跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/20 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李承峰
研究生(外文):Lee, Cheng-Fong
論文名稱:沸騰雙相流譜與微型甲醇重組產氫裝置效能
論文名稱(外文):Boiling Two-phase Flow Pattern and It's Effect on The Performance of An Integrated Micro Methanol Reformer
指導教授:潘欽裴晉哲裴晉哲引用關係
指導教授(外文):Pan, ChinPeir, Jinn-Jer
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:99
中文關鍵詞:雙相流微型甲醇重組器微型熱交換器
外文關鍵詞:two-phase flowmicro methanol reformermicro heat exchanger
相關次數:
  • 被引用被引用:1
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:4
本研究針對重組式甲醇燃料電池(RMFC)的前端氫氣來源設計一微型產氫裝置。此微型產氫裝置之研究目的為將微流道熱交換器(MCHE)與微流道觸媒重組器(MCR)利用微機電加工技術(MEMS)製作並完成整合。希望透過有效的整合能將觸媒進行POM化學反應後產生的熱量經熱交換器傳至液態甲醇,以便提供液態甲醇沸騰所需的熱量;同時亦能將產出的高溫氫氣降至60~80℃以符合燃料電池之工作溫度。
經完成整合後之微型產氫裝置幾何尺寸為20×20×2.13〖mm〗^3(2.13mm為厚度),其中熱交換器正、反兩面皆有蝕刻深200μm之微流道。此外,冷端流場利用漸擴式微流道的設計來抑制液態甲醇在沸騰時其蒸氣所產生的回衝,希望藉此提升進料穩定性。而觸媒重組器(由曾繁根老師實驗室提供)則是內含單面蝕刻深350μm之微流道,並且透過指叉型微流道之設計使甲醇蒸氣與氧氣能充分混合並均勻分散在觸媒重組器內,以提升觸媒產氫效能。另一方面,觸媒則是選定銅錳鋅奈米顆粒(由黃鈺軫老師實驗室提供)。
本研究於實驗方面量測進口溫度來判斷進料穩定性;以及透過高速攝影機和中子射線照相觀察流體之雙相流流動行為,彈狀流、環形流、反環形流、液滴流與乾化等五種流譜皆成功觀察到;最後利用氣相層析儀分析產氫結果。本研究並探討氧氣與甲醇當量比以及加熱功率對產氫結果之影響,其中,最高之氫氣選擇率可達77.4%。一系列完整之研究將於本文依序介紹。

In this study, a micro heat exchange-type hydrogen supplier (MHEHS) was successfully demonstrated as a fuel supply source for micro reforming methanol fuel cell (RMFC). The purpose of this study is integrating the micro channel heat exchanger (MCHE) and the micro channel reformer (MCR) by using the technique of micro electromechanical system (MEMS). In terms of the adequate integration, we are able to reuse the heat generated by the POM reaction. The heat generated is conducted to the cold side of the MCHE, providing enough heat for liquid methanol to start boiling. Meanwhile, the extremely hot hydrogen produced by POM reaction could be cool down to 60~80℃ since it is the working temperature of fuel cell.
The geometric dimension of MHEHS is20×20×2.13mm^3, for which 2.13mm is the thickness. There are 18 micro channels with 240μm for both the hot side and the cold side of MCHE. In addition, it’s worth mentioning that the diverging micro channel is designed to suppress the back flow while boiling is occurring, and to improve and enhance the stability of two-phase flow. The MCR is a finger- type design with channel depth of 350μm, provided by the lab of Professor F.G.Tseng, and the depth of micro channel in MCR is350μm. The micro channel is designed to make oxygen mix with methanol steam and subsequently pass uniformly into the MCR. Consequently, the performance of producing hydrogen may be enhanced. Besides, the nanoparticle of Cu-Mn-Zn, developed and provided by the lab of Professor Y.T.Huang, is chosen to be the catalyst in MCR.
The temperature at the inlet is measured to judge the stability of transporting precursor. Moreover, the high speed camera and Neutron Radiography (NR) are employed to observe the two-phase flow pattern in MCHE. Slug flow, annular flow, film break-up, droplet flow and dry out have been successfully observed . Finally, Gas Chromatography (GC) is used to analyze the component of the product, especially hydrogen. On the other hand, the effects of methanol flow rate, oxygen flow rate and the performance of MHEHS are studied, in terms of methanol conversion ratio, hydrogen production selectivity and CO production selectivity. A hydrogen selectivity up to 77.4% is obtained under the condition of V_MeOH= 0.04 sccm; V_(O_2 )= 10 sccm; q=22.5W in this research.

摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 x
符號說明 xiii
第一章 緒論 1
1.1前言 1
1.1.1能源議題 1
1.1.2燃料電池工作原理與種類 2
1.2研究動機與目的 4
1.2.1重組式甲醇燃料電池 4
1.2.2微流道熱交換器 4
1.3研究方法 7
1.4論文架構 9
第二章 文獻回顧 10
2.1燃料電池與產氫裝置 10
2.1.1微型燃料電池與微型產氫裝置 10
2.1.2 熱交換器與產氫裝置之整合 11
2.1.3 流道型式對燃料電池性能之影響 12
2.2微流道之沸騰熱傳 14
2.2.1微流道前言 14
2.2.2 回衝與不穩定性 14
2.2.3 冷媒散熱於微流道之應用 15
2.3中子射線照相 17
(Neutron Radiography) 17
2.3.1 中子射線照相緒論 17
2.3.2 中子射線照相於燃料電池之應用 18
第三章 微型產氫裝置製作與實驗架設 22
3.1微型產氫裝置製作 22
3.1.1 微機電製程基本原理 22
3.1.2 微流道熱交換器製程與成果 26
3.1.3 測試段(加熱器與夾具)設計 32
3.2流譜拍攝(高速攝影機)實驗系統 35
3.2.1實驗設備環路 35
3.2.2 針筒注射式幫浦 36
3.2.3數據擷取系統與溫度之量測 37
3.2.4 影像擷取系統 38
3.2.5實驗步驟 38
3.3中子射線照相系統 42
3.3.1 中子與中子射線之介紹 42
3.3.2中子射線照相原理 42
3.3.3中子射線照相應用於微型產氫裝置 43
3.3.4 中子射線照相實驗設備與環路 44
3.3.5中子射線照相實驗步驟 45
第四章 氣相層析儀產物分析 46
4.1 產物莫耳數計算 46
4.2 甲醇轉換效率(Methanol conversion ratio) 49
4.3 選擇率(Selectivity) 50
第五章 實驗結果與討論 51
5.1 流譜觀察 51
5.1.1 氧氣與液態甲醇之混合情形 51
5.1.2 漸擴式微流道熱交換器內雙相流流譜 52
5.1.3流體分布不均 61
5.1.4 加熱器瓦數對流譜之影響 62
5.2 中子射線照相 64
5.2.1 中子射線照相解析度 64
5.2.2中子射線照相結果(靜態) 65
5.2.3 中子射線照相結果(動態) 66
5.3 進口溫度與穩定性比較 72
5.3.1 氧氣與甲醇當量比對穩定性之影響 72
5.3.2 加熱器功率對進口溫度之影響 75
5.4 產氫結果 79
5.4.1氧氣與甲醇當量比對產氫結果之影響 79
5.4.2加熱器瓦數對產氫結果之影響 83
5.5 觸媒堵塞 87
第六章 結論與建議 91
6.1 本論文研究成果 91
6.2 未來研究建議 93
參考文獻 95

[1]. D.E. Park , T. Kim, S. Kwon, C.K. Kim, and E. Yoon, “Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells”, Sensors and Actuators A, Vol.135, pp.58-66, 2006.
[2]. T. Kim, “Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell”, International Journal of Hydrogen Energy, Vol.34, pp.6790-6798, 2009.
[3]. T. Kim and S. Kwon, “MEMS fuel cell system integrated with a methanol reformer for a portable power source”, Sensors and Actuators A,Vol.154, pp.204-211, 2008.
[4]. J.M. Sohn, Y.C. Byun, J.Y. Cho, J. Choe, and K.H. Song, “Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol”, International Journal of Hydrogen Energy, Vol.32, pp.5103-5108, 2007.
[5]. G.G. Park, S.D. Yim, Y.G. Yoon, C.S. Kim, D.J. Seo, and K. Eguchi, “Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems”, Catalysis Today, Vol.110, pp.108-113, 2005.
[6]. T. A. Johnson, and M.P. Kanouff, “Development of a hydrogen catalytic heater for heating metal hydride hydrogen storage systems”, International Journal of Hydrogen Energy, Vol.37, pp.2304-2319, 2012.
[7]. H. Deng, S. Sang, Y. Zhang, Z. Li, and X. Liu, “Investigation of silicon-based air-breathing micro direct methanol fuel cells with different anode flow fields”, Microelectronic Engineering, Vol.111, pp.180-184, 2013.
[8]. Y. Lu, and R.G. Reddy, “Effect of flow fields on the performance of micro-direct methanol fuel cells”, International Journal of Hydrogen Energy, Vol.36, pp.822-829, 2011.
[9]. 黃文利, “氣體加熱叉流式微流道熱交換器之流動沸騰熱傳研究An Investigation of Flow Boiling Heat Transfer on Cross-flow Microchannel Heat Exchanger with Gas Heating”, 國立清華大學碩士論文,2012.
[10]. 劉宗麟, “重組式甲醇燃料電池水熱管理之基礎研究 Fundamental Studies on Thermal and Fluid Management in Reformed Methanol Fuel Cell” 國立清華大學博士論文, 2013.
[11]. 方逸騏, “被動式微型直接甲醇燃料電池陽極進料反應板之研製Design and Fabrication of Fuel-Self-propelled Anode Plate for Passive Micro Direct Methanol Fuel Cells”, 國立清華大學碩士論文, 2012.
[12]. T. Bewer, T. Beckmann, H. Dohle, J. Mergel, and D. Stolten, “Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution”, Journal of Power Sources, Vol.125, pp.1-9, 2003.
[13]. A. Serizawa, Z. Feng, and Z. Kawara, “Two-phase flow in microchannels”, Experimental Thermal and Fluid Science, Vol.26, pp.703-714, 2001.
[14]. E.R. Dario, L. Tadrist, and J.C. Passos, “Review on two-phase flow distribution in parallel channels with macro and micro hydraulic diameters: Main results, analyses, trends”, Applied Thermal Engineering, Vol.59, pp.316-335, 2013.
[15]. J. Lee, and I. Mudawar, “Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 1: Experimental methods and flow visualization results”, International Journal of Heat and Mass Transfer, Vol.51, pp.4315-4326, 2008.
[16]. Y.S. Lim, S.C.M. Yu, and N.T. Nguyen, “Flow visualization and heat transfer characteristics of gas–liquid two-phase flow in microtube under constant heat flux at wall”, International Journal of Heat and Mass Transfer, Vol.56, pp.350-359, 2013.
[17]. J. Xu, Y. Feng, and J. Cen, “Transient flow patterns and bubble slug lengths in parallel microchannels with oxygen gas bubbles produced by catalytic chemical reactions”, International Journal of Heat and Mass Transfer, Vol.50, pp.857-871, 2007.
[18]. G. Hetsroni, A. Mosyak, E. Pogrebnyak, and Z. Segal, “Explosive boiling of water in parallel micro-channels”, International Journal of Multiphase Flow, Vol.31, pp.371-392, 2005.
[19]. T.L. Liu , B.R. Fu and C. Pan, “Boiling two-phase flow and efficiency of co- and counter-current microchannel heat exchangers with gas heating”, International Journal of Heat and Mass Transfer, Vol.55, pp.6130-6141, 2012.
[20]. H.Y. Wu, P. Cheng, “Visualization and measurements of periodic boiling in silicon microchannels”, International Journal of Heat and Mass Transfer, Vol.46, pp.2603-2614, 2003.
[21]. G. Wang, P. Cheng, and H. Wu, “Unstable and stable flow boiling in parallel microchannels and in a single microchannel”, International Journal of Heat and Mass Transfer, Vol.50, pp.4297-4310, 2007.
[22]. C. Huh, J. Kim, and M. H. Kim, “Flow pattern transition instability during flow boiling in a single microchannel”, International Journal of Heat and Mass Transfer,Vol.50, pp.1049-1060, 2007.
[23]. J.J. Hwang, F.G. Tseng, and C. Pan, “Ethanol–CO2 two-phase flow in diverging and converging microchannels”, International Journal of Multiphase Flow, Vol.31, pp.548-570, 2005.
[24]. S. Szczukiewicz, N. Borhani, and J. Thome, “Two-phase heat transfer and high-speed visualization of refrigerant flows in 100 3 100 mm2 silicon multi-microchannels”, International Journal of Refrigeration, Vol.36, pp.402-413, 2013.
[25]. S. Szczukiewicz, N. Borhani, and J. R. Thome, “Fine-resolution two-phase flow heat transfer coefficient measurements of refrigerants in multi-microchannel evaporators”, International Journal of Heat and Mass Transfer, Vol.67, pp.913-929, 2013.
[26]. E. Galvis and R. Culham, “Measurements and flow pattern visualizations of two-phase flow boiling in single channel microevaporators”, International Journal of Multiphase Flow, Vol.42, pp.52-61, 2012.
[27]. E. Perfect , C.L. Cheng , M. Kang, H.Z. Bilheux , J.M. Lamanna , M.J. Gragg, and D.M.Wright , “Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: A review”, Earth-Science Reviews, Vol.129, pp.120-135, 2014.
[28]. M. Tamaki, K.Ohkubo and Y. Ikeda, “Analysis of two phase counter flow in heat pipe by neutron radiography”, Second World Conference on Neutron Radiography, 1986.
[29]. C. Wilison, B.Borgmeyer, R.A. Winholtz and H.B. Jacobson, “Visual observation of oscillating heat pipes using neutron radiography”, International Journal Thermophysics and Heat Transfer, Vol.22, pp.152-156.
[30]. S.Takami, K. Sugioka and T. Tsukada, “Neutron radiography on turbular flow reactor for hydrothermal synthesis:In situ monitoring of mixing behavior of supercritical water and room-temperature water”, The Journal of Supercritical Fluids, Vol.63, pp.46-51, 2012.
[31]. R. Satija, D.L. Arif, S.A. Werner, “In situ neutron imaging technique for evalution of water management system in operating PEM fuel cell”, International Journal of Power Source, Vol.129, pp.238-245, 2004.
[32]. A. Turhan, K. Heller, J.S. Brenizer and M.M. Mench, “Passive control of liquid water storage and distribution in a PEMFC through flow-field design”, International Journal of Power Source, Vol.180, pp.773-783, 2004.
[33]. J.J. Misher, Y. Wang, P.P. Mukherjee and R. Mukundan, “Subfreezing operation of polymer electrolyte fuel cells:ice formation and cell performance loss”, Electrochemical Article, Vol.65, 127-133, 2012.
[34]. O.F. Selamet , U. Pasaogullari , D. Spernjak , D.S. Hussey , D.L. Jacobson ,and M.D. Mat, “Two-phase flow in a proton exchange membrane electrolyzer visualized in situ by simultaneous neutron radiography and optical imaging”, International Journal of Hydrogen Energy, Vol.38, pp.5823-5835, 2013.
[35]. A. Schro¨der , K. Wippermann , T. Arlt, T. Sanders, T. Baumho¨fer , N.Kardjilov , J. Mergel, W. Lehnert, D. Stolten, J. Banhart, and I. Manke, “In-plane neutron radiography for studying the influence of surface treatment and design of cathode flow fields in direct methanol fuel cells”, International Journal of Hydrogen Energy, Vol.38, pp.2443-2454, 2013.
[36]. J. Mishler, Y. Wang, R. Mukundan, J. Spendelow, D.S. Husseyc, D.L. Jacobson and R. L. Borup, “Probing the water content in polymer electrolyte fuel cells using neutron radiography”, Electrochimica Acta, Vol.75, pp.1-10, 2012.
[37]. 科技台灣HighTech.tw(電子報), 2012.08.04.
[38]. 曾繁根, “高等微系統製造實驗 (Advance Micro System Fabrication and Lab )”.
[39]. 裴晉哲, “清華大學水池式反應器中子照相的發展”, 中國工程師-THOR中子照相設備, 2008.
[40]. 楊福家,王炎森,陸福全, “原子核物理”, 復旦大學出版社, 1990.
[41]. 趙旋爾, “中子照射及活化分析”, 新竹黎明書店, 1999.
[42]. 陳龍銘, “原子核的奧秘與核能的應用”, 台灣書店, 1996.
[43]. 林清凉, “近代物理II”, 五南圖書出版公司, 2003.
[44]. 中國層析公司, “Molecular sieve 5A 使用手冊”, 2005.
[45]. 陳文雄, “稻殼灰分擔載銅觸媒應用於甲醇部份氧化產氫之研究”, 國立中央大學博士論文 , 2011.
[46]. 賴思嘉, “氧化鋅促進劑對氧化鋁擔載奈米金觸媒表面特性與催化活性之影響研究”, 國立中央大學碩士論文 , 2006.
[47]. 潘欽, “沸騰熱傳與雙相流”, 國立編譯館, 2001.
[48]. B.E. Poling, J.M. Prausnitz, J. P. O’Connell, “The Properties of Gases and Liquids, Fifth Edition”, Printed from Digital Engineering Library @ McGraw-Hill, 2004.
[49]. J.M. Smith,”化工熱力學導論,陳延平譯”, 台灣東華, 2002.
[50]. M.P.David, J.Miler, J.E.Steinbrenner, Y.Yang and M.Touzelbaev, “Hydraulic and thermal characteristics of a vapor venting two-phase microchannel heat exchanger.”, International Journal of Heat and Mass Transfer, Vol.54, pp.5504-5516, 2011.
[51]. Ryan O’Hayre, Suk-Won Cha, Whitney Colella, and Fritz B. Prinz, “Fuel Cell Fundamentals 燃料電池基礎”, 全華圖書股份有限公司, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top