|
1. Akesson, A., B. Julin, and A. Wolk, Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res, 2008. 68(15): p. 6435-41. 2. Hong, X., et al., SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett, 2006. 236(1): p. 39-45. 3. Teicher, B.A. and S.P. Fricker, CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res, 2010. 16(11): p. 2927-31. 4. Raizer, J.J., HER1/EGFR tyrosine kinase inhibitors for the treatment of glioblastoma multiforme. J Neurooncol, 2005. 74(1): p. 77-86. 5. Louis, N., D., et al., The 2007 WHO ClassiWcation of Tumours of the Central Nervous System. Acta Neuropathol 2007. 114: p. 97-109. 6. de Vries, N.A., J.H. Beijnen, and O. van Tellingen, High-grade glioma mouse models and their applicability for preclinical testing. Cancer Treat Rev, 2009. 35(8): p. 714-23. 7. Chen, J., et al., CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell, 2011. 19(4): p. 541-55. 8. Carmeliet, P. and R. Jain, K., Angiogenesis in cancer and other diseases. Nature, 2000. 407: p. 249-257. 9. di Tomaso, E., et al., Glioblastoma recurrence after cediranib therapy in patients: lack of "rebound" revascularization as mode of escape. Cancer Res, 2011. 71(1): p. 19-28. 10. Nussenbaum, F. and I.M. Herman, Tumor angiogenesis: insights and innovations. J Oncol, 2010. 2010: p. 132641. 11. Girolamo, F., et al., Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets. PLoS One, 2013. 8(12): p. e84883. 12. Gerhardt, H. and C. Betsholtz, Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res, 2003. 314(1): p. 15-23. 13. Shinae Kizaka-Kondoh, M.I., Hiroshi Harada,Masahiro Hiraoka, Tumor hypoxia: A target for selective cancer therapy. Cancer Sci, 2003. 94: p. 1021-1028. 14. J. Martin Brown, A.J.G., The Unique Physiology of Solid Tumors: Opportunities (and Problems) for Cancer Therapy. Cancer Reserch, 1998. 58: p. 1408-1416. 15. Ke, Q. and M. Costa, Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol,2006. 70(5): p. 1469-80. 16. Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 3(10): p. 721-32. 17. Ho c̈ kel, M., K. Schlenger, and P. Vaupel, Hypoxic Cervical Cancers with Low Apoptotic Index Are Highly Aggressive. Cancer Res, 1999. 59: p. 4525-4528. 18. Michael Ho ̈ckel, P.V., Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects. National Cancer Institute, 2001. 93: p. 266-276. 19. Teicher., B.A., J.S. Lazo., and A.C. Salterelli., Classification of Antineoplastic Agents by their Selective Toxicities toward Oxygenated and Hypoxie Tumor Cells. Cancer Res, 1981. 41: p. 73-81. 20. KATO, Y., et al., Effects of Acute and Chronic Hypoxia on the Radiosensitivity of Gastric and Esophageal Cancer Cells. Anticancer Res, 2011. 31: p. 3369-3376. 21. Schafer, M. and S. Werner, Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol, 2008. 9(8): p. 628-38. 22. Garcia-Lora, A., I. Algarra, and F. Garrido, MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol, 2003. 195(3): p. 346-55. 23. Laoui, D., et al., Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. Int J Dev Biol, 2011. 55(7-9): p. 861-7. 24. Gabrusiewicz, K., et al., Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One, 2011. 6(8): p. e23902. 25. Green, C.E., et al., Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One, 2009. 4(8): p. e6713. 26. Perego, C., S. Fumagalli, and M.G. De Simoni, Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation, 2011. 8: p. 174. 27. Eric, C., Gliomagenesis: Genetic Alterations and Mouse Models. Nat Rev Genet, 2001. 2: p. 120-129. 84 28. Wang, S.-C., Tumor Microenvironments of A New Murine Astrocytoma. NTHU, 2011. 29. Thelen, M., Dancing to the tune of chemokines. Nature, 2001. 2: p. 129-134. 30. Kucia, M., et al., CXCR4–SDF-1 signalling, locomotion, chemotaxis and adhesion. Molecular Histology 2004. 35: p. 233-245. 31. Simone Barbero, R.B., Adriana Bajetto, Carola Porcile, Paolo Pirani, Jean Louis Ravetti, Gian Luigi Zona, Renato Spaziante, Tullio Florio, and Gennaro Schettini, Stromal Cell-derived Factor 1alpha Stimulates Human Glioblastoma Cell Growth through the Activation of Both Extracellular Signal-regulated Kinases 1/2 and Akt. Cancer Research, 2003. 63: p. 1959-1974. 32. Bajetto, A., et al., Expression of CXC chemokine receptors 1-5 and their ligands in human glioma tissues: role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem Int, 2006. 49(5): p. 423-32. 33. Zlotnik, A., Chemokines in neoplastic progression. Semin Cancer Biol, 2004. 14(3): p. 181-5. 34. Kei Tashiro, H., Ralf Heiler, Michio Schirozu, Toru Nakano, Tasuku Honjo., Signal Sequence Trap: A Cloning Strategy for Secreted Proteins and Type I Membrane Proteins. Science, 1993. 261: p. 600-603. 35. Sung, B., et al., Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res, 2008. 68(21): p. 8938-44. 36. Balkwill, F., Chemokine biology in cancer. Immunology, 2003. 15: p. 49-55. 37. Luker, K.E. and G.D. Luker, Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett, 2006. 238(1): p. 30-41. 38. Dewan, M.Z., et al., Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother, 2006. 60(6): p. 273-6. 39. Liang, Z., et al., Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun, 2007. 363(3): p. 542-6. 40. Orimo, A., et al., Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005. 121(3): p. 335-48. 41. Flynn, G., et al., Regulation of chemokine receptor expression in human microglia and astrocytes. Journal of Neuroimmunology, 2003. 136(1-2): p.84-93. 42. Li, M. and R.M. Ransohoff, Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology. Prog Neurobiol, 2008. 84(2): p. 116-31. 43. Wang, S.C., et al., Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest, 2012. 92(1): p. 151-62. 44. Kubota Y, K.H., Martin GR, Lawley TJ., Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. Cell Biol. , 1988. 107: p. 1589-1598. 45. Mao, C., R.Y. Liao, and Q. Chen, Loss of PTEN expression predicts resistance to EGFR-targeted monoclonal antibodies in patients with metastatic colorectal cancer. Br J Cancer, 2010. 102(5): p. 940. 46. Moskovits, N., et al., p53 Attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res, 2006. 66(22): p. 10671-6. 47. Addadi, Y., et al., p53 status in stromal fibroblasts modulates tumor growth in an SDF1-dependent manner. Cancer Res, 2010. 70(23): p. 9650-8. 48. Nishiyama, A., Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist, 2007. 13(1): p. 62-76. 49. Bergers, G. and L.E. Benjamin, Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003. 3(6): p. 401-10. 50. William, P., J., Leenders., et al., Antiangiogenic Therapy of Cerebral Melanoma Metastases Results in Sustained Tumor Progression via Vessel Co-Option. Clin Cancer Res, 2004. 10: p. 6222-6230. 51. Yancopoulos., G.D., et al., Vascular-specific growth factors and blood vessel formation. Nat Rev Cancer, 2000. 407: p. 242-248. 52. Lewis, C.E. and J.W. Pollard, Distinct role of macrophages in different tumor microenvironments. Cancer Res, 2006. 66(2): p. 605-12. 53. Qian, B.Z. and J.W. Pollard, Macrophage diversity enhances tumor progression and metastasis. Cell, 2010. 141(1): p. 39-51. 54. Bingle, L., N.J. Brown, and C.E. Lewis, The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol, 2002. 196(3): p. 254-65.\ 55. Jeffrey, W., Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev, 2004. 4: p. 71-78. 56. R.L.Zimmer. and R.M.Woollacott., Regulation of the Macrophage Content of Neoplasms by Chemoattractants. Science, 1982. 220: p. 210-212. 57. Chiang, C.S., et al., Functional phenotype of macrophages depends on assay procedures. Int Immunol, 2008. 20(2): p. 215-22. 58. Stout, R.D., et al., Macrophages Sequentially Change Their Functional Phenotype in Response to Changes in Microenvironmental Influences. The Journal of Immunology, 2005. 175(1): p. 342-349. 59. Watters, J.J., J.M. Schartner, and B. Badie, Microglia function in brain tumors. J Neurosci Res, 2005. 81(3): p. 447-55. 60. Komohara, Y., et al., Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol, 2008. 216(1): p. 15-24. 61. Utsugi., T., et al., Elevated Expression of Phosphatidylserine in the Outer Membrane Leaflet of Human Tumor Cells and Recognition by Activated Human Blood Monocytes. Cancer Res, 1991. 51: p. 3062-3066. 62. OHNO, S., et al., Correlation of Histological Localization of Tumor-associated Macrophages with Clinicopathological Features in Endometrial Cancer. ANTICANCER RESEARCH, 2004. 24(3335-3342). 63. Jin, D.K., et al., Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med, 2006. 12(5): p. 557-67. 64. Wang, Y., et al., Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. J Mol Cell Cardiol, 2006. 41(3): p. 478-87. 65. Ceradini, D.J., et al., Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med, 2004. 10(8): p. 858-64. 66. Aghi, M., et al., Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res, 2006. 66(18): p. 9054-64. 67. Grunewald, M., et al., VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 2006. 124(1): p. 175-89. 68. Fang, H.-Y., et al., Hypoxia inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood, 2009. 114: p. 844-859. 69. Yin, Q., et al., SDF-1alpha inhibits hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells through PI3K/Akt and ERK1/2 signaling pathways. Mol Biol Rep, 2011. 38(1): p. 9-16. 70. Kawaguchi, A., et al., Inhibition of the SDF-1alpha-CXCR4 axis by the CXCR4 antagonist AMD3100 suppresses the migration of cultured cells from ATL patients and murine lymphoblastoid cells from HTLV-I Tax transgenic mice. Blood, 2009. 114(14): p. 2961-8. 71. Tsutsumi, H., et al., Therapeutic potential of the chemokine receptor CXCR4 antagonists as multifunctional agents. Biopolymers, 2007. 88(2): p. 279-89. 72. Heusinkveld, M. and S.H. van der Burg, Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med, 2011. 9: p. 216. 73. Kioi, M., et al., Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest, 2010. 120(3): p. 694-705. 74. Kozin, S.V., et al., Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res, 2010. 70(14): p. 5679-85. 75. Heissig, B., et al., Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche Requires MMP-9 Mediated Release of Kit-Ligand. Cell, 2002. 109: p. 625-637. 76. Mansour, A., et al., Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med, 2012. 209(3): p. 537-49. 77. Heissig, B., et al., Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med, 2005. 202(6): p. 739-50. 78. Madlambayan, G., J., et al., Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger. Blood, 2009. 114: p. 4310-4319. 79. Wang, S.C., et al., 2- and 4-Aminobiphenyls induce oxidative DNA damage in human hepatoma (Hep G2) cells via different mechanisms. Mutat Res, 2006. 593(1-2): p. 9-21. 80. Salvucci, O., et al., Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood, 2002. 99: p. 2703-2711. 81. Lewis, C. and C. Murdoch, Macrophage Responses to Hypoxia Implications for Tumor Progression and Anti-Cancer Therapies. American Journal of Pathology,, 2005. 167: p. 627-635. 82. Mantovani, A., P. Allavena, and A. Sica, Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer, 2004. 40(11): p. 1660-7.
|