complexity.

We have tested our design on FPGA emulation and have implemented it with TSMC 0.18 µm technology. The total core area is 1.15 mm2
, the operating voltage is 1.8 V, the operating clock frequency is 360 Hz, and the power consumption is 0.52 µW. Compared with sending all raw ECG data, our design saves as much as 99.5% power while only detecting and sending R-R interval sequences in ECG application.


Abstract i
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Long-Term Telecare Systems . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Wavelet Analysis for Disease Diagnosis . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 System Features and Main Contributions . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Biomedical Signals 5
2.1 Electrocardiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Electroencephalography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Wavelet Transform 11
3.1 Time-Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Continuous Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Discrete Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Filter Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Polyphase Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 Lifting Scheme Method . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Stationary Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Proposed Algorithm for Biomedical Signal Feature Extraction 25
4.1 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Wavelet-Based Framework . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 De-Noising by Adaptive Threshold . . . . . . . . . . . . . . . . . . 26
4.1.3 Accurate Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Applications of the Proposed Algorithm . . . . . . . . . . . . . . . . . . . . 29
4.2.1 R-R Interval Detection of ECG Signals and Verification Results . . . 29
4.2.2 Feature Extraction of EEG Signals . . . . . . . . . . . . . . . . . . . 37
5 Hardware Implementation 41
5.1 Hardware Architecture of the Proposed Biomedical Processor . . . . . . . . 43
5.1.1 Discrete Wavelet Transform and Inverse Discrete Wavelet Transform 45
5.1.2 ECG R-R Interval Detection . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Word-Length Determination . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 FPGA Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 ASIC Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.1 ASIC Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.2 Implementation Results and Chip Summaries . . . . . . . . . . . . . 57
5.5 Comparsion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6 Future Prospects and Conclusions 63
6.1 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
[1] C. C. Chan, W. C. Chou, C. W. Chen, Y. L. Ho, Y. H. Lin, and H. P. Ma, “Energy efficient diagnostic grade mobile ECG monitoring,” in IEEE International Conference
on New Circuits and Systems (NEWCAS), Montreal, Canada, June 2012, pp. 153–156.
[2] C. C. Chan, C. W. Chen, W. C. Chou, Y. L. Ho, Y. H. Lin, and H. P. Ma, “Live demonstration: A mobile ECG healthcare platform,” in IEEE International Conference on Biomedical Circuits and Systems (BioCAS), Hsinchu, Taiwan, November 2012, p. 87.
[3] K. Maharatna, E. B. Mazomenos, J. Morgan, and S. Bonfiglio, “Towards the development of next-generation remote healthcare system: Some practical considerations,” in IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea, May 2012, pp. 1–4.
[4] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. Chandrakasan, “A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 804–816, 2010.
[5] C. I. Ieong, P. I. Mak, C. P. Lam, C. Dong, M. I. Vai, P. U. Mak, S. H. Pun, F. Wan, and R. Martins, “A 0.83-µw QRS detection processor using quadratic spline wavelet trans- form for wireless ECG acquisition in 0.35-µm CMOS,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 6, pp. 586–595, 2012.
[6] S. Pal and M. Mitra, “QRS complex detection using empirical mode decomposition based windowing technique,” in IEEE International Conference on Signal Processing and Communications (SPCOM), Bangalore, Indian, July 2010, pp. 1–5.66 BIBLIOGRAPHY
[7] E. Mazomenos, D. Biswas, A. Acharyya, T. Chen, K. Maharatna, J. Rosengarten, J. Morgan, and N. Curzen, “A low-complexity ECG feature extraction algorithm for mobile healthcare applications,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 2, pp. 459–469, 2013.
[8] Z. Zidelmal, A. Amirou, M. Adnane, and A. Belouchrani, “QRS detection based on wavelet coefficients,” Computer Methods and Programs in Biomedicine, vol. 107, no. 3, pp. 490 – 496, 2012.
[9] Y. J. Min, H. K. Kim, Y. R. Kang, G. S. Kim, J. Park, and S. W. Kim, “Design of wavelet-based ECG detector for implantable cardiac pacemakers,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 4, pp. 426–436, 2013.
[10] M. W. Phyu, Y. Zheng, B. Zhao, L. Xin, and Y. S. Wang, “A real-time ECG QRS detection ASIC based on wavelet multiscale analysis,” in IEEE Interference Conference on Asian Solid-State Circuits Conference (A-SSCC), Tapei, Taiwan, November 2009, pp. 293–296.
[11] C. V. Mieghem, M. Sabbe, and D. Knockaert, “The clinical value of the ECG in noncardiac conditions,” Chest Journal, vol. 125, no. 4, pp. 1561–1576, April 2004.
[12] J. Loscalzo, Harrison’s Cardiovascular Medicine, 1st ed. New York, NY, USA: McGraw-Hill Prof Med/Tech, May 2010.
[13] National Institute of Biomedical Imaging and Bioengineering. (2012, January) MIT-BIH arrhythmia database. [Online]. Available: http://www.physionet.org/physiobank/database/mitdb/
[14] E. Niedermeyer and F. da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins, November 2004.
[15] S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, 3rded. Burlington, MA, USA: Academic Press, 2008.BIBLIOGRAPHY 67
[16] L. G. Chen, C. T. Huang, C. Y. Chen, and C. C. Cheng, VLSI design of wavelet transform. Analysis, architecture and design examples. Hackensack, NJ, USA: World Scientific, 2007.
[17] W. Sweldens, “The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets,” Applied and Computational Harmonic Analysis, vol. 3, pp. 186–200, 1996.
[18] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” Journal of Fourier Analysis and Applications, vol. 4, no. 3, pp. 245–267, 1998.
[19] S. H. Hung, C. F. Chao, S. K. Wang, B. S. Lin, and C. T. Lin, “VLSI implementation for epileptic seizure prediction system based on wavelet and chaos theory,” in IEEE International Conference on Trends and Developments in Converging Technology towards (TENCON), Fukuoka, Japan, November 2010, pp. 364–368.
[20] S. Razmpour, A. M. Sodagar, M. Faizollah, M. Y. Darmani, and M. Nourian, “Reconfigurable biological signal co-processor for feature extraction dedicated to implantable biomedical microsystems,” in IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, May 2013, pp. 861–864.
[21] Y. Yang and A. Mason, “Implantable neural spike detection using lifting-based stationary wavelet transform,” in IEEE International Conference on Engineering in Medicine and Biology Society (EMBS), Boston, Massachusetts, U.S.A., August 2011, pp. 7294–7297.
[22] H. Tan, A. C. Tan, P. Y. Khong, and V. H. Mok, “Best wavelet function identification system for ECG signal denoise applications,” in IEEE International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, November 2007, pp. 631–634.
[23] A. Kasetwar and S. Gulhane, “A survey of FPGA based interference cancellation architectures for biomedical signals,” in IEEE International Conference on Computer Communication and Informatics (ICCCI), Tamil Nadu, India, January 2013, pp. 1–7.68 BIBLIOGRAPHY
[24] H. Y. Lin and H. P. Ma, “A wavelet based method for noise reduction and R wave detection algorithm in ECG signal,” in VLSI Design/CAD Symposium, Kenting, Taiwan, August 7-10 2012.
[25] M. Nakano, T. Konishi, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “Instantaneous heart rate detection using short-time autocorrelation for wearable healthcare systems,” in IEEE International Conference on Engineering in Medicine and Biology Society (EMBS), San Diego, California, U.S.A., August 2012, pp. 6703–6706.
[26] C. I. Ieong, M. I. Vai, and P. U. Mak, “ECG QRS complex detection with programmable hardware,” in IEEE International Conference on Engineering in Medicine and Biology Society (EMBS), Vancouver, British Columbia, Canada, August 2008, pp. 2920–2923.
[27] J. Martinez, R. Almeida, S. Olmos, A. Rocha, and P. Laguna, “A wavelet-based ECG delineator: evaluation on standard databases,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 4, pp. 570–581, 2004.
[28] R. Soikkeli, J. Partanen, H. Soininen, A. Paakkonen, and P. Riekkinen, “Slowing of EEG in Parkinson’s disease.” Electroencephalogr Clin Neurophysiol, vol. 79, no. 3, pp. 159–65, 1991.
[29] M. Signorino, E. Pucci, N. Belardinelli, G. Nolfe, and F. Angeleri, “EEG spectral analysis in vascular and Alzheimer dementia.” Electroencephalogr Clin Neurophysiol, vol. 94, no. 5, pp. 313–25, 1995.
[30] J. Bosboom, D. Stoffers, C. Stam, B. van Dijk, J. Verbunt, H. Berendse, and E. Wolters,“Resting state oscillatory brain dynamics in Parkinson’s disease: An MEG study,” Clinical Neurophysiology, vol. 117, no. 11, pp. 2521 – 2531, 2006.
[31] N. Salansky, A. fedotchev, and A. Bondar, “Responses of the nervous system to low frequency stimulation and EEG rhythms: Clinical implications,” Neuroscience and Biobehavioral Reviews, vol. 22, no. 3, pp. 395 – 409, 1998.BIBLIOGRAPHY 69
[32] J. Chilo and T. Lindblad, “Hardware implementation of 1D wavelet transform on an FPGA for infrasound signal classification,” IEEE Transactions on Nuclear Science,,
vol. 55, no. 1, pp. 9–13, 2008.
[33] R. Hourani, I. Dalal, W. Davis, C. Doss, and W. Alexander, “An efficient VLSI implementation for the 1D convolutional discrete wavelet transform,” in IEEE International Conference on Midwest Symposium on Circuits and Systems (MWSCAS), Knoxville, Tennessee, U.S.A., August 2008, pp. 870–873.
[34] S. C. Huang, H. M. Wang, and W. Y. Chen, “A ±6ms-accuracy, 0.68mm 2 , and 2.21µW QRS detection ASIC,” VLSI Design, vol. 2012, no. Article ID 987209, 2012.
[35] P. Y. Chang, S. Y. Hsu, and C. Y. Lee, “A 4.88 µW ECG delineator using wavelet transform for mobile healthcare application,” in IEEE International Conference on Biomedical Circuits and Systems Conference (BioCAS), Hsinchu, Taiwan, November 2012, pp. 376–379.
[36] “Low-cost low-power 2.4 GHz RF transmitter,” Texas Instruments Inc., 2007. [Online]. Available: http://focus.ti.com/docs/prod/folders/print/cc2550.html


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 16、鄭毓瑜著(2011):〈類與物──古典詩文的「物」背景〉,《清華學報》第四十一卷第一期,頁3-38。
2. 16、鄭毓瑜著(2011):〈類與物──古典詩文的「物」背景〉,《清華學報》第四十一卷第一期,頁3-38。
3. 15、蔡瑜著(2010):〈王昌齡的「身境」論──《詩格》析義〉,《漢學研究》第二十八卷第二期,頁297-325。
4. 15、蔡瑜著(2010):〈王昌齡的「身境」論──《詩格》析義〉,《漢學研究》第二十八卷第二期,頁297-325。
5. 13、黃敬家著(2009):〈禪觀與詩境──禪修體驗對唐代詩人創作方法的啟發〉,《新竹教育大學人文社會學報》第二卷第一期,頁153-178。
6. 13、黃敬家著(2009):〈禪觀與詩境──禪修體驗對唐代詩人創作方法的啟發〉,《新竹教育大學人文社會學報》第二卷第一期,頁153-178。
7. 11、王鳳珠著(2006):〈曉雲法師於宗教行化中對《法華經》的運用〉,《華梵人文學報》第十二期,頁133-171,。
8. 11、王鳳珠著(2006):〈曉雲法師於宗教行化中對《法華經》的運用〉,《華梵人文學報》第十二期,頁133-171,。
9. 10、陳秀慧著(2006):〈曉雲法師教育情懷的開展與映現〉《華梵人文學報》第六期,頁123-148。
10. 10、陳秀慧著(2006):〈曉雲法師教育情懷的開展與映現〉《華梵人文學報》第六期,頁123-148。
11. 9、邱湘雲著(2006):〈禪學對唐代詩歌美學的影響〉,《興大人文學報》第三十七期,頁223-260。
12. 9、邱湘雲著(2006):〈禪學對唐代詩歌美學的影響〉,《興大人文學報》第三十七期,頁223-260。
13. 8、黃連忠著(2005):〈人間佛教與二十一世紀教育的融和之價值與意義〉,《普門學報》第二十九期,頁109-135。
14. 8、黃連忠著(2005):〈人間佛教與二十一世紀教育的融和之價值與意義〉,《普門學報》第二十九期,頁109-135。
15. 6、陳秀慧著(2004):〈回小向大──倓虛法師對曉雲法師的影響〉,《華梵人文學報》第三期,頁195-226。