( 您好!臺灣時間:2022/12/03 23:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Huang, Cheng-Chiang
論文名稱(外文):A well-dispersed catalyst on porous silicon micro-reformer for enhancing adhesion in the catalyst-coating process
指導教授(外文):Huang, Yuh-Jeen
外文關鍵詞:CoatingMicrochannelPartial oxidation of methanolHydrogen
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究中,水性觸媒塗佈漿料以聚乙烯醇 (PVA )作為分散劑及有機黏著劑來修飾銅錳鋅觸媒表面,均勻分散之漿料可在矽基板上形成均勻且無龜裂之觸媒層,且可直接注入微流道而不需遮罩,經測試可成功與Pyrex玻璃進行陽極接合,簡化漿料的製備及塗佈時間。
為進一步提升觸媒於流道的附著度,本研究另外於微流道中以電化學法蝕刻出多孔矽(porous silicon)。研究結果顯示,以濃度20%之氫氟酸、電流密度10mA /cm2、蝕刻600秒並再以1M氫氧化鈉浸泡20秒可在P-type矽基板上生成小於1 μm之微孔。觸媒層(cat. 10 wt.%, PVA 2 wt.%)在超音波水浴中(180 W, 20分鐘).之測試結果顯示良好的附著度,觸媒之重量損失在6 wt.%以下。
我們接著以不同設計之微流道(blank, straight, cratered)來測試觸媒於部分甲醇部分氧化(POM)反應中之效能表現。在相同觸媒重量及溫度下,具蜿蜒結構(cratered)之微流道相較於筆直的多重短流道(straight)及無結構之流道(blank)有較佳的甲醇轉化率。經本研究量測發現,矽基材之熱擴散係數為31.44 mm2/s,而觸媒層則為0.98 mm2/s。因此,較厚的觸媒層可避免反應產生的熱散失到環境中,而使內部保持在較高溫的狀態,而有較佳的反應性。本研究中,蜿蜒結構(cratered)之微流道可流佈24.4毫克之觸媒,在200oC、2 SCCM之流速下,可達到86%之甲醇轉化率及0.85 mmol h-1之產氫率。

In this study, surface of the Cu/Mn/ZnO catalyst in water-based slurry can be modified simply by PVA which was used as dispersant and organic binder. The well-dispersed catalyst slurry forms a crack-free coating and can be directly injected into open microchannel without mask or sacrificial layer on the top surface of silicon microcahnnel before anodic bonding with Pyrex glass.
To further improve the adherence of catalyst, porous silicon was fabricated in microchannel. Porous silicon with pore size less than 1 μm can be etched by 20% HF, 10 mA/cm2 current density for 600s followed by 1 M NaOH etching on a P-type silicon wafer. Catalyst coating (cat. 10 wt.%, PVA 2 wt.%) shows good adhesion on porous silicon with only 6 wt.% loss in the ultrasonic vibration test (180 W, 20 min).
In microchannel activity test, three different geometries of microchannel (blank, straight, cratered) were used to test the efficiency of catalyst in the partial oxidation of methanol (POM) reaction. With the same amount of catalyst loading, microchannel with cratered design has superior performance over other two designs due to the local thicker catalyst layer. Since catalyst layer has low thermal diffusivity, 0.98 mm2/s measured in this research, thicker catalyst layer can decrease the loss of heat generated from the POM reaction to the surroundings and enhance the catalytic performance. So far, microchannel with cratered design can be deposited with catalyst up to 24.4 mg and has a hydrogen production rate of 0.85 mmolh-1 and 86% methanol conversion at 200 oC under the feed rate of 2SCCM.

Abstract I
摘要 II
List of Table V
List of Figures VI
Chapter 1 Motivations and approaches 1
Chapter 2 Background and Introduction 9
2-1 Use of energy 9
2-2 Fuel cells 9
2-3 Advantages and applications of fuel cells 11
2-4 Hydrogen storage 17
2-5 Production of hydrogen from methanol 23
2-6 Paper review of product hydrogen from methanol reforming over Cu based catalyst 27
2-7 Promoter of Mn 29
2-8 Paper review of catalysts prepared by sol-gel method 32
2-9 Paper review of foreign micro-reformer 33
2-10 Paper review of Porous silicon 35
2-11 Reference 42
Chapter 3 Experimental Section 58
3-1 Chemicals and Solutions 58
3-2 Preparation of Catalyst 58
3-3 Preparation of Catalyst Slurry 58
3-4 Porous silicon formation 59
3-5 Designs of microchannel reactor 62
3-6 Methanol reformer fabrication 63
3-7 The assembly of micro-reactors 64
3-8 TGA(Thermal gravimetric analysis) 65
3-9 Field Emission Gun Scanning Electron Microscopy, FE-SEM 66
3-10 Cone-plate viscometer 67
3-11 Infrared thermography 67
3-12 Adhesion test of catalyst layer 68
3-13 Coating method 69
3-14 Catalyst activity of the fixed-bed 69
3-15 Catalyst activity of the micro-reactor 70
3-16 Thermal Diffusivity by the Laser Flash Technique 71
3-16 Reference 85
Chapter 4 Results and Discussion 86
4-1 Catalyst slurry characterization 86
4-2 Porous silicon formation 89
4-3 Adhesion test 90
4-4 The catalytic performance in microchannel with different geometries 92
4-5 Comparison between different coating methods 95
4-6 Comparison between the performance of packed-bed reactor and microchannel 97
4-7 Reference 123
Chapter 5 Conclusion 127

[1] Birch Charles, "Purpose in the Universe: A Search for Wholeness," Zygon, 6, No.1, Pages 4-27 1971-MAR
[2] U.S. Department of Energy, “Fuel Cell Handbook (Sixth Edition)”, Morgantown, West Virginia, 2002, Chapter 1
[3] J. Larminie, A. Dicks, “Fuel cell systems explained”, John Wiley & Sons, 2002, Chapter 1.
[4] M. P. Hogarth, T. R. Ralph, “Catalysis for Low Temperature Fuel Cells” Platinum Met. Rev. 46 (2002) 146-164.
[5] T. R. Ralph, G. A. Hards, “Powering the cars and homes of tomorrow” Chem. Ind. 9 (1998) 337-342.
[6] U.G. Bossel, “Proceedings of the European Fuel cell Forum Portable Fuel cell Conference”, Lucerne (1999) 79-84.
[7] J. Zieger, Hydrogen energy progress 10 (1994) 1427-1437.
[8] H. Kahrom, Proceedings of the European Fuel cell Forum Portable Fuel cell Conference, Lucerne (1999) 159.
[9] D. Reister, W. Strobl, Hydrogen energy progress IX (1992) 1202.
[10] K. Ueoka, S. Miyauchi, Y. Asakuma, T. Hirosawa, Y. Morozumi, H. Aokia, T. Miura, “An application of a homogenization method to the estimation of effective thermal conductivity of a hydrogen storage alloy bed considering variation of contact conditions between alloy particles”, Int. J. Hydrog. Energy 32 (2007) 4225-4232.
[11] Paul Vermeulen, Emile F. M. J. van Thiel, Peter H. L. Notten, Chem. Eur. J. 13 (2007) 9892.
[12] A.J. Appleby, F.R. Foulkes, Fuel Cell Handbook, Van Nostrand, New York (1989) 177.
[13] D.S. Watkins, in: L.J.M.J. Blomen, M.N. Mugerwa (Eds.), Fuel Cell Systems, Plenum Press, New York (1993) p. 493.
[14] J. Zieger, Hydrogen energy progress X (1994) 1427-1437.
[15] H. Kahrom, Proceedings of the European Fuel cell Forum Portable Fuel cell Conference, Lucerne (1999) 159.
[16] B. Lindstrom, L.J. Pettersson, “Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications”, Int. J. Hydrog. Energy 26 (2001) 923-933.
[17] J.R. Rostrup-Nielsen, T.S. Christensen, I. Dybkjaer, “Steam reforming of liquid hydrocarbons” Recent Adv. Basic Appl. Aspects Ind. Catal. 113 (1998) 81-95.
[18] T. Takahashi, M. Inoue, T. Kai, Appl. Catal. A 218 (2001) 189.
[19] S. Velu, K. Suzuki, T. Osaki, “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides”, Catal. Lett. 62 (1999) 159-167.
[20] Z. F. Wang, J. Y. Xi, W. P. Wang, G. X. Lu, J., “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures” Mol. Catal. A: Chemical, 191 (2003) 123-136.
[21] M.L. Cubeiro, J.L.G. Fierro, “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, Appl. Catal. A 168 (1998) 307-322.
[22] S. Schuyten, E.E. Wolf, “Selective combinatorial studies on Ce and Zr promoted Cu/Zn/Pd catalysts for hydrogen production via methanol oxidative reforming”Catal. Lett. 106 (2006) 7-14.
[23] L. Mo, X. Zheng, C.T. Yeh, “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures” Chem. Commun. (2004) 1426-1427.
[24] S. Velu and K. Suzuki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance”, Top. Catal. 22 (2003) 235-244.
[25] J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389-403.
[26] M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, “Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix”, Appl. Catal. B-Environ. 77 (2007) 46–57.
[27] T. Shishido, Y. Yamamoto, H. Morioka, K. Takehira, “Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming”, J. Mol. Catal. A: Chem. 268 (2007) 185-194.
[28] T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira, “Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation”, Appl. Catal. A: General 303 (2006) 62–71
[29] J. Patt, D. J. Moon, C. Phillips, L. Thompson, “Molybdenum carbide catalysts for water–gas shift”, Catal. Latt. 65(2000) 193-195.
[30] G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H. K. Matralis, “A comparative study of Pt/γ-Al2O3, Au/ -Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, Catal. Today, 75(2002) 157-167.
[31] J. B. Wang, S. C. Lin, T. J. Huang, “Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria”, Appl. Catal. A-Gen., 232(2002) 107-120
[32] G. Avgouropoulos, T. Ioannides, “Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method”, Appl. Catal. A-Gen., 244(2003) 155-167.
[33] A. J. Dyakonov, “Abatement of CO from relatively simple and complex mixtures - I. Oxidation on Pd-Ag/zeolite catalysts”, Appl. Catal. B-Environ., 45(2003) 241-309.
[34] B. Qiao, Y. Deng, “Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H2” Chem. Comm., (1997) 2192-2193.
[35] Y.-F. Han, M. Kinne, R. J. Behm, “Selective oxidation of CO on Ru/gamma-Al2O3 in methanol reformate at low temperatures”, Appl. Catal. B-Environ., 52(2004) 123-134.
[36] I. Aartun, H. J. Venvik, A. Holmen, P. Pfeifer, O. Görke, K. Schubert, “Temperature profiles and residence time effects during catalytic partial oxidation and oxidative steam reforming of propane in metallic microchannel reactors”, Catal. Today 110(2005) 98-107.
[37] S. Takenaka, T. Shimizu, K, Otsuka “Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts ”, Int. J. Hydrog. Energy, 29(2004) 1065-1073
[38] Shetian Liu, Katsumi Takahashi, Kenji Fuchigami, Kazuo Uematsu, “, “Hydrogen production by oxidative methanol reforming on PdZnO”, Appl.Catal. A: Gen. 299 (2006) 58–65
[39] Shetian Liu, Katsumi Takahashi, Kazuo Uematsu, Muneo Ayabe, “Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component”, Applied Catal. A: General 277 (2004) 265–270
[40] Stephen Schuyten, Peter Dinka, Alexander S. Mukasyan, Eduardo Wolf, “A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol”, Catal. Lett. 121 (2008) 189-198
[41] Liu. Shetian, Takahashi, Katsumi, Eguchi, Haruki, Uematsu, Kazuo, “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials”, Catal. Today 129 (2007) 287-292
[42] Shetian Liu, Katsumi Takahashi, Haruki Eguchi, Kazuo Uematsu, “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials”, Catal. Today 129 (2007) 287–292
[43] Agrell, J., Birgersson, H., Boutonnet, M., Melián-Cabrera, I., Navarro, R.M., Fierro, J.L.G., “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389–403
[44] R. M. Navarro, M. A. Pen˜a, and J. L. G. Fierro, “Hydrogen production reactions from carbon feedstocks: Fossils fuels and biomass”, Chem. Rev. 107 (2007) 3952-3991
[45] M. L. Cubeiro, J. L. G. Fierro, “Partial oxidation of methanol over supported palladium catalysts”, Appl. Catal. A-Gen., 168(1998) 307-322
[46] S. Murcia-Mascaròs, R. M. Navarro, L. Gòmez-Sainero, U. Costantino, M. Nocchetti, J. L. G. Fierro, “Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors”, J. Catal., 198(2001) 338-347
[47] J. P. Breen, J. R. H. Ross, “Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts” Catal. Today 51 (1999) 521-533
[48] S. Schuyten, E.E. Wolf, “”, Catal. Letters Vol. 106, Nos. 1–2, January 2006
[49] W.H. Cheng, “Reaction and XRD studies on Cu based methanol decomposition catalysts- role of constituents and development of high-activity multicomponent catalyst”, appl.catal. A-Gen. 130 (1995) 13-30
[50] T. Tanabe, S. Kameoka, A. P. Tsai, “A novel catalyst fabricated from Al–Cu–Fe quasicrystal for steam reforming of methanol” Catal. Today 111 (2006) 153–157
[51] H. C. Yang, F. W. Chang,. L. S. Roselin, “Hydrogen production by partial oxidation of methanol over Au/CuO/ZnO catalysts” J. Mol. Catal. A-Chem. 276 (2007) 184-190
[52] M.R. Morales, B.P. Barbero and L.E. Cadús, “Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts”, Appl. Catal. B-Environ. 67 (2006) 229–236
[53] R. Craciun, B. Nentwich, K. Hadjiivanou, H. Kno¨zinger, “Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation”, Appl. Catal. A 243 (2003) 67-79.
[54] F.M. Gottschalk, G.J. Hutchings, “Manganese oxide water-gas shift catalysts initial optimization studies”, Appl. Catal. 51 (1989), pp. 127–139
[55] G.J. Hutchings, R.G. Copperthwaite, F.M. Gottschalk, R. Hunter, J. Mellor, S.W. Orchard, T. Sangiorgio, “A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide, and copper manganese oxide as catalysts for the water –gas shift reaction”, J. Catal. 137 (1992), pp. 408–422.
[56] J. Papavasiliou and G. Avgouropoulos, T. Ioannides. “Steam reforming of methanol over copper–manganese spinel oxide catalysts”, Catal. Commun. 6 (2005) 497–501
[57] J. Papavasiliou, G. Avgouropoulos, T. Ioannides. “In situ combustion synthesis of structured Cu–Ce–O and Cu–Mn–O catalysts for the production and purification of hydrogen”, Appl. Catal., B Environ. 66 (2006), pp. 168–174
[58] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts”, J. catal. 251 (2007) 7–2
[59] M.C. A ´ lvarez-Galva´n, V.A. de la Pen˜a O´ Shea, J. L. G. Fierro, P.L. Arias, Catal. Commun. 4 (2003) 223.
[60] Eblemen, J. J. Ann. Chim. Phys., Ser. 3 1846, 57, 319
[61] Graham, T. J. Chem. SOC. 1864, 17, 318
[62] Liesegang, R. E. Photogr. Archiu. 1896, 221
[63] Du, Xiaru, Yuan, Zhongshan, Cao, Lei, Zhang, Chunxi, Wang, Shudong, “Water gas shift reaction over Cu–Mn mixed oxides catalysts: Effects of the third metal”, Fuel Process. Technol. 89 (2008) 131-138
[64] Hsien-Chang Yang, Feg-Wen Chang, L. Selva Roselin, “Hydrogen production by partial oxidation of methanol over Au/CuO/ZnO catalysts”, J. Mol. Catal. A-Chem, 276(2007)184-190
[65] Wang, Z., W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 for hydrogen production via methanol partial oxidation”, Int. J. Hydrogen Energy. 28 (2003) 151-158.
[66] Heinisch, H. K. Crystal Growth in Gels; Pennsylvania State University Press: State College, PA, 1970.
[67] Roy, R. J. Am. Ceram. SOC. 1969,52, 344
[68] Iler, R. K. The Chemistry of Silica; Wiley: New York, 1955
[69] Chem.Mater. 1993, 5, 609-613
[70] J.J Kim, O. J. Kwon, S. M. Hwang, “Method of catalyst coating in micto-reactors for methanol stem reforming” , Appl. Catal. A 316 (2006) 83-89
[71] T. Kim, S. Kwon, “Catalyst preparation for fabrication of a MEMS fuel reformer” J. Chem. Eng. 123 (2006) 93-102
[72] J Kim, O. J. Kwon, S. M. Hwang, “A silicon-based miniaturized reformer for high power electric devies” , Appl. Catal. A 133 (2007) 157-163
[73] Y. Kawamura, N. Ogura, T. Uamamoto, A Igaranshi, Chem. Eng. Sic. 61 (2006) 1092-1101
[74] T. W. Wang, “The study of initiation of partial oxidation of methanol catalysis for hydrogen production at room temperature over CuZn-based catalysts modified by transition metals”MS. Thesis, National Tsing Hua University (2008) 78.
[75] A. Ulhir, Bell System Technology Journal, 35, p.333 (1956).
[76] L.T. Canham, Appl. Phys. Lett. 57, p.1046 (1990).
[77] D. E. Aspnes, J. 13. Theeten, and R Hottier, Phys. Rev. B, 20, 3292 (1979).
[78] V. Lehmann, and U. Gosele, Appl. Phys. Lett., 58, 856 (1991).
[79] C. Pickering, M I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, Thin Solid Films, 125, 157 (1985).
[80] I. Sagnes, G. Vincent, and P. A. Badoz, J. Appl. Phys., 62, 1155 (1993).
[81] P. Steiner, F. Kozlowski, and W. Lang, IEEE Electron. Devices Letters., 62, 317 (1993).
[82] J.M. Keen, W. Eccleston and P.J. Rosser, Proc. 20th Eur. Solid State Device Research Conf., Nottingham (1990).
[83] P.C. Searson, Appl. Phys. Letters., 59, 832 (1991).
[84] S.G. Johnson, and J.D. Joannopoulos, Photonic crystals the road from theory to practice, Kluwer, Boston, (2002).
[85] P. Gupta, A.C. Dillon, A.S. Bracker, S.M. George, Surf. Sci., 245, 360 (1991).
[86] A.C. Dillon, M.B. Robinson, M.Y. Han, and S.M. George, J. Electrochem. Soc., 139, 537 (1992).
[87] R.C. Anderson, R.S. Muller, and C.W. Tobias, Sens. Actuators A, 21, 835 (1990)
[88] L.T. Canham, Appl. Phys. Lett., 57, 1046 (1990).
[89] L.T. Canham, Adv. Mater., 7, 1033 (1995). [90] O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep., 38, 1 (2000).
[91] K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, Nature, 384, 338 (1996).
[92] C. C. Striemer and P. M. Fauchet, Appl. Phys. Lett., 81, 2980 (2002).
[93] C. Mazzoleni and L. Pavesi. Appl. Phys. Lett., 67, 2983 (1995).
[94] V.S.Y. Lin, K. Motesharei, K.P.S. Dancil, M.J. Sailor, M.R. Ghadiri, Science, 278, 840 (1997).
[95] M.J. Sailor, Sensor Applications of Porous Silicon (in Properties of Porous Silicon), L. Canham, Ed., Short Run Press Ltd., London (1997).
[96] S. Chan, P.M. Fauchet, Y. Li, L.J. Rothberg, and B.L. Miller, Phys. Stat. Solidi A, 182, 541 (2000).
[97] F. Cunin, T.A. Schmedake, J.R. Link, Y.Y. Li, J. Koh, S.N. Bhatia, M.J. Sailor, Nature Mater., 1, 39 (2002).
[98] W. Theiss, Surf. Sci. Rep., 29, 91 (1997).
[99] D.R. Turner, J. Electrochem. Soc., 138, 807 (1991).
[100] R.L. Smith, and S.D. Collins, J. Appl. Phys. 71, R1 (1992).
[101] A. J. Bard, Encyclopedia of Electrochemistry of the Elements, Dekker, New York (1986).
[102] A.K. Vijh, Electrochemistv of Metals and Semiconductors, Dekker, New York (1973).
[103] B.E. Conway, J.O’M. Bockris, E. Yeager, S.U.M. Khan, and R.E. White, Comprehensive Treatise of Electrochemistry (Vol. 7), Plenum, New York, (1983).
[104] P. J. Holmes, The Electrochemistry of Semiconductors, Academic, London, (1962).
[105] E. A. Efimov and I. G. Erusalimchik, Electrochemistry of Germanium and Silicon, Sigma, London (1963).
[106] J.B. Flynn, J. Electrochem. Soc., 105, 715 (1958)
[107] H. Foll, Appl. Phys. A, 53, 8 (1991).
[108] L. Canham, New Scientist, 1868 (1993).
[109] M.I.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Chew, and A.G. Cullis, J. Cryst. Growth, 73, 622 (1985).
[110] L. Pavesi, J. Appl. Phys., 80, 216 (1996).
[111] T. Trifonov, A. Rodriguez, F. Servera, L.F. Marsal, J. Pallarès, R. Alcubilla, phys. stat. sol. (a), 202, 1634 (2005).
[112] P. Müller, IUPAC Manual of Symbols and Technology, Pure Appl. Chem., 31, 578 (1972).
[113] A. Bruyant, G. Lérondel, P.J. Reece, and M. Gal. Appl. Phys. Lett. 82, 3227 (2003).
[114] H. S. Nalwa, Silicon Based Materials and Devices, Vol. 2: Properties and Devices, Academic Press, San Diego (2001).
[115] J. Charrier, M. Guendouz, L. Haji, and P. Joubert, Phys. Stat. Sol. (a), 182, 431 (2000).
[116] L. De Stefano, L. Moretti, A.M. Rossi, and I. Rendina, Sen. Actuators A, 104, 179 (2003).
[117] J. Volk, J. Balázs, A.L. Tóth, and I. Bársony, Sen. Actuators B, 100, 163 (2004).
[118] E.K. Squire, P.A. Snow, P.St. Russell, L.T. Canham, A.J. Simons, and C.L. Reeves, J. Luminescence, 80, 125 (1999).
[119] A. Halimaoui, Porous Silicon formation by anodization (in Properties of Porous Silicon), L. Canham, Ed., Short Run Press Ltd., London (1997).
[120] C. Mazzoleni, Tesi di Laurea, Universitá di Trento (1995).
[121] L. Pavesi, and V. Mulloni, J. Luminescence, 80, 43 (1999).
[122] E. Lorenzo, C.J. Oton, N.E. Capuj, M. Ghulinyan, D. Navarro Urrios, Z. Gaburro, and L. Pavesi, Applied Optics, 44, 5415 (2005).
[123] L. Pavesi. Microelectronics Journal, 27, 437(1996).
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top