(18.206.177.17) 您好!臺灣時間:2021/04/11 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱仕文
研究生(外文):Chiu, Shih-Wen
論文名稱:微小化電子鼻之設計:系統、感測器、處理晶片
論文名稱(外文):Design of a Miniature Electronic Nose: System, Sensors, and Processing Chips
指導教授:鄭桂忠
指導教授(外文):Tang, Kea-Tiong
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:72
中文關鍵詞:電子鼻微感測器陣列佈奈米碳管以及聚合物半數位式的適應性介面電路電子鼻信號處理晶片晶片電子鼻
相關次數:
  • 被引用被引用:0
  • 點閱點閱:354
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
電子鼻在日常生活中應用的潛力極大,但目前電子鼻裝置大多體積龐大且價格昂貴,進而限制了電子鼻的發展性和應用性。本研究設計微型化電子鼻系統,使用先進的集成電路技術來完善。首先,提出仿生雙層塗佈奈米碳管以及聚合物的微型化氣體感測器陣列,雙層塗佈技術提升微型化奈米碳管以及聚合物感測器的穩定性,此感測陣列俱備功耗低、體積小等特性。半數位式的適應性介面電路,適用於積體電路製作,用於消除感測器的基線飄移。電子鼻信號處理晶片整合了擷取電路(包含可適應的介面電路)和處理核心,晶片採1P6M 0.18μm CMOS製程,僅佔4.02mm2晶片面積,在類比1V和數位1.8V的操作電壓下,功率僅消耗1.05mW;進一步利用微型化感測器陣列和電子鼻信號處理晶片,架構一個微型的電子鼻系統雛型。此外,提出一個全整合高效能的晶片電子鼻,晶片整合晶片上的感測器陣列,第一個推出用於呼吸器相關肺炎快速診斷的電子鼻系統晶片,此晶片片採1P9M 90nm CMOS製程,僅佔10.49mm2晶片面積,在0.5V的操作電壓下,僅消耗1.27毫瓦。
中文摘要…………………………………………………………………………………………………………………………………………I
ABSTRACT……………………………………………………………………………………………………………………………………II
Acknowledgement………………………………………………………………………………………………………………III
List of Contents………………………………………………………………………………………………………………IV
List of Figures……………………………………………………………………………………………………………VIII
List of Tables……………………………………………………………………………………………………………………XI
Chapter 1. Introduction……………………………………………………………………………………………1
Chapter 2. Literature Reviews……………………………………………………………………………8
2.1 Electronic nose system basic structure…………………………8
2.2 Chemiresistive sensors based portable electronic nose system…………10
2.3 Chemiresistive sensors…………………………………………………………………12
2.3.1 Metal-oxide semiconductor gas sensor…………………14
2.3.2 Conductive-polymer gas sensor……………………………………17
2.4 Interface of the chemiresistive sensors……………………24
2.4.1 ADC-based sensor interface……………………………………………25
2.4.2 Frequency-based sensor interface……………………………27
2.4.3 Large amounts of sensor interfaces………………………29
2.5 Highly integrated ASIC/SoC for electronic nose ………………………………………31
2.5.1 Sensing front end ASIC and electronic nose SoC………………………………31
2.5.2 VLSI of artificial neural networks………………………34
2.6 Short summary………………………………………………………………………………………37
Chapter 3. Development of a Portable Electronic Nose System………………………39
3.1 Design flow and considerations for the portable electronic nose………39
3.2 System of the portable electronic nose………………………42
3.2.1 Metal-oxide semiconductor sensors array…………43
3.2.2 Interface PCB………………………………………………………………………………46
3.2.3 8051 microprocessor………………………………………………………………48
3.3 Sensor data acquisition and odor classification interface………………49
3.4 Experimental results of gas testing………………………………50
3.4.1 Operating procedure.……………………………………………………………51
3.4.2 Experiment with the odors of three fruits……53
3.4.3 Experiment with the odors of four fruits………57
Chapter 4. Conductive Polymer Composite Integrated Sensor Array…………………………61
4.1 Challenge of conducting polymer microsensor array…………………………61
4.2 Fabrication of the integrated microsensor array…………………………63
4.3 MWNTs-based sensing materials………………………………………………66
4.4 Experimental results of gas testing………………………………69
Chapter 5. Design of Adaptive Interface Circuits………………………75
5.1 Need and advantage of the adaptive function…………75
5.2 Semi-digital adaptive interface circuit……………………77
5.2.1 Circuits implementation……………………………………………………78
5.2.2 Measurement results………………………………………………………………80
5.3 Noise immunity enhanced semi-digital adaptive interface circuit……81
5.3.1 Circuits implementation……………………………………………………82
5.3.2 Comparator………………………………………………………………………………………85
5.3.3 8-bit synchronous counter………………………………………………86
5.3.4 8-bit current digital to analog converter……87
5.3.5 Measurement results………………………………………………………………88
Chapter 6. Electronic Nose Chip……………………………………………………………………92
6.1 Electronic nose signal processing chip………………………92
6.1.1 System block diagram……………………………………………………………93
6.1.2 Interface circuitry………………………………………………………………94
6.1.3 Analog-to-digital converter…………………………………………95
6.1.4 Memory…………………………………………………………………………………………………96
6.1.5 Microprocessor and algorithm………………………………………98
6.1.6 Summary of chip measurement………………………………………100
6.2 Miniature e-nose system……………………………………………………………103
6.2.1 Miniature e-nose system prototype………………………104
6.2.2 Hardware implementation…………………………………………………105
6.2.3 Experimental results and comparison…………………107
Chapter 7. Nose-on-a-chip for VAP diagnosis…………………………………109
7.1 Scenario……………………………………………………………………………………………………109
7.2 Nose-on-a-chip……………………………………………………………………………………112
7.2.1 System block diagram…………………………………………………………113
7.2.2 On-chip sensor array…………………………………………………………115
7.2.3 Eight channel adaptive interface circuitry………………115
7.2.4 SAR analog-to-digital converter……………………………117
7.2.5 Continuous restricted Boltzmann machine (CRBM)kernel………119
7.2.6 Memory………………………………………………………………………………………………123
7.2.7 RISC-core and algorithm…………………………………………………125
7.2.8 Summary of chip measurement………………………………………128
7.3 Clinical VAP Identification…………………………………………………134
Chapter 8. Conclusions…………………………………………………………………………………………138
Referenc…………………………………………………………………………………………………………………………………143
Curriculum Vitae……………………………………………………………………………………………………………170
[1] Axel, R.; Buck, L.B. Odorant Receptors and the Organization of the Olfactory System. Available online: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2004/press.html (accessed on 7 August 2013).
[2] Sankaran, S.; Khot, L.R.; Panigrahi, S. Biology and applications of olfactory sensing system: A review. Sens. Actuators B Chem. 2012, 171–172, 1–17.
[3] Harwood, D. Something in the air [electronic nose]. IEE Rev. 2001, 47, 10–14.
[4] Zhang, L.; Tian, F.; Nie, H.; Dang, L.; Li, G.; Ye, Q.; Kadri, C. Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens. Actuators B Chem. 2012, 174, 114–125.
[5] Dragonieri, S.; van der Schee, M.P.; Massaro, T.; Schiavulli, N.; Brinkman, P.; Pinca, A.; Carratú, P.; Spanevello, A.; Resta, O.; Musti, M.; et al. An electronic nose distinguishes exhaled breath of patients with Malignant Pleural Mesothelioma from controls. Lung Cancer 2012, 75, 326–331.
[6] Guo, D.; Zhang, D.; Li, N.; Zhang, L.; Yang, J. A novel breath analysis system based on electronic olfaction. IEEE Trans. Biomed. Eng. 2010, 57, 2753–2763.
[7] Wilson, A.D.; Baietto, M. Advances in electronic-nose technologies developed for biomedical applications. Sensors 2011, 11, 1105–1176.
[8] Haddi, Z.; Amari, A.; Alami, H.; El Bari, N.; Llobet, E.; Bouchikhi, B. A portable electronic nose system for the identification of cannabis-based drugs. Sens. Actuators B Chem. 2011, 155, 456–463.
[9] Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; Proietti, E.; D’Amico, A. The evaluation of quality of post-harvest oranges and apples by means of an electronic nose. Sens. Actuators B Chem. 2001, 78, 26–31.
[10] Concina, I.; Falasconi, M.; Sberveglieri, V. Electronic noses as flexible tools to assess food quality and safety: Should we trust them? IEEE Sens. J. 2012, 12, 3232–3237.
[11] Macías, M.; Manso, A.; Orellana, C.; Velasco, H.; Caballero, R.; Chamizo, J. Acetic acid detection threshold in synthetic wine samples of a portable electronic nose. Sensors 2012, 13, 208–220.
[12] Ampuero, S.; Bosset, J.O. The electronic nose applied to dairy products: A review. Sens. Actuators B Chem. 2003, 94, 1–12.
[13] Berna, A. Metal oxide sensors for electronic noses and their application to food analysis. Sensors 2010, 10, 3882–3910.
[14] Baldwin, E.A.; Bai, J.; Plotto, A.; Dea, S. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors 2011, 11, 4744–4766.
[15] Hasan, N.; Ejaz, N.; Ejaz, W.; Kim, H. Meat and fish freshness inspection system based on odor sensing. Sensors 2012, 12, 15542–15557.
[16] Gardner, J.W.; Shin, H.W.; Hines, E.L.; Dow, C.S. An electronic nose system for monitoring the quality of potable water. Sens. Actuators B Chem. 2000, 69, 336–341.
[17] Baby, R.E.; Cabezas, M.; Walsöe de Reca, E.N. Electronic nose: A useful tool for monitoring environmental contamination. Sens. Actuators B Chem. 2000, 69, 214–218.
[18] Ho, C.; Hughes, R. In-situ chemiresistor sensor package for real-time detection of volatile organic compounds in soil and groundwater. Sensors 2002, 2, 23–34.
[19] Goschnick, J.; Harms, M. Landmine detection with an electronic nose mounted on an airship. NATO Sci. Ser. 2002, 66, 83–91.
[20] Wilson, A.D. Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment. Procedia Technol. 2012, 1, 453–463.
[21] Tsow, F.; Forzani, E.; Rai, A.; Rui, W.; Tsui, R.; Mastroianni, S.; Knobbe, C.; Gandolfi, A.J.; Tao, N.J. A Wearable and wireless sensor system for real-time monitoring of toxic environmental volatile organic compounds. IEEE Sens. J. 2009, 9, 1734–1740.
[22] Moncrieff, R.W. An instrument for measuring and classifying odours. J. Appl. Physiol. 1961, 16, 742–749.
[23] Wilkens, W.F.; Hartman, J.D. An electronic analog for the olfactory processesa. J. Food Sci. 1964, 29, 372–378.
[24] Buck, T.M.; Allen, F.G.; Dalton, M. Detection of Chemical Species by Surface Effects on Metals and Semiconductors. In Surface Effects in Detection; Spartan Books Inc.: Washington, DC, USA, 1965.
[25] Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355.
[26] Gardner, J.W.; Bartlett, P.N.; Dodd, G.H.; Shurmer, H.V. Pattern Recognition in the Warwick Electronic Nose. In Proceedings of the 8th International Congress of European Chemoreception Research Organisation, University of Warwick, UK, 18–22 July 1988.
[27] Gardner, J. W.; Bartlett, P. N. Sensors and Sensory Systems for an Electronic Nose. In Proceedings of the NATO Advanced Research Workshop; Reykjavik, Iceland, 5–8 August 1991.
[28] Nagle, H.T.; Gutierrez-Osuna, R.; Schiffman, S.S. The how and why of electronic noses.
IEEE Spectr. 1998, 35, 22–31.
[29] Gopel, W.; Weiss, T. Design for smelling. IEEE Spectr. 1998, 35, 32–34.
[30] Mielle, P.; Marquis, F.; Latrasse, C. Electronic noses: Specify or disappear. Sens. Actuators B Chem. 2000, 69, 287–294.
[31] Brattoli, M.; de Gennaro, G.; de Pinto, V.; Demarinis Loiotile, A.; Lovascio, S.; Penza, M. Odour detection methods: Olfactometry and chemical sensors. Sensors 2011, 11, 5290–5322.
[32] Aishima, T. Aroma discrimination by pattern recognition analysis of responses from semiconductor gas sensor array. J. Agric. Food Chem. 1991, 39, 752–756.
[33] Hoffheins, B. Using Sensor Arrays and Pattern Recognition to Identify Organic Compounds. M.Sc. Thesis, University of Tennessee, Knoxville, TX, USA, June 1989.
[34] Abe, H.; Yoshimura, T.; Kanaya, S.; Takahashi, Y.; Miyashita, Y.; Sasaki, S.-I. Automated
odor-sensing system based on plural semiconductor gas sensors and computerized pattern recognition techniques. Anal. Chim. Acta 1987, 194, 1–9.
[35] Shurmer, H.V.; Gardner, J.W.; Corcoran, P. Intelligent vapour discrimination using a composite 12-element sensor array. Sens. Actuators B Chem. 1990, 1, 256–260.
[36] Pearce, T.C.; Gardner, J.W.; Friel, S.; Bartlett, P.N.; Blair, N. Electronic nose for monitoring the flavour of beers. Analyst 1993, 118, 371–377.
[37] Persaud, K.C. Electronic gas and odour detectors that mimic chemoreception in animals. TRAC Trends Anal. Chem. 1992, 11, 61–67.
[38] Slater, J.M.; Paynter, J.; Watt, E.J. Multi-layer conducting polymer gas sensor arrays for olfactory sensing. Analyst 1993, 118, 379–384.
[39] Freund, M.S.; Lewis, N.S. A chemically diverse conducting polymer-based “electronic nose”. Proc. Natl. Acad. Sci. USA 1995, 92, 2652–2656.
[40] Slater, J.M.; Paynter, J. Prediction of gas sensor response using basic molecular parameters. Analyst 1994, 119, 191–195.
[41] Slater, J.M.; Watt, E.J. Examination of ammonia-poly(pyrrole) interactions by piezoelectric and conductivity measurements. Analyst 1991, 116, 1125–1130.
[42] Polikar, R.; Shinar, R.; Honavar, V.; Udpa, L.; Porter, M.D. Detection and Identification of Odorants Using an Electronic Nose. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001; pp. 3137–3140.
[43] Ballantine, D.S.; Rose, S.L.; Grate, J.W.; Wohltjen, H. Correlation of surface acoustic wave device coating responses with solubility properties and chemical structure using pattern recognition. Anal. Chem. 1986, 58, 3058–3066.
[44] Baltes, H.; Lange, D.; Koll, A. The electronic nose in Lilliput. IEEE Spectr. 1998, 35, 35–38.
[45] Briand, D.; van der Schoot, B.; de Rooij, N.F.; Sundgren, H.; Lundstrom, I. A low-power micromachined MOSFET gas sensor. J. Microelectromech. Syst. 2000, 9, 303–308.
[46] Dickinson, T.A.; Michael, K.L.; Kauer, J.S.; Walt, D.R. Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal. Chem. 1999, 71, 2192–2198.
[47] Di Natale, C.; Martinelli, E.; Paolesse, R.; D’Amico, A.; Filippini, D.; Lundström, I. An artificial olfaction system based on the optical imaging of a large array of chemical reporters. Sens. Actuators B Chem. 2009, 142, 412–417.
[48] Dittmann, B.; Nitz, S. Strategies for the development of reliable QA/QC methods when working with mass spectrometry-based chemosensory systems. Sens. Actuators B Chem. 2000, 69,
253–257.
[49] Pérez Pavón, J.L.; del Nogal Sánchez, M.; Pinto, C.G.; Fernández Laespada, M.E.; Cordero, B.M.; Peña, A.G. Strategies for qualitative and quantitative analyses with mass spectrometry-based electronic noses. TrAC Trends Anal. Chem. 2006, 25, 257–266.
[50] Gursoy, O.; Somervuo, P.; Alatossava, T. Preliminary study of ion mobility based electronic nose MGD-1 for discrimination of hard cheeses. J. Food Eng. 2009, 92, 202–207.
[51] Chang, J.B.; Subramanian, V. Electronic noses sniff success. IEEE Spectr. 2008, 45, 50–56.
[52] Korotcenkov, G.; Stetter, J.R. Chemical Gas Mixture Analysis and the Electronic Nose: Current Status, Future Trends. In Chemical Sensors Comprehensive Sensor Technologies: Volume 6 Chemical Sensors Applications; Korotcenkov, G., Ed.; Momentum Press: New York, NY, USA, 2011.
[53] Rock, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725.
[54] Wilson, A.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148.
[55] Shurmer, H.V. An electronic nose: A sensitive and discriminating substitute for a mammalian olfactory system. IEE Proc. G Circuits Devices Syst. 1990, 137, 197–204.
[56] Perera, A.; Sundic, T.; Pardo, A.; Gutierrez-Osuna, R.; Marco, S. A portable electronic nose based on embedded PC technology and GNU/Linux: Hardware, software and applications. IEEE Sens. J. 2002, 2, 235–246.
[57] Chueh, H.-T.; Hatfield, J.V. A real-time data acquisition system for a hand-held electronic nose (H2EN). Sens. Actuators B Chem. 2002, 83, 262–269.
[58] Botre, B.A.; Gharpure, D.C.; Shaligram, A.D. Embedded electronic nose and supporting software tool for its parameter optimization. Sens. Actuators B Chem. 2010, 146, 453–459.
[59] Fuchs, S.; Strobel, P.; Siadat, M.; Lumbreras, M. Evaluation of unpleasant odor with a portable electronic nose. Mater. Sci. Eng. C 2008, 28, 949–953.
[60] Zhang, L.; Tian, F.; Liu, S.; Guo, J.; Hu, B.; Ye, Q.; Dang, L.; Peng, X.; Kadri, C.; Feng, J. Chaos based neural network optimization for concentration estimation of indoor air contaminants by an electronic nose. Sens. Actuators A Phys. 2013, 189, 161–167.
[61] Hatfield, J.V.; Neaves, P.; Hicks, P.J.; Persaud, K.; Travers, P. Towards an integrated electronic nose using conducting polymer sensors. Sens. Actuators B Chem. 1994, 18, 221–228.
[62] Hsieh, H.-Y.; Tang, K.-T. VLSI implementation of a bio-inspired olfactory spiking neural network. IEEE Trans. Neur. Netw. Learn. Syst. 2012, 23, 1065–1073.
[63] Chen, H.T.; Ng, K.T; Bermak, A.; Law, M.K.; Martinez, D. Spike latency coding in biologically inspired microelectronic nose. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 160–168.
[64] Craven, M.A.; Gardner, J.W.; Bartlett, P.N. Electronic noses—development and future prospects. TrAC Trends Anal. Chem. 1996, 15, 486–493.
[65] Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 210–211.
[66] Doty, R.L. Olfaction. Annu. Rev. Psychol. 2001, 52, 423–452.
[67] Lammerink, T.S.J.; Dijkstra, F.; Houkes, Z.; van Kuijk, J. Intelligent gas-mixture flow sensor. Sens. Actuators A Phys. 1995, 47, 380–384.
[68] Firestein, S. How the olfactory system makes sense of scents. Nature 2001, 413, 211–218.
[69] Breer, H. Olfactory receptors: Molecular basis for recognition and discrimination of odors. Anal. Bioanal. Chem. 2003, 377, 427–433.
[70] Xiaobo, Z.; Jiewen, Z.; Shouyi, W.; Xingyi, H. Vinegar classification based on feature extraction and selection from tin oxide gas sensor array data. Sensors 2003, 3, 101–109.
[71] Panigrahi, S.; Balasubramanian, S.; Gu, H.; Logue, C.M.; Marchello, M. Design and development of a metal oxide based electronic nose for spoilage classification of beef. Sens. Actuators B Chem. 2006, 119, 2–14.
[72] Depari, A.; Falasconi, M.; Flammini, A.; Marioli, D.; Rosa, S.; Sberveglieri, G.; Taroni, A. A new low-cost electronic system to manage resistive sensors for gas detection. IEEE Sens. J. 2007, 7, 1073–1077.
[73] Hossein-Babaei, F.; Hosseini-Golgoo, S.M. Analyzing the responses of a thermally modulated gas sensor using a linear system identification technique for gas diagnosis. IEEE Sens. J. 2008, 8, 1837–1847.
[74] Im, J.; Sengupta, S.K.; Baruch, M.F.; Granz, C.D.; Ammu, S.; Manohar, S.K.; Whitten, J.E. A hybrid chemiresistive sensor system for the detection of organic vapors. Sens. Actuators B Chem. 2011, 156, 715–722.
[75] Ponzoni, A.; Depari, A.; Comini, E.; Faglia, G.; Flammini, A.; Sberveglieri, G. Exploitation of a low-cost electronic system, designed for low-conductance and wide-range measurements, to control metal oxide gas sensors with temperature profile protocols. Sens. Actuators B Chem. 2012, 175, 149–156.
[76] Szczurek, A.; Maciejewska, M.; Bodzoj, L.; Flisowska-Wiercik, B. A concept of a sensor system for determining composition of organic solvents. IEEE Sens. J. 2010, 10, 924–933.
[77] Zampolli, S.; Elmi, I.; Ahmed, F.; Passini, M.; Cardinali, G.C.; Nicoletti, S.; Dori, L. An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sens. Actuators B Chem. 2004, 101, 39–46.
[78] Song, K.; Wang, Q.; Liu, Q.; Zhang, H.; Cheng, Y. A wireless electronic nose system using a Fe2o3 gas sensing array and least squares support vector regression. Sensors 2011, 11, 485–505.
[79] Kim, Y.S.; Ha, S.-C.; Yang, Y.; Kim, Y.J.; Cho, S.M.; Yang, H.; Kim, Y.T. Portable electronic nose system based on the carbon black–polymer composite sensor array. Sens. Actuators B Chem. 2005, 108, 285–291.
[80] Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198.
[81] Lee, D.-S.; Duk-Dong, L.; Sang-Woo, B.; Minho, L.; Kim, Y. T. SnO2 gas sensing array for combustible and explosive gas leakage recognition. IEEE Sens. J. 2002, 2, 140–149.
[82] Lee, D.-S.; Ban, S.-W.; Lee, M.; Lee, D.-D. Micro gas sensor array with neural network for recognizing combustible leakage gases. IEEE Sens. J. 2005, 5, 530–536.
[83] Afridi, M.Y.; Suehle, J.S.; Zaghloul, M.E.; Berning, D.W.; Hefner, A.R.; Cavicchi, R.E.; Semancik, S.; Montgomery, C.B.; Taylor, C.J. A monolithic CMOS microhotplate-based gas sensor system. IEEE Sens. J. 2002, 2, 644–655.
[84] Wilson, D.M.; Hoyt, S.; Janata, J.; Booksh, K.; Obando, L. Chemical sensors for portable, handheld field instruments. IEEE Sens. J. 2001, 1, 256–274.
[85] Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502.
[86] Al-Khalifa, S.; Maldonado-Bascon, S.; Gardner, J.W. Identification of CO and NO2 using a thermally resistive microsensor and support vector machine. IEE Proc. Sci. Measur. Technol. 2003, 150, 11–14.
[87] Harris, P.D.; Arnold, W.M.; Andrews, M.K.; Partridge, A.C. Resistance characteristics of conducting polymer films used in gas sensors. Sens. Actuators B Chem. 1997, 42, 177–184.
[88] Watson, J. The tin oxide gas sensor and its applications. Sens. Actuators 1984, 5, 29–42.
[89] Ponzoni, A.; Comini, E.; Concina, I.; Ferroni, M.; Falasconi, M.; Gobbi, E.; Sberveglieri, V.; Sberveglieri, G. Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR lab, Brescia (Italy) in the Security and food quality fields. Sensors 2012, 12, 17023–17045.
[90] Taurino, A.; Capone, S.; Distante, C.; Epifani, M.; Rella, R.; Siciliano, P. Recognition of olive oils by means of an integrated sol–gel SnO2 electronic nose. Thin Solid Films 2002, 418, 59–65.
[91] Sysoev, V.; Kiselev, I.; Frietsch, M.; Goschnick, J. Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray. Sensors 2004, 4, 37–46.
[92] Lee, H.Y.; Moon, S.; Park, S.J.; Lee, J.; Park, K.H.; Kim, J. Micro-machined resistive micro-heaters for high temperature gas sensing applications. Electron. Lett. 2008, 44, 1460–1461.
[93] Briand, D.; Colin, S.; Courbat, J.; Raible, S.; Kappler, J.; de Rooij, N.F. Integration of MOX gas sensors on polyimide hotplates. Sens. Actuators B Chem. 2008, 130, 430–435.
[94] Gouma, P.; Kalyanasundaram, K.; Xiao, Y.; Stanacevic, M.; Lisheng, W. Nanosensor and breath analyzer for ammonia detection in exhaled human breath. IEEE Sens. J. 2010, 10, 49–53.
[95] Binions, R.; Afonja, A.; Dungey, S.; Lewis, D.W.; Parkin, I.P.; Williams, D.E. Discrimination effects in zeolite modified metal oxide semiconductor gas sensors. IEEE Sens. J. 2011, 11, 1145–1151.
[96] Lu, C.-Y.; Chang, S.-P.; Chang, S.-J.; Hsueh, T.-J.; Hsu, C.-L.; Chiou, Y.; Chen, I.-C. ZnO nanowire-based oxygen gas sensor. IEEE Sens. J. 2009, 9, 485–489.
[97] Ponzoni, A.; Baratto, C.; Bianchi, S.; Comini, E.; Ferroni, M.; Pardo, M.; Vezzoli, M.; Vomiero, A.; Faglia, G.; Sberveglieri, G. Metal oxide nanowire and thin-film-based gas sensors for chemical warfare simulants detection. IEEE Sens. J. 2008, 8, 735–742.
[98] Sberveglieri, G.; Concina, I.; Comini, E.; Falasconi, M.; Ferroni, M.; Sberveglieri, V. Synthesis and integration of tin oxide nanowires into an electronic nose. Vacuum 2012, 86, 532–535.
[99] Chen, P.-C.; Shen, G.; Zhou, C. Chemical sensors and electronic noses based on 1-d metal oxide nanostructures. IEEE Trans. Nanotechnol. 2008, 7, 668–682.
[100] Arnold, C.; Harms, M.; Goschnick, J. Air quality monitoring and fire detection with the Karlsruhe electronic micronose KAMINA. IEEE Sens. J. 2002, 2, 179–188.
[101] Kumar, R.; Das, R.R.; Mishra, V.N.; Dwivedi, R. A neuro-fuzzy classifier-cum-quantifier for analysis of alcohols and alcoholic beverages using responses of thick-film tin oxide gas sensor array. IEEE Sens. J. 2010, 10, 1461–1468.
[102] Heule, M.; Gauckler, L.J. Miniaturised arrays of tin oxide gas sensors on single microhotplate substrates fabricated by micromolding in capillaries. Sens. Actuators B Chem. 2003, 93, 100–106.
[103] Bin, G.; Bermak, A.; Chan, P.C.H.; Gui-Zhen, Y. An integrated surface micromachined convex microhotplate structure for tin oxide gas sensor array. IEEE Sens. J. 2007, 7, 1720–1726.
[104] Guo, B.; Bermak, A.; Chan, P.; Yan, G.-Z. Characterization of integrated tin oxide gas sensors with metal additives and ion implantations. IEEE Sens. J. 2008, 8, 1397–1398.
[105] Benkstein, K.D.; Raman, B.; Montgomery, C.B.; Martinez, C.J.; Semancik, S. Microsensors in dynamic backgrounds: Toward real-time breath monitoring. IEEE Sens. J. 2010, 10, 137–144.
[106] Kiselev, I.; Sommer, M.; Mann, J.K.; Sysoev, V.V. Employment of electric potential to build a gas-selective response of metal oxide gas sensor array. IEEE Sens. J. 2010, 10, 849–855.
[107] Shi, M.; Bermak, A.; Belhouari, S.B.; Chan, P.C.H. Gas identification based on committee machine for microelectronic gas sensor. IEEE Trans. Instrum. Measur. 2006, 55, 1786–1793.
[108] Kumar, R.; Das, R.R.; Mishra, V.N.; Dwivedi, R. A radial basis function neural network classifier for the discrimination of individual odor using responses of thick-film tin-oxide sensors. IEEE Sens. J. 2009, 9, 1254–1261.
[109] Aleixandre, M.; Lozano, J.; Gutiérrez, J.; Sayago, I.; Fernández, M.J.; Horrillo, M.C. Portable e-nose to classify different kinds of wine. Sens. Actuators B Chem. 2008, 131, 71–76.
[110] Adhikari, B.; Majumdar, S. Polymers in sensor applications. Progr. Polym. Sci. 2004, 29, 699–766.
[111] Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307.
[112] Unde, S.; Ganu, J.; Radhakrishnan, S. Conducting polymer-based chemical sensor: Characteristics and evaluation of polyaniline composite films. Adv. Mater. Opt. Electron. 1996, 6, 151–157.
[113] Neaves, P.I.; Hatfield, J.V. Current-mode multiplexer for interrogating resistive sensor arrays. Electron. Lett. 1994, 30, 942–943.
[114] Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 2008, 614, 1–26.
[115] Shurmer, H.V.; Corcoran, P.; Gardner, J.W. Integrated arrays of gas sensors using conducting polymers with molecular sieves. Sens. Actuators B Chem. 1991, 4, 29–33.
[116] Gardner, J.W.; Vidic, M.; Ingleby, P.; Pike, A.C.; Brignell, J.E.; Scivier, P.; Bartlett, P.N.; Duke, A.J.; Elliott, J.M. Response of a poly(pyrrole) resistive micro-bridge to ethanol vapour. Sens. Actuators B Chem. 1998, 48, 289–295.
[117] Lonergan, M.C.; Severin, E.J.; Doleman, B.J.; Beaber, S.A.; Grubbs, R.H.; Lewis, N.S. Array-based vapor sensing using chemically sensitive, carbon black−polymer resistors. Chem. Mater. 1996, 8, 2298–2312.
[118] Martin, J.E.; Anderson, R.A.; Odinek, J.; Adolf, D.; Williamson, J. Controlling percolation in field-structured particle composites: Observations of giant thermoresistance, piezoresistance, and chemiresistance. Phys. Rev. B 2003, 67, 094207.
[119] Severin, E.J.; Sanner, R.D.; Doleman, B.J.; Lewis, N.S. Differential detection of enantiomeric gaseous analytes using carbon black−chiral polymer composite, chemically sensitive resistors. Anal. Chem. 1998, 70, 1440–1443.
[120] Ogura, K.; Shiigi, H. Conducting-Insulating Polymer Composites: Selectively Sensing Materials for Humidity and CO2. In Conducting Polymers and Polymer Electrolytes; American Chemical Society: City, Country, 2002; Volume 832, pp. 88–102.
[121] Ogura, K.; Fujii, A.; Shiigi, H.; Nakayama, M.; Tonosaki, T. Effect of hygroscopicity of insulating unit of polymer composites on their response to relative humidity. J. Electrochem. Soc. 2000, 147, 1105–1109.
[122] Chen, X.B.; Issi, J.P.; Cassart, M.; Devaux, J.; Billaud, D. Temperature dependence of the conductivity in conducting polymer composites. Polymer 1994, 35, 5256–5258.
[123] Wieczorek, W. Temperature dependence of conductivity of mixed-phase composite polymer solid electrolytes. Mater. Sci. Eng. B 1992, 15, 108–114.
[124] Doleman, B.J.; Severin, E.J.; Lewis, N.S. Trends in odor intensity for human and electronic noses: relative roles of odorant vapor pressure vs. molecularly specific odorant binding. Proc. Natl. Acad. Sci. USA 1998, 95, 5442–5447.
[125] Hands, P.J.W.; Laughlin, P.J.; Bloor, D. Metal–polymer composite sensors for volatile organic compounds: Part 1. Flow-through chemi-resistors. Sens. Actuators B Chem. 2012, 162, 400–408.
[126] Chen, X.; Jiang, Y.; Wu, Z.; Li, D.; Yang, J. Morphology and gas-sensitive properties of polymer based composite films. Sens. Actuators B Chem. 2000, 66, 37–39.
[127] Lee, J.; Choi, J.; Hong, J.; Jung, D.; Shim, S.E. Conductive silicone/acetylene black composite film as a chemical vapor sensor. Synth. Metals 2010, 160, 1030–1035.
[128] Luo, Y.; Li, Y.; Li, Z. Investigation into the vapor sensing behavior and mechanism of a reactive hydroxyl-terminated polybutadiene liquid rubber/carbon black conductive film. Smart Mater. Struct. 2006, 15, 1979–1985.
[129] Zhang, B.; Dong, X.; Song, W.; Wu, D.; Fu, R.; Zhao, B.; Zhang, M. Electrical response and adsorption performance of novel composites from polystyrene filled with carbon aerogel in organic vapors. Sens. Actuators B Chem. 2008, 132, 60–66.
[130] Zhang, B.; Dong, X.; Fu, R.; Zhao, B.; Zhang, M. The sensibility of the composites fabricated from polystyrene filling multi-walled carbon nanotubes for mixed vapors. Compos. Sci. Technol. 2008, 68, 1357–1362.
[131] Zhang, B.; Fu, R.; Zhang, M.; Dong, X.; Zhao, B.; Wang, L.; Pittman, C.U., Jr. Studies of the vapor-induced sensitivity of hybrid composites fabricated by filling polystyrene with carbon black and carbon nanofibers. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1884–1889.
[132] Wei, G.; Saitoh, H.; Fujiki, K.; Yamauchi, T.; Tsubokawa, N. Grafting of branched polymers onto the surface of vapor grown carbon fiber and their electric properties. Polym. Bull. 2008, 60, 219–228.
[133] Niu, L.; Luo, Y.; Li, Z. A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene glycol). Sens. Actuators B Chem. 2007, 126, 361–367.
[134] Li, L.; Luo, Y.; Li, Z. The preparation and vapor-induced response of a conductive nanocomposite based on poly(methyl acrylic acid)/expanded graphite by in situ polymerization. Smart Mater. Struct. 2007, 16, 1570–1574.
[135] Doleman, B.J.; Sanner, R.D.; Severin, E.J.; Grubbs, R.H.; Lewis, N.S. Use of compatible polymer blends to fabricate arrays of carbon black-polymer composite vapor detectors. Anal. Chem. 1998, 70, 2560–2564.
[136] Kim, S.J. The effect on the gas selectivity of CNT-based gas sensors by binder in SWNT/Silane sol solution. IEEE Sens. J. 2010, 10, 173–177.
[137] Zee, F.; Judy, J. W. Micromachined polymer-based chemical gas sensor array. Sens. Actuators B Chem. 2001, 72, 120–128.
[138] Ha, S.-C.; Kim, Y.S.; Yang, Y.; Kim, Y.J.; Cho, S.-M.; Yang, H.; Kim, Y.T. Integrated and microheater embedded gas sensor array based on the polymer composites dispensed in micromachined wells. Sens. Actuators B Chem. 2005, 105, 549–555.
[139] Kim, Y.S. Microheater-integrated single gas sensor array chip fabricated on flexible polyimide substrate. Sens. Actuators B Chem. 2006, 114, 410–417.
[140] Wang, J.; Musameh, M. Carbon nanotube screen-printed electrochemical sensors. Analyst 2004, 129, 1–2.
[141] Schmidt, R.H.; Kinloch, I.A.; Burgess, A.N.; Windle, A.H. The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films. Langmuir 2007, 23, 5707–5712.
[142] Sun, L.; Berndt, C.C.; Gross, K.A. Hydroxyapatite/polymer composite flame-sprayed coatings for orthopedic applications. J. Biomater. Sci. Polym. Ed. 2002, 13, 977–990.
[143] Boutopoulos, C.; Pandis, C.; Giannakopoulos, K.; Pissis, P.; Zergioti, I. Polymer/carbon nanotube composite patterns via laser induced forward transfer. Appl. Phys. Lett. 2010, 96, 041104.
[144] Ulbricht, M.; Belter, M.; Langenhangen, U.; Schneider, F.; Weigel, W. Novel molecularly imprinted polymer (MIP) composite membranes via controlled surface and pore functionalizations. Desalination 2002, 149, 293–295.
[145] Wang, L.C.; Tang, K.T.; Chiu, S.W.; Yang, S.R.; Kuo, C.T. A bio-inspired two-layer multiple-walled carbon nanotube–polymer composite sensor array and a bio-inspired fast-adaptive readout circuit for a portable electronic nose. Biosens. Bioelectron. 2011, 26, 4301–4307.
[146] Doleman, B.J.; Lonergan, M.C.; Severin, E.J.; Vaid, T.P.; Lewis, N.S. Quantitative study of the resolving power of arrays of carbon black-polymer composites in various vapor-sensing tasks. Anal. Chem. 1998, 70, 4177–4190.
[147] Sisk, B.C.; Lewis, N.S. Estimation of chemical and physical characteristics of analyte vapors through analysis of the response data of arrays of polymer-carbon black composite vapor detectors. Sens. Actuators B Chem. 2003, 96, 268–282.
[148] Che Harun, F.K.; Taylor, J.E.; Covington, J.A.; Gardner, J.W. An electronic nose employing dual-channel odour separation columns with large chemosensor arrays for advanced odour discrimination. Sens. Actuators B Chem. 2009, 141, 134–140.
[149] Beccherelli, R.; Zampetti, E.; Pantalei, S.; Bernabei, M.; Persaud, K.C. Design of a very large chemical sensor system for mimicking biological olfaction. Sens. Actuators B Chem. 2010, 146, 446–452.
[150] Bernabei, M.; Persaud, K.C.; Pantalei, S.; Zampetti, E.; Beccherelli, R. Large-scale chemical sensor array testing biological olfaction concepts. IEEE Sens. J. 2012, 12, 3174–3183.
[151] Falconi, C.; Martinelli, E.; di Natale, C.; D’Amico, A.; Maloberti, F.; Malcovati, P.; Baschirotto, A.; Stornelli, V.; Ferri, G. Electronic interfaces. Sens. Actuators B Chem. 2007, 121, 295–329.
[152] Gardner, J.W.; Guha, P.K.; Udrea, F.; Covington, J.A. CMOS interfacing for integrated gas sensors: A review. IEEE Sens. J. 2010, 10, 1833–1848.
[153] Corcoran, P. The effects of signal conditioning and quantization upon gas and odour sensing system performance. Sens. Actuators B Chem. 1994, 19, 649–653.
[154] Neaves, P.I.; Hatfield, J.V. A new generation of integrated electronic noses. Sens. Actuators B Chem. 1995, 27, 223–231.
[155] Dyer, D.C.; Gardner, J.W. High-precision intelligent interface for a hybrid electronic nose. Sens. Actuators A Phys. 1997, 62, 724–728.
[156] De Marcellis, A.; Ferri, G.; D’Amico, A.; di Natale, C.; Martinelli, E. A fully-analog lock-in amplifier with automatic phase alignment for accurate measurements of ppb gas concentrations. IEEE Sens. J. 2012, 12, 1377–1383.
[157] Grassi, M.; Malcovati, P.; Baschirotto, A. A 160 dB equivalent dynamic range auto-scaling interface for resistive gas sensors arrays. IEEE J. Solid-State Circuits 2007, 42, 518–528.
[158] Baschirotto, A.; Capone, S.; D’Amico, A.; di Natale, C.; Ferragina, V.; Ferri, G.; Francioso, L.; Grassi, M.; Guerrini, N.; Malcovati, P.; et al. A portable integrated wide-range gas sensing system with smart A/D front-end. Sens. Actuators B Chem. 2008, 130, 164–174.
[159] Pioggia, G.; Ferro, M.; di Francesco, F. Towards a real-time transduction and classification of chemoresistive sensor array signals. IEEE Sens. J. 2007, 7, 237–244.
[160] Rairigh, D.J.; Warnell, G.A.; Chao, X.; Zellers, E.T.; Mason, A.J. CMOS baseline tracking and cancellation instrumentation for nanoparticle-coated chemiresistors. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 267–276.
[161] Merino, J.L.; Bota, S.A.; Casanova, R.; Dieguez, A.; Cane, C.; Samitier, J. A reusable smart interface for gas sensor resistance measurement. IEEE Trans. Instrum. Measur. 2004, 53, 1173–1178.
[162] Grassi, M.; Malcovati, P.; Baschirotto, A. A 141-dB dynamic range CMOS gas-sensor interface circuit without calibration with 16-bit digital output word. IEEE J. Solid-State Circuits 2007, 42, 1543–1554.
[163] De Marcellis, A.; Depari, A.; Ferri, G.; Flammini, A.; Marioli, D.; Stornelli, V.; Taroni, A. Uncalibrated integrable wide-range single-supply portable interface for resistance and parasitic capacitance determination. Sens. Actuators B Chem. 2008, 132, 477–484.
[164] Ferri, G.; di Carlo, C.; Stornelli, V.; de Marcellis, A.; Flammini, A.; Depari, A.; Jand, N. A single-chip integrated interfacing circuit for wide-range resistive gas sensor arrays. Sens. Actuators B Chem. 2009, 143, 218–225.
[165] De Marcellis, A.; Depari, A.; Ferri, G.; Flammini, A.; Marioli, D.; Stornelli, V.; Taroni, A.A CMOS integrable oscillator-based front end for high-dynamic-range resistive sensors. IEEE Trans. Instrum. Measur. 2008, 57, 1596–1604.
[166] Ponzoni, A.; Depari, A.; Falasconi, M.; Comini, E.; Flammini, A.; Marioli, D.; Taroni, A.; Sberveglieri, G. Bread baking aromas detection by low-cost electronic nose. Sens. Actuators B Chem. 2008, 130, 100–104.
[167] Ferri, G.; de Marcellis, A.; di Carlo, C.; Stornelli, V.; Flammini, A.; Depari, A.; Marioli, D.; Sisinni, E. A CCII-based low-voltage low-power read-out circuit for DC-excited resistive gas sensors. IEEE Sens. J. 2009, 9, 2035–2041.
[168] Depari, A.; Flammini, A.; Marioli, D.; Sisinni, E.; de Marcellis, A.; Ferri, G.; Stornelli, V. A new and fast-readout interface for resistive chemical sensors. IEEE Trans. Instrum. Measur. 2010, 59, 1276–1283.
[169] De Marcellis, A.; Depari, A.; Ferri, G.; Flammini, A.; Sisinni, E. A CMOS integrated low-voltage low-power time-controlled interface for chemical resistive sensors. Sens. Actuators B Chem. 2013, 179, 313–318.
[170] Depari, A.; Flammini, A.; Marioli, D.; Sisinni, E.; Comini, E.; Ponzoni, A. An electronic system to heat mox sensors with synchronized and programmable thermal profiles. IEEE Trans. Instrum. Measur. 2012, 61, 2374–2383.
[171] Bagga, S.; Bhat, N.; Mohan, S. LPG gas-sensing system with SnO2 thin-film transducer and 0.7-μm CMOS signal conditioning ASIC. IEEE Trans. Instrum. Measur. 2009, 58, 3653–3658.
[172] Bissi, L.; Cicioni, M.; Placidi, P.; Zampolli, S.; Elmi, I.; Scorzoni, A. A programmable interface circuit for an ultralow power gas sensor. IEEE Trans. Instrum. Measur. 2011, 60, 282–289.
[173] Saxena, R.S.; Bhan, R.K.; Aggrawal, A. A new discrete circuit for readout of resistive sensor arrays. Sens. Actuators A Phys. 2009, 149, 93–99.
[174] Lee, H.; Lee, S.; Kim, D.-H.; Perello, D.; Park, Y. J.; Hong, S.-H.; Yun, M.; Kim, S. Integrating metal-oxide-decorated CNT networks with a CMOS readout in a gas sensor. Sensors 2012, 12, 2582–2597.
[175] Lemmerhirt, D.F.; Wise, K.D. Chip-scale integration of data-gathering microsystems. Proc. IEEE 2006, 94, 1138–1159.
[176] Hierlemann, A.; Brand, O.; Hagleitner, C.; Baltes, H. Microfabrication techniques for chemical/biosensors. Proc. IEEE 2003, 91, 839–863.
[177] Brand, O. Microsensor integration into systems-on-chip. Proc. IEEE 2006, 94, 1160–1176.
[178] Garcı́a-Guzmán, J.; Ulivieri, N.; Cole, M.; Gardner, J.W. Design and simulation of a smart ratiometric ASIC chip for VOC monitoring. Sens. Actuators B Chem. 2003, 95, 232–243.
[179] Perera, A.; Papamichail, N.; Barsan, N.; Weimar, U.; Marco, S. On-line novelty detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions. IEEE Sens. J. 2006, 6, 770–783.
[180] Frey, U.; Graf, M.; Taschini, S.; Kirstein, K.U.; Hierlemann, A. A digital CMOS architecture for a micro-hotplate array. IEEE J. Solid-State Circuits 2007, 42, 441–450.
[181] Guo, B.; Bermak, A.; Chan, P.C.H.; Yan, G.-Z. A monolithic integrated 4 × 4 tin oxide gas sensor array with on-chip multiplexing and differential readout circuits. Solid-State Electron. 2007, 51, 69–76.
[182] Mu, X.; Covington, E.; Rairigh, D.; Kurdak, C.; Zellers, E.; Mason, A.J. CMOS monolithic nanoparticle-coated chemiresistor array for micro-scale gas chromatography. IEEE Sens. J. 2012, 12, 2444–2452.
[183] Tang, K.-T.; Goodman, R.M. Towards a Wearable Electronic Nose Chip. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 10–13 September 2006; pp. 273–276.
[184] Haugen, J.-E.; Kvaal, K. Electronic nose and artificial neural network. Meat Sci. 1998, 49, S273–S286.
[185] Luo, D.; Hosseini, H.G.; Stewart, J.R. Application of ANN with extracted parameters from an electronic nose in cigarette brand identification. Sens. Actuators B Chem. 2004, 99, 253–257.
[186] Pan, C.-H.; Hsieh, H.-Y.; Tang, K.-T. An analog multilayer perceptron neural network for a portable electronic nose. Sensors 2012, 13, 193–207.
[187] Ng, K.T.; Boussaid, F.; Bermak, A. A CMOS single-chip gas recognition circuit for metal oxide gas sensor arrays. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 1569–1580.
[188] Koickal, T.J.; Hamilton, A.; Su Lim, T.; Covington, J.A.; Gardner, J.W.; Pearce, T.C. Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 60–73.
[189] Hong, H.-K.; Kwon, C.H.; Kim, S.-R.; Yun, D.H.; Lee, K.; Sung, Y.K. Portable Electronic Nose System with Gas Sensor Array and Artificial Neural Network. Sens. Actuat. B-Chem. 2000, 66, 49-52.
[190] Barbri, N.E.; Llobet, E.; Bari, N.E.; Correig, X.; Bouchikhi, B. Application of a Portable Electronic Nose System to Assess the Freshness of Moroccan Sardines. Mater. Sci. Eng. C 2008, 28, 666-670.
[191] Fuchs, S.; Strobel, P.; Siadat, M.; Lumbreras, M. Evaluation of Unpleasant Odor with a Portable Electronic Nose. Mater. Sci. Eng. C 2008, 28, 949-953.
[192] O’Connell, M.; Valdora, G.; Peltzer, G.; Negri, R.M. A Practical Approach for Fish Freshness Determinations Using a Portable Electronic Nose. Sens. Actuat. B-Chem. 2001, 80, 149-154.
[193] Nake, A.; Dubreuil, B.; Raynaud, C.; Talou, T. Outdoor in situ Monitoring of Volatile Emissions from Wastewater Treatment Plants with Two Portable Technologies of Electronic Noses. Sens. Actuat. B-Chem. 2005, 106, 36-39.
[194] Hao, H.C.; Tang, K.T.; Ku, P.H.; Chao, J.S.; Li, C.H.; Yang, C.M.; Yao, D.J. Development of a Portable Electronic Nose Based on Chemical Surface Acoustic Wave Array with Multiplexed Oscillator and Readout Electronics. Sens. Actuat. B-Chem. 2010, 146, 545-553.
[195] Kim, K-H. Experimental Demonstration of Masking Phenomena between Competing Odorants via an Air Dilution Sensory Test. Sensors 2010, 10, 7287-7302.
[196] Munoz-Aguirre, S.; Yoshino, A.; Nakamoto, T.; Moriizumi, T. Odor Approximation of Fruit Flavors Using a QCM Odor Sensing System. Sens. Actuat. B-Chem. 2007, 123, 1101-1106.
[197] Wyszynski, B.; Yamanaka, T.; Nakamoto, T. Recording and Reproducing Citrus Flavors Using Odor Recorder. Sens. Actuat. B-Chem. 2005, 106, 388-393.
[198] Flamini, G.; Cioni, P.L. Odour Gradients and Patterns in Volatile Emission of Different Plant Parts and Developing Fruits of Grapefruit (Citrus paradisi L.). Food Chem. 2010, 120, 984-992.
[199] Balbontin, C.; Gaete-Eastman, C.; Vergara, M.; Herrera, R.L.; Moya-Le’on, M.A. Treatment with 1-MCP and the Role of Ethylene in Aroma Development of Mountain Papaya Fruit. Postharv. Biol. Technol. 2007, 43, 67-77.
[200] Buttery, R.G.; Teranishi, R.; Ling, L.C.; Turnbaugh J.G. Quantitative and Sensory Studies on Tomato Paste Volatiles. J. Agric. Food Chem. 1990, 38, 336-340.
[201] Buttery, R.G.; Turnbaugh, J.G.; Ling, L.C. Contribution of Volatiles to Rice Aroma. J. Agric. Food Chem. 1988, 36, 1006-1009.
[202] Takeoka, G.R.; Flath, R.A.; Mon, T.R.; Teranishi, R.; Guentert, M. Volatile Constituents of Apricot (Prunus armeniaca). J. Agric. Food Chem. 1990, 38, 471-477.
[203] Natale, C.D.; Macagnano, A.; Mantini, A.; Davide, F.; D’Amico, A.; Paolesse, R.; Boschi, T.; Faccio, M.; Ferri, G. Advances in Food Analysis by Electronic Nose. IEEE Ind. Electron. 1997, 1, 122-127.
[204] Moos, R.; Sahner, K.; Fleischer, M.; Guth, U.; Barsan, N.; Weimar, U. Solid State Gas Sensor Research in Germany—A Status Report. Sensors 2009, 9, 4323-4365.
[205] Zhai, T.; Fang, X.; Liao, M.; Xu, X.; Zeng, H.; Yoshio, B.; Golberg, D. A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors. Sensors 2009, 9, 6504-6529.
[206] Batzill, M. Surface Science Studies of Gas Sensing Materials: SnO2. Sensors 2006, 6, 1345-1366.
[207] Caricato, A.P.; Luches, A.; Rella, R. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation. Sensors 2009, 9, 2682-2696.
[208] Zhang, S.; Xie, C.; Zeng, D.; Zhang, Q.; Li, H.; Bi, Z. A Feature Extraction Method and a Sampling System for Fast Recognition of Flammable Liquids with a Portable E-Nose. Sens. Actuat. B-Chem. 2007, 12, 437-443.
[209] Harun, F.K.C.; Covington, J.A.; Gardner, J.W. Portable e-Mucosa System: Mimicking the Biological Olfactory. Procedia Chem. 2009, 1, 991-994.
[210] Laconte, J; Dupont, C; Flandre, D; Raskin, JP, SOI CMOS compatible low-power microheater optimization for the fabrication of smart gas sensors. IEEE Sens. J. 2004, 4, 670-680.
[211] Grate, JW; Patrash, SJ; Abraham, MH, Method for Estimating Polymer-Coated Acoustic Wave Vapor Sensor Responses. Anal. Chem. 1995, 67, 2162-2169.
[212] Lin, Y-W; Wu, T-M, Synthesis and characterization of externally doped sulfonated polyaniline/multi-walled carbon nanotube composites. Compos Sci Technol. 2009, 69, 2559-2565.
[213] Chin, S-M; Hsieh, C-C; Chiu, C-F; Tsai, H-H, A new rail-to-rail comparator with adaptive power control for low power SARADCs in biomedical application. In: Proceedings of 2010 I.E. international symposium on circuits and systems (ISCAS), May 30–June 2 2010, pp 1575–1578.
[214] Chang, M-F; Kwai, D-M; Yang, S-M; Chou, Y-F; Chen, P-C, Experiments on reducing standby current for compatible SRAM using hidden clustered source line control. In: 7th international conference on ASIC, 2007. ASICON ’07. 22–25 Oct 2007. pp 1038–1041
[215] Liou, C-Y; Hsieh, C-C, A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).
[216] Chen, H.; Murray, A. F., A Continuous Restricted Boltzmann Machine with an Implementable Training Algorithm, IEE Proc. Of Vision, Image and Sig. Proc., 2003, 150, 153-158.
[217] Chen, H.; Fleury, P.; Murray, A. F., Continuous-valued probabilistic behaviour in a VLSI generative model, IEEE Trans. Neural Netw., 2006, 17, 755-770.
[218] Wang, J-H; Tang, K-T; Chen, H, An embedded probabilistic neural network with on-chip learning capability, 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS).
[219] Haykin, S., Communication Systems, 4th edition, Wiley, 1978.
[220] Hinton, G. E., Training products of experts by minimizing contrastive divergence, Neural Computation., 2002, 14, 1771-1800.
[221] Chang, M-F; Chen, M-P; Chen, L-F; Yang, S-M; Kuo, Y-J; Wu, J-J; Su, H-Y; Chu, Y-H; Wu, W-C; Yang, T-Y; Yamauchi, H., A Sub-0.3 V Area-Efficient L-Shaped 7T SRAM With Read Bitline Swing Expansion Schemes Based on Boosted Read-Bitline, Asymmetric-VTH Read-Port, and Offset Cell VDD Biasing Techniques, IEEE Sens. J, 2013, 48, 2558-2569.
[222] Cardillo, G.P.; Fu, K-S, On Suboptimal Sequential Pattern Recognition," IEEE Trans. Comp. 1968, C-17, 789-792.
[223] Tang, K-T; Chiu, S-W; Pan, C-H; Hsieh, H-Y; Liang, Y-S; Liu, S-C. Development of a Portable Electronic Nose System for the Detection and Classification of Fruity Odors. Sensors, 2010, 10, 9179-9193.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔