跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/12 03:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:門瑩
研究生(外文):Men, Yin
論文名稱:基於SQMV演算法之視覺雷達融合車輛檢測系統
論文名稱(外文):SQMV based Vision and Radar Fusion for Vehicle Detection
指導教授:許雅三邱瀞德
指導教授(外文):Hsu, Yar-SunChiu, Ching-Te
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:59
中文關鍵詞:車輛辨識融合系統雷達影像
外文關鍵詞:Sorted Quadrant Median Vector (SQMV)car recognitionfusionradarimage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
汽車數量的高度增長帶來進階駕駛輔助系統( ADAS )的需求,為了讓駕駛在旅途中做出正確的判斷與決定,確保駕駛員獲得周圍環境和可能障礙物(特別是車輛)的所有資訊是很重要的。為了實現這一目標,越來越多的研究投入在研發準確的車輛檢測系統。在本篇論文中,我們提出了一個融合雷達和影像的車輛檢測系統,這個系統同時具有雷達的高距離準確率以及影像的直觀於人眼這兩項優勢,可以獲得精準的位置和輪廓資訊。藉著投設雷達的數據結果於視覺圖像上,降低了系統在搜尋障礙物的影像處理中的複雜性和運算時間。我們使用一個影像紋理分類演算法:Sorted Quadrant Median Vector( SQMV )來獲取垂直和水平的邊緣圖[1] ,並利用這些邊緣圖開發一個演算法來判斷圖像中是否存在車輛。實驗結果表明,我們的系統在使用MIT CBCL車輛數據庫[2]來做模擬時能夠達到98 %的檢出率以及2.53%的false positive rate.。此外,我們也將SQMV邊緣檢測演算法利用TSMC 90nm技術合成電路。該系統可以達到333 MHz的頻率,換言之,輸入一張128*128的影像並計算出水平垂直邊緣圖只需要50μs。
The growing of vehicle number brings about the needs of driver assistance system. For drivers
to make the right decisions during the journey, it is important to make sure that drivers
obtain all the information of surrounding environment and possible obstacles, especially
vehicles. To achieve this goal, a growing number of papers dedicate in nding accurately
vehicle detection. In this thesis, we propose a fusion vehicle detection system by combining
the advantages of both radar and camera sensors. By applying radar data onto the vision
image, an increasing accuracy of both position and contour is achieved. This system reduces
the complexity and computing time in image processing for obstacle search. Here, a texture
classied algorithm: Sorted Quadrant Median Vector (SQMV) is used to obtain the vertical
and horizontal edge maps [1]. Based on these edge maps, we developed an algorithm to
determine the existence of a vehicle in an image. The experiment results using MIT CBCL
car database [2] demonstrate that this system can reach 98% detection rate with false positive
rate 2.53%. In the last part of the thesis, a hardware model of SQMV edge detection is also
implemented. The system can reach a frequency of 333 MHz, which means it takes only
50s to calculate the edge maps for a 128*128 image.
Contents
Abstract i
Abstract(Chinese) ii
Contents iii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goal and contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Related work 5
2.1 Vehicle detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Pure vision system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Fusion system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 SQMV texture classication . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 SQMV based vehicle detection 15
3.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Radar and image calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 SQMV based edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 SQMV based vehicle detection algorithm . . . . . . . . . . . . . . . . . . . . 21
4 Simulation Results 28
4.1 Radar and image calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 SQMV parameters testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Contour graph comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 SQMV- based algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Overall system implementation . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Hardware implementation 40
5.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 9-element sorting module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 4-element sorting module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 simulation and synthesis results . . . . . . . . . . . . . . . . . . . . . . . . . 44
6 Conclusion 46
Bibliography 47
[1] C.-H. Lin, J.-S. Tsai, and C.-T. Chiu, \Switching bilateral lter with a texture/noise detector for universal noise removal," Image Processing, IEEE Transactions on, vol. 19, no. 9, pp. 2307{2320, 2010.
[2] (2013, Oct.). [Online]. Available: http://cbcl.mit.edu/software-datasets/CarData.html
[3] (2013, Oct.). [Online]. Available: http://on-demand.gputechconf.com/gtc/2013/
presentations/S3413-Advanced-Driver-Assistance-Systems-ADAS.pdf
[4] (2013, Oct.). [Online]. Available: http://www.eetimes.com/document.asp?doc id=
1271493
[5] Z. Yankun, C. Hong, and N. Weyrich, \A single camera based rear obstacle detection
system," in Intelligent Vehicles Symposium (IV), 2011 IEEE. IEEE, 2011, pp. 485{490.
[6] T. Wang, J. Xin, and N. Zheng, \A method integrating human visual attention and
consciousness of radar and vision fusion for autonomous vehicle navigation," in Space
Mission Challenges for Information Technology (SMC-IT), 2011 IEEE Fourth Interna-
tional Conference on. IEEE, 2011, pp. 192{197.
[7] C.-T. Chiu and C.-J.Wu, \Texture classication based low order local binary pattern for
face recognition," in Image Processing (ICIP), 2011 18th IEEE International Conference
on. IEEE, 2011, pp. 3017{3020.
[8] Z. Sun, G. Bebis, and R. Miller, \On-road vehicle detection: A review," Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 28, no. 5, pp. 694{711, 2006.
47
[9] Y. Fang, I. Masaki, and B. Horn, \Distance/motion-based segmentation under heavy
background noise," in Intelligent Vehicle Symposium, 2002. IEEE, vol. 2. IEEE, 2002,
pp. 483{488.
[10] M. Bertozzi and A. Broggi, \Gold: A parallel real-time stereo vision system for generic
obstacle and lane detection," Image Processing, IEEE Transactions on, vol. 7, no. 1,
pp. 62{81, 1998.
[11] Y.-T. Yang, \Study of Ecient Multiple Object Detection and Hardware Implementa-
tion," Master's thesis, National Tsing Hua University, Taiwan, 2013.
[12] Y. Fang, I. Masaki, and B. Horn, \Depth-based target segmentation for intelligent
vehicles: Fusion of radar and binocular stereo," Intelligent Transportation Systems,
IEEE Transactions on, vol. 3, no. 3, pp. 196{202, 2002.
[13] S. Wu, S. Decker, P. Chang, T. Camus, and J. Eledath, \Collision sensing by stereo
vision and radar sensor fusion," Intelligent Transportation Systems, IEEE Transactions
on, vol. 10, no. 4, pp. 606{614, 2009.
[14] M. Haberjahn and R. Reulke, \Object discrimination and tracking in the surroundings
of a vehicle by a combined laser scanner stereo system," in Computer Vision{ACCV
2010 Workshops. Springer, 2011, pp. 225{234.
[15] M. Mahlisch, R. Hering, W. Ritter, and K. Dietmayer, \Heterogeneous fusion of video,
lidar and esp data for automotive acc vehicle tracking," in Multisensor Fusion and
Integration for Intelligent Systems, 2006 IEEE International Conference on. IEEE,
2006, pp. 139{144.
[16] J. Wang, Z. Liu, S. Yi, and K. Li, \Target vehicle selection based on multi features
fusion method," in Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE, 2010, pp.
13{19.
[17] M. Aly, \Real time detection of lane markers in urban streets," in Intelligent Vehicles Symposium, 2008 IEEE. IEEE, 2008, pp. 7{12.

[18] (2013, Sep.). [Online]. Available: http://www.csgnetwork.com/stopdistcalc.html
[19] C. Papageorgiou and T. Poggio, \A trainable object detection system: Car detection in
static images," Tech. Rep. 1673, October 1999, (CBCL Memo 180).
[20] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, \Pedestrian detection
using wavelet templates," 1997, pp. 193{99.
[21] C. Papageorgiou, M. Oren, and T. Poggio, \A general framework for object detection,"
in Proceedings of 6th International Conference on Computer Vision, 1998.
[22] C. Papageorgiou, \A trainable system for object detection in images and video se-quences," Technical Report 1685, 2000.
[23] C. Papageorgiou and T. Poggio, \A trainable system for object detection," 2000, in press.
[24] (2013, Sep.). [Online]. Available: http://cogcomp.cs.illinois.edu/Data/Car/4
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 許冰(Bing Xu);丁媛(Yuan Ding);夏鵬(Peng Xia);GDP與CPI的經驗協整及其利率調整和產出缺口的邊際效應,管理科學與統計決策 5卷3期 (2008/09), 69-77。
2. 聶建中、黃昱程(2010),利率期間結構與未來通貨膨脹之關係-縱橫門檻效果檢定,會計與財金研究 3 卷 2 期 (2010 / 06 / 01) 1-15。
3. 聶建中、黃昱程(2010),利率期間結構與未來通貨膨脹之關係-縱橫門檻效果檢定,會計與財金研究 3 卷 2 期 (2010 / 06 / 01) 1-15。
4. 張鼎煥(Ting-Huan Chang);張晏誠(Yen-Cheng Chang)金融資產對黃金期貨報酬與風險傳遞效果之研究,;朝陽商管評論 10卷2期 (2011/12), 95-111。
5. 林鳴琴、施妤佩、李柏英、李杏美(2012),黃金價格變動與實質經濟關係之探討 ,財金論文叢刊 16 期 (2012 / 06 / 01) P57 – 73。
6. 許冰(Bing Xu);丁媛(Yuan Ding);夏鵬(Peng Xia);GDP與CPI的經驗協整及其利率調整和產出缺口的邊際效應,管理科學與統計決策 5卷3期 (2008/09), 69-77。
7. 張鼎煥(Ting-Huan Chang);張晏誠(Yen-Cheng Chang)金融資產對黃金期貨報酬與風險傳遞效果之研究,;朝陽商管評論 10卷2期 (2011/12), 95-111。
8. 林鳴琴、施妤佩、李柏英、李杏美(2012),黃金價格變動與實質經濟關係之探討 ,財金論文叢刊 16 期 (2012 / 06 / 01) P57 – 73。
9. 李建強(Chien-Chiang Lee);李起銓(Chi-Chuan Lee);蕭人維(Jen-Wei Hsiao) ;實質利率與通貨膨脹率的結構改變研究-亞洲國家的實證,中國統計學報 46卷3期 (2008/09), 213-243。
10. 李建強(Chien-Chiang Lee);李起銓(Chi-Chuan Lee);蕭人維(Jen-Wei Hsiao) ;實質利率與通貨膨脹率的結構改變研究-亞洲國家的實證,中國統計學報 46卷3期 (2008/09), 213-243。
11. 李沃牆(Wo-Chiang Lee),林惠娜(Hui-Na Lin),王秀香(Hsiu-Hsiang Wang) ,金融危機下影響黃金現貨價格變動因素之探討,真理財經學報 25期 (2011/12), 1-18
12. 李沃牆(Wo-Chiang Lee),林惠娜(Hui-Na Lin),王秀香(Hsiu-Hsiang Wang) ,金融危機下影響黃金現貨價格變動因素之探討,真理財經學報 25期 (2011/12), 1-18