跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/02/23 07:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾明哲
研究生(外文):Ming Che Chung
論文名稱:超臨界CO2 於多孔介質流動之取熱實驗探討增強型地熱系統之熱傳現象
論文名稱(外文):The Experimental study of supercritical CO2 flow in the porous media for the heat transfer of EGS
指導教授:林大偉林大偉引用關係謝瑞青謝瑞青引用關係
指導教授(外文):Ta-Wei LinJui-Ching Hsieh
口試委員:胡毓忠黃崇能謝瑞青林大偉
口試委員(外文):Yuh-Chung HuChung-Neng HuangJui-Ching HsiehTa-Wei Lin
口試日期:2014-07-01
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:機電系統工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:112
中文關鍵詞:地熱超臨界二氧化碳
外文關鍵詞:Geothermalsupercriticalcarbon dioxide (CO2)
相關次數:
  • 被引用被引用:6
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本文以實驗的方法分析二氧化碳於超臨界狀態下,在外徑12.7 mm、內徑10 mm和總長1.8 m的不鏽鋼的圓管中之熱傳現象,為模擬超臨界二氧化碳於儲集層中流動之熱傳現象加入二氧化矽之多孔介質並分析不同粒徑的影響。實驗中進行的各種參數包括壓力,流量,初始壁溫和空管與多孔介質加入的比較。實驗結果發現二氧化碳於超臨界狀態下,密度、黏度、比熱於偽臨界點有劇烈的變化,發現溫度強烈影響超臨界二氧化碳的熱傳,但隨著溫度上升,遠離了偽臨界點後,熱對流係數變化較為平緩,且可以發現壓力的影響較為薄弱;最理想的操作壓力為10.3 MPa,因為本實驗熱平衡後壁溫的均溫都較接近46.85℃,比熱較高從而影響熱傳變化。加入了二氧化矽之多孔介質後,其結果發現,與空管相比之下,加入二氧化矽之多孔介質的測試段因為增加了接觸面積強化了熱傳現象,且流經孔隙介質的超臨界二氧化碳會隨著粒徑減少,流經速度會劇增,更快帶走熱量。由出入口溫差分布圖和熱對流係數圖可以發現流動的路徑對於熱交換面積及壓力變化有某種程度上的關係,對於往後現地取熱效能分析具有參考效果。
This thesis experimental carbon dioxide for heat transfer performance at supercritical in vertical stainless steel circle tube with outside diameter 12.7 mm and inside diameter 10.0 mm and length 1.8 m, in order to simulation supercritical carbon dioxide flow into reservoir, the silica-based porous media is added and to analysis effect of different particle diameter.
The system pressure was set at 7.5, 10, or 14 MPa; the flow rate was set at 10, 30, 40, or 50 mL/min; and the initial wall temperature was set at 150 or 200 ºC to determine the behavior of supercritical carbon dioxide and compare with/without porous media. The results showed that carbon dioxide property changes very dramatically at pseudo-critical point, heat transfer of supercritical carbon dioxide depend on temperature affect, after far from pseudo-critical point the heat transfer coefficient was changes very smooth, and then can found pressure insignificantly affected; 10.3 MPa is optimal operating pressure, because of thermal equilibrium temperature is close to 46.85 ºC at 10 MPa. The results showed that, compare with/without porous media, that effect of heat transfer is enhanced when porous media is added, the reason is the contact area increases between the working fluid and porous media, moreover, heat transfer increased with particle diameter decrease result from the flow velocity increased can carry more heat when supercritical carbon dioxide flow through porous media. This study will provide the effective data for regarding the operating conditions of the enhanced geothermal system.

摘要
Abstract
致謝
目次
表次
圖次
符號索引
一、緒論
1-1研究背景
1-2研究動機
1-3研究目的與方法
1-4論文大綱
二、地熱系統介紹
2-1 地熱系統分類
2-2 地熱系統工作原理與技術
三、超臨界流體介紹
3-1超臨界流體技術
3-2超臨界二氧化碳應用介紹
四、實驗步驟
4-1 實驗流程
4-2 實驗系統說明
4-3 資料換算
五、結果與討論
5-1流量對熱傳的影響分析
5-2 壓力對熱傳的影響分析
5-3 初始壁溫對熱傳的影響分析
5-4 粒徑對熱傳的影響分析
5-5 綜合分析
六、結論與展望
參考文獻
個人簡歷


[1]NIST standard reference database, http://webbook.nist.gov/chemistry/fluid/
[2]I. Dincer, Renewable energy and sustainable development: a crucial review, Renewable and Sustainable Energy Reviews, Vol. 4, Issue 2, 2000, pp. 157-175.
[3]P. Blum, G. Campillo, W. Mu ̈nch, T. Ko ̈lbel, CO2 savings of ground source heat pump systems – A regional analysis, Renewable Energy, Vol. 35, Issue 1, 2010, pp. 122-127.
[4]IB. Fridleifsson, Geothermal energy for the benefit of the people, Renewable and Sustainable Energy Reviews, Vol. 5, Issue 3, 2001, pp. 299-312.
[5]E. Barbier, Geothermal energy technology and current status: an overview, Renewable and Sustainable Energy Reviews, Vol. 6, Issue 1-2, 2002, pp. 3-65.
[6]J.W. Lund, “Direct heat utilization of geothermal resources,” Renewable Energy, Vol. 10, Issue 2–3, 1997, pp. 403–408.
[7]陳彥豪、劉婉柔,次世代新能源深層地熱發電技術介紹,台經月刊383,2009,pp. 62-76.
[8]D. Brown, A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water, Proceedings of the 25th Workshop on Geothermal Reservoir Engineering, Stanford University, California, 2000, pp. 233-238.
[9]C. Fouillac, B. Sanjuan, S. Gentier, and I. Czernichowski-Lauriol, Could sequestration of CO2be combined with the development of enhanced geothermal systems, The 3rd Annual Conference on Carbon Capture and Sequestration, Alexandria, 2004.
[10]A.D. Atrens, H. Gurgenci, V. Rudolph, CO2 thermosiphon for competitive power generation, Energy and Fuels,Vol. 23, Issue 1, 2009, pp. 553-557.
[11]A.D. Atrens, H. Gurgenci, V. Rudolph, Electricity generation using a carbon-dioxide thermosiphon, Geothermics , Vol. 39, Issue 2, 2010, pp.161-169.
[12]A.D. Atrens, H. Gurgenci, V. Rudolph, Removal of water for carbon dioxide-based EGS operation, Proceedings of the 36th Workshop on Geothermal Reservoir Engineering, Stanford University, California, 2011.
[13]M. Haghshenas Fard, K. Hooman, H.T. Chua, Numerical simulation of a supercritical CO2 geothermosiphon, International Communications in Heat and Mass Transfer, Vol. 37, Issue 10, 2010, pp.1447-1451.
[14]A. Ueda, K. Kato , T. Ohsumi, T. Yajima, H. Ito, H. Kaieda, R. Meycalf, and H. Takase , Experimental studies of CO2-rock interaction at elevated temperatures under hydrothermal conditions, Geochemical Journal, Vol. 39, 2005, pp.417-425.
[15]Y.Y. Wan, T.F. Xu, and K. Pruess, Impact of fluid-rock interactions on enhanced geothermal systems with CO2 as heat transmission fluid, Proceedings of the 36th Workshop on Geothermal Reservoir Engineering, Stanford University, California , 2011.
[16]Steve J. Butler, Subir K. Sanyal, and Ann Robertson-Tait, A numerical simulation study of the performance of enhanced geothermal systems, Proceedings of the 29th Workshop on Geothermal Reservoir Engineering, Stanford University, California, 2004
[17]K. Pruess, Enhanced geothermal systems(EGS) using CO2 as working fluid-a novel approach for generating renewable energy with simultaneous sequestration of carbon, Geothermic, Vol. 35, Issue 4, 2006, pp. 351-367.
[18]Ernest L. Majer, Roy Baria, Mitch Stark, Stephen Oates, Julian Bommer, Bill Smith, Hiroshi Asanuma, Induced seismicity associated with Enhanced Geothermal Systems, Vol. 36, Issue 3, 2007, pp.185-222.
[19]Tianfu Xu, Karsten Pruess, and John Apps, Numerical studies of fluid-rock interactions in enhanced geothermal systems (EGS) with CO2 as working fluid, Proceedings of the 33th Workshop on Geothermal Reservoir Engineering, Stanford University, California, 2008.
[20]K. Pruess, On production behavior of enhanced geothermal systems with CO2 as working fluid, Energy Conversion and Management, Vol. 49, Issue 6, 2008, pp.1446-1454.
[21]Zhe Wang, Mark W. McClure, and Roland N. Horne, A single-well EGS configuration using a thermosiphon, Proceedings of the 34th Workshop on Geothermal Reservoir Engineering, Stanford University, California, 2009.
[22]Jimmy B. Randolpha, Martin O. Saar, Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: Implications for CO2 sequestration, Energy Procedia, Vol. 4, 2011, pp.2206-2213.
[23]Fangming Jiang, Liang Luo, Jiliang Chen, A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems, International Communications in Heat and Mass Transfer, Vol. 41, 2013, pp.57-62.
[24]Atilla Bıyıkog ̌lu, Resit Yalcınkaya, Effects of different reservoir conditions on carbon-dioxide power cycle, Energy Conversion and Management, Vol. 72, 2013, pp.125-133.
[25]Binglu Ruan, Ruina Xu, Lingli Wei, Xiaolong Ouyang, Feng Luo, Peixue Jiang, Flow and thermal modeling of CO2 in injection well during geological sequestration, International Journal of Greenhouse Gas Control, Vol. 19, 2013, pp.271-280.
[26]Elena Tillner, Thomas Kempka, Benjamin Nakaten, Michael Kühn, Geological CO2 Storage Supports Geothermal Energy Exploitation: 3D Numerical Models Emphasize Feasibility of Synergetic Use, Energy Procedia, Vol. 37,2013, pp.6604-6616.
[27]Arun Ram Mohan, Uday Turaga, Vishakha Shembekar, Derek Elsworth, Sarma V. Pisupati, Utilization of carbon dioxide from coal-based power plants as a heat transfer fluid for electricity generation in enhanced geothermal systems (EGS), Energy, Vol. 57, 2013, pp.505-512.
[28]Stefan Finsterle, Yingqi Zhang, Lehua Pan, Patrick Dobson, Ken Oglesby, Microhole arrays for improved heat mining from enhanced geothermal systems, Geothermics, Vol. 47, 2013, pp.104-115.
[29]Fu-Zhen Zhang, Pei-Xue Jiang, Rui-Na Xu, System thermodynamic performance comparison of CO2-EGS and water-EGS systems, Applied Thermal Engineering, Vol. 61, Issue 2, 2013, pp.236-244.
[30]Feng Luo, Rui-Na Xu, Pei-Xue Jiang, Numerical study of the influence of injection/production well perforation location on CO2-EGS system, Energy Procedia, Vol. 37, 2013, pp.6636-6643.
[31]S.M. Liao, T.S. Zhao, An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes, International Journal of Heat and Mass Transfer, Vol. 45, Issue 25, 2002, pp. 5025-5034.
[32]Seok Ho Yoon, Ju Hyok Kim, Yun Wook Hwang, Mm Soo Kim, Kyoungdoug Min, Yongchan Kim, Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region, International Journal of Refrigeration, Vol. 26, Issue 8, 2003, pp.857-864.
[33]Incropera FP, DeWitt DP. Introduction to heat transfer, 3rd edition, New York: John Wiley & Sons, 1996.
[34]Pei-Xue Jiang, Guang-Shu Si, Meng Li, Ze-Pei Ren, Experimental and numerical investigation of forced convection heat transfer of air in non-sintered porous media, Experimental Thermal and Fluid Science, Vol. 28, 2004, Issue 6, pp.545-555.
[35]M.E. Aerov, O.M. Tojec, Hydraulic and thermal basis on the performance of apparatus with stationary and boiling granular layer, Leningrad, Himia Press, 1968.
[36]S. He, Pei-Xue Jiang, Yi-Jun Xu, Run-Fu Shi, W.S. Kim, J.D. Jackson, A computational study of convection heat transfer to CO2 at supercritical pressures in a vertical mini tube, International Journal of Thermal Sciences, Vol. 44, Issue 6, 2005, pp.521-530.
[37]X.L. Huai, S. Koyama, T.S. Zhao, An experimental study of flowand heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions, Chemical Engineering Science, Vol. 60, Issue 12, 2005, pp.3337-3345.
[38]Rin Yun, Yongchan Kim, Min Soo Kim, Convective boiling heat transfer characteristics of CO2 in microchannels, International Journal of Heat and Mass Transfer, Vol. 48, Issue 2, 2005, pp.235-242.
[39]Pei-Xue Jiang, Run-Fu Shi, Yi-Jun Xu, S. He, J.D. Jackson, Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube, The Journal of Supercritical Fluids, Vol. 38, Issue 3, 2006, pp.339-346.
[40]Pei-Xue Jiang, Run-Fu Shi, Chen-Ru Zhao, Yi-Jun Xu, Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes, International Journal of Heat and Mass Transfer, Vol. 51, Issue 25-26, 2008, pp.6283-6293.
[41]Lv Jing, Wang Weifeng, Zhou Chuanyu, Zhao Huizhong, Yu Guoqing, An Experimental Study on Convective Heat Transfer of Supercritical Carbon Dioxide, International Conference on Energy and Environment Technology, 2009, pp.18-22.
[42]Pei-Xue Jiang, Chen-Ru Zhao, Run-Fu Shi, Yang Chen, Walter Ambrosini, Experimental and numerical study of convection heat transfer of CO2 at super-critical pressures during cooling in small vertical tube, International Journal of Heat and Mass Transfer, Vol. 52, Issues 21-22, 2009, pp.4748-4756.
[43]Zhi-Hui Li, Pei-Xue Jiang, Chen-Ru Zhao, Yu Zhang, Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube, Experimental Thermal and Fluid Science, Vol. 34, Issue 8, 2010, pp.1162-1171.
[44]Mario Magliocco, Timothy J. Kneafsey, Karsten Pruess, and Steven Glaser, Laboratory experimental study of heat extraction from porous media by means of CO2, Proceedings of the 36th Workshop on Geothermal Reservoir Engineering, Stanford University, California, 2011.
[45]Xiao-Dong Niu, Hiroshi Yamaguchi, Xin-Rong Zhang, Yuhiro Iwamoto, Naoki Hashitani, Experimental study of heat transfer characteristics of supercritical CO2 fluid in collectors of solar Rankine cycle system, Applied Thermal Engineering, Vol. 31, Issues 6-7, 2011, pp.1279-1285.
[46]Dong Eok Kim, Moo-Hwan Kim, Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube, International Journal of Heat and Fluid Flow, Vol. 32, Issue 1, 2011, pp176-191.
[47]Xiande Fang, Yu Xu, Xianghui Su, Rongrong Shi, Pressure drop and friction factor correlations of supercritical flow, Nuclear Engineering and Design, Vol. 242, 2012, pp.323-330.
[48]S.E. Mahgoub, Forced convection heat transfer over a flat plate in a porous medium, Ain Shams Engineering Journal, Vol. 4, Issue 4, 2013, pp.605-613.
[49]Lin Chen, Bi-Li Deng, Xin-Rong Zhang, Experimental investigation of CO2 thermosyphon flow and heat transfer in the supercritical region, International Journal of Heat and Mass Transfer, Vol. 64, 2013, pp.202-211.
[50]Xue Jiang, Bo Liu, Chen-Ru Zhao, Feng Luo, Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime, International Journal of Heat and Mass Transfer, Vol. 56, Issues 1-2, 2013, pp.741-749.
[51]廖崑傑,超臨界二氧化碳在微通道氣體冷卻器內的熱傳及壓降特性研究, 國立中央大學機械工程學系碩士論文,2013.
[52]Xin Rong Zhang, Hiroshi Yamaguchi, Forced convection heat transfer of supercritical CO2 in a horizontal circular tube, The Journal of Supercritical Fluids, Vol. 41, Issue 3, 2007, pp.412-420.
[53]陳志安,數值模擬超臨界二氧化碳在多孔材圓管中之熱流現象, 國立中央大學機械工程學系碩士論文,2008.
[54]Yue-Tzu Yang, Ming-Lu Hwang, Numerical simulation of turbulent fluid flow and heat transfer characteristics in heat exchangers fitted with porous media, International Journal of Heat and Mass Transfer, Vol. 52, Issues 13-14, 2009, pp.2956-2965.
[55]Masoud Haghshenas Fard, CFD modeling of heat transfer of CO2 at supercritical pressures flowing vertically in porous tubes, International Communications in Heat and Mass Transfer, Vol. 37, Issue 1, 2010, pp.98-102.
[56]X.L. Cao, Z.H. Rao, S.M. Liao, Laminar convective heat transfer of supercritical CO2 in horizontal miniature circular and triangular tubes, Applied Thermal Engineering, Vol.31, Issues 14-15, 2011, pp.2374-2384.
[57]劉力維、李伯亨、謝瑞青、郭泰融,增強型地熱發電系統,能源報導, 2012, pp.28-31.
[58]盧乙嘉、宋聖榮,未來能源之星-地熱,科學發展,2012, pp.54-61.
[59]C. Cagniard de la Tour, Exposé de quelques résultats obtenus par l’action combinée de la chaleur et de la compression sur certains liquides, tels que l’eau, l’alcool, l’éther sulfurique et l’es-sence de pétrole rectifiée, Annals of Chemistry Physics, Vol. 21, 1822, pp. 127-132, 178-182.
[60]T. Andrews, The Bakerian Lecture: On the Continuity of the Gaseous and Liquid States of Matter, Philosophical Transactions Royal Society, Vol. 159, 1869, pp.575-590.
[61]J.B. Hannay, J. Hogarth, On the solubility of solids in gases, Proceedings of the Royal Society of London, Vol. 29, 1879, pp.324-326.
[62]Egon Stahl, Coupling of extraction with supercritical gases and thin-layer chromatography, Journal of Chromatography A, Vol.142, 1977, pp.15-21.
[63]談駿嵩,超臨界流體的應用,科學發展月刊,Vol.359,2002,pp.12-17.
[64]陳政群、吳石乙,台灣超臨界流體技術應用與發展現況,化工資訊與商情, Vol.30,2005,pp.87-91.
[65]Liangxing Li, Weimin Ma, Experimental characterization of the effective particle diameter of a particulate bed packed with multi-diameter spheres, Nuclear Engineering and Design, Vol.241,2011, pp.1736-1745.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top