(3.236.214.19) 您好！臺灣時間：2021/05/09 22:05

詳目顯示:::

:

• 被引用:0
• 點閱:69
• 評分:
• 下載:0
• 書目收藏:0
 本篇論文主要是採用數值模擬的方法，研究一維單負材料光子晶體的光學特性及應用。首先我們研究單負雙層結構透射性質的研究，另外對於一維結構的光子晶體，我們透過轉移矩陣法來計算由正、負折射率之介質相互交替排列的周期組成，並求得其透射的光學頻譜。利用模擬的結果，我們分析在負折射率材質用不同的介電常數、導磁濾常數及層數對透射率的變化；進一步歸納出各個變量在整體的結構中，所可能扮演的角色及造成的效應。
 In this thesis, we numerical study the optical properties for the photoniccrystals made of single-negative materials. We use the transfer matrix method to calculate the transmission for the one-dimensional photonic systems. The first we study is the layered structure made of ENG-MNG bilayer structure. The transmission properties have been investigated as a function of static parameters of the permittivity and permeability. In the second part, we have extend our study to the negative-index material, i.e., a photonic crystal made of NIM and PIM. We have investigated the defect modes in this structure. The analysis of defect modes can be informative to the design of optical filter.
 第一章 導論………………………………………… 01第二章 理論方法2-1轉移矩陣法………………………………………………032-1-1 單層介質的動態矩陣………………………………………… 032-1-2 單層轉移矩陣………………………………………………… 062-1-3 多層轉移矩陣………………………………………………… 082-1-4 透射率與反射率………………….……………………………11第三章 單負材料(SNG)光學性質之研究3-1簡介………………………………………………………133-2 基本方程式……………………………………………153-3 數值結果與討論……………………………………… 163-3-1 ENG的多層膜結構………………………………………………163-3-2 ENG-MNG的多層膜結構…………………………………………17第四章 缺陷模態(defect mode)4-1簡介………………………………………………………214-2基本方程式………………………………………………214-3數值結果與討論…………………………………………234-3-1非對稱型……………………………………………………… 234-3-2對稱型………………………………………………………… 25第五章 結論…………………………………………28參考文獻………………………………………………29
 [1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys.Rev. Lett. 1987;58:2059–2062.[2] John S. Strong localization of photons in certain disordered dielectric super lattices. Phys.Rev. Lett. 1987;58:2486–2489.[3] Yablonovitch E. Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 1991;67:2295–2298.[4] Joannopoulos JD, Johnson SG, Winn JN, Meada RD. Photoniccrystals: modeling the flow of light. 2nd ed. Princeton: Princeton University Press; 2008.[5] Schneider GJ, Watson GH. Nonlinear optical spectroscopy in one-dimensional photonic crystals. Appl. Phys. Lett. 2003;83:5350–5352.[6] Mansouriu JA, Zapata-Rodriguez CJ, Silvestre E, Furlan WD. Cantor-like fractal photonic crystal waveguides. Opt. Commun. 2005;252:46–51.[7] Smith DR, Dalichaouch R, Kroll N, Schultz S, McCall SL, Platzman PM. Photonic band structure and defect in one and two dimension. J. Opt. Soc. Am. B. 1993;10:314–321.[8] Veselago VG. The electrodynamics of substances with simultaneously negative values of e and l . Sov. Phys. Usp. 1968;10:509–514.[9] Lotfi E, Jamshidi-Ghaleh K, Moslem F, Masalehdan H. Comparisonof photonic crystal narrow filters with metamaterials and dielectric defects. Eur. Phys. J. D: Atomic Mol. Opt. Phys. 2010;60:369–372.[10] Zhu Q, Zhang Y. Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate. Optik 2009;120:195–198.[11] Lyubchanskii IL, Dadoenkova NN, Zabolotin AE, Lee YP, Rasing Th. A one-dimensional photonic crystal with a superconducting defect layer. J. Opt. A: Pure Appl. Opt.2009;11:114014.[12] Ansari N, Tehranchi MM, Ghanaatshoar M. Characterization of defect modes in one-dimensional photonic crystals: an analytic approach. Phys. B: Condensed Matter. 2009;404:1181–1186.[13] Li X, Xie K, Jiang HM. Properties of defect modes in one-dimensional photonic crystals containing two nonlinear defects. Opt. Commun. 2009;282:4292–4295.[14] Hung HC, Wu CJ, Chang SJ. A mid-infrared tunable filter in a semiconductore-dielectric photonic crystal containing dopt semiconductore defect. Solid State Commun. 2011;151:1677–1680.[15] Wu CJ, Wang ZH. Properties of defect modes in one-dimensional photonic crystals. Prog. Electromagn. Res. 2010;103:169–184.[16] King TC, Yang YP, Liou YS, Wu CJ. Tunable defect mode in a semiconductor-dielectric photonic crystal containing extrinsic semiconductor defect. Solid State Commun. 2012;152:2189–2192.[17] Hu CA, Liu JW, Wu CJ, Yang TJ, Yang SL. Effects of superconducting film on the defect mode in dielectric photonic crystal heterostructure. Solid State Commun. 2013;157:54–57.[18] Rechtaman M, Szameit A, Dreisow F, Heinrich M, Keil R, Nolte S, Segev M. Amorphous photonic lattices: band gaps, effective mass, and suppressed transport. Phys. Rev. Lett. 2011;106:193904.[19] Ghosh S, Varshney RK, Pal BP, Monnom G. A Bragg-like chirped clad all-solid microstructured optical fiber with ultra-wide bandwidth for short pulse delivery and pulse reshaping.Opt. Quant. Electron. 2010;42:1–14.[20] Zhang W, Han P, Lan A, Li Y, Zhang X. Defect modes tuning of one-dimensional photonic crystals with lithium niobate and silver material defect. Phys. E: Low-dimensional Syst. Nanostruct. 2012;44:813–815.[21] Aly AH, Elsayed HA. Defect mode properties in a one-dimensional photonic crystal. Phys. B: Condensed Matter. 2012;407:120–125.[22] Chen YH, Liang GQ, Dong JW, Wang HZ. Derivation and characterization of dispersion of defect modes in photonic band gap from stacks of positive and negative index materials.Phys. Lett. A 2006;351:446–451.[23] Tang KS, Xiang YJ, Wen SC. Defect in photonic crystal with negative index material. Optoelectron. Lett. 2006;2:118–121.[24] Jiang H, Chen H, Li H, Zhang Y. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl. Phys. Lett. 2003;83:5386–5388.[25] Wang LG, Chen H, Zhu SY. Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials. Phys. Rev. B. 2004;70:245102.[26] Xu Q, Xie K, Yang H, Tang J. Periodic defect modes of one-dimensional crystals containing single-negative materials. Optik. 2010;121:1558–1562.[27] Xiang Y, Dai X, Wen S, Fan D. Properties of omnidirectional gapand defect mode of one-dimensional photonic crystal containingindefinite metamaterials with a hyperbolic dispersion. J. Appl. Phys. 2007;102:093107.[28] Wang H, Luo Y, Wang YT, Zhang HB, Fang YT. Splitting of defect-mode in one-dimensionalmagnetic photonic crystal. Phys. B: Condensed Matter. 2012;406:2977–2981.[29] Aghajamali A, Barati M. Properties of defect modes in periodic lossy multilayer with negative-index-materials. Commun. Theor. Phys. 2013;60:80–86.[30] C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Singapore, 2004.[31] D.R. Smith, W. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett.84 (2000) 4184.[32] R.A. Shelby, D.R. Smith, S. Schultz, Science 292 (2001) 77.[33] R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser, S. Schultz, Appl. Phys. Lett. 78 (2001) 489.[34] N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering. Explorations, John Wiley & Sons, Singapore, 2006.[35] C. Sabah, S. Uckun, Opto-Electron. Rev. 15 (2007) 133.[36] J.R. Canto, S.A. Matos, C.R. Paiva, A.M. Barbosa, PIERS Online 4 (2008) 546.[37] H.-T. Hsu, K.-C. Ting, T.-J. Yang, C.-J. Wu, Solid State Commun. 150 (2010) 644[38] L.G. Wang, H. Chen, S.Y. Chou, Phys. Rev. B 70 (2004) 245102.[39] D.-W. Yeh, C.-J. Wu, Opt. Express 17 (2009) 16666.[40] A. Alu, N. Engheta, IEEE Trans. Antennas and Propagation 51 (2003) 2558.[41] D.-W. Yeh, C.-J. Wu, J. Opt. Soc. Amer. B 26 (2009) 1506.[42] L. Dong, G. Du, H. Jiang, H. Chen, Y. Shi, J. Opt. Soc. Amer. B 26 (2009) 1091.
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 邱珍琬、張麗麗（2012）。中小學教師之校園霸凌行為辨識、嚴重性與介入評估之研究。應用心理研究，54，203-250。 2 邱珍琬（2005）。國中欺凌行為實際初探。國民教育學報，1，97-120。 3 邱珍琬（2002）。國小國中校園欺凌行為比較研究。彰化師大教育學報，3，99-129。 4 鄭晃二（2010）。國際安全學校介紹。新北市教育月刊創刊號。

 1 NG-SDH交換機應用於新ㄧ代國際數據EPLC擴展頻寬的技術與架構之研究 2 SDH設備單體潛伏性障礙效能分析與維運技術

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室